Context-Free Grammars

Formalism Derivations Backus-Naur Form Left- and Rightmost Derivations

Informal Comments

- A context-free grammar is a notation for describing languages.
- It is more powerful than finite automata or RE's, but still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.

Informal Comments – (2)

- Basic idea is to use "variables" to stand for sets of strings (i.e., languages).
- These variables are defined recursively, in terms of one another.
- Recursive rules ("productions") involve only concatenation.
- Alternative rules for a variable allow union.

Example: CFG for $\{ 0^n 1^n | n \ge 1 \}$

Productions: S -> 01 S -> 0S1
Basis: 01 is in the language.
Induction: if w is in the language, then so is 0w1.

CFG Formalism

Terminals = symbols of the alphabet of the language being defined.

Variables = nonterminals = a finite set of other symbols, each of which represents a language.

 Start symbol = the variable whose language is the one being defined.

Productions

A production has the form variable -> string of variables and terminals.

Convention:

- A, B, C,... are variables.
- a, b, c,... are terminals.
- …, X, Y, Z are either terminals or variables.
- …, w, x, y, z are strings of terminals only.
- α, β, γ,... are strings of terminals and/or variables.

Example: Formal CFG

Here is a formal CFG for { 0ⁿ1ⁿ | n ≥ 1}.
Terminals = {0, 1}.
Variables = {S}.
Start symbol = S.
Productions = S -> 01 S -> 0S1

Derivations – Intuition

We derive strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.

 That is, the "productions for A" are those that have A on the left side of the ->.

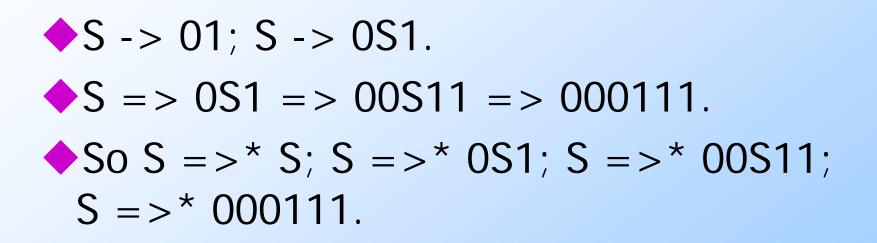
Derivations – Formalism

We say αAβ => αγβ if A -> γ is a production.
 Example: S -> 01; S -> 0S1.
 S => 0SD => 00SD1 => 000111.

Iterated Derivation

=>* means "zero or more derivation steps."
Basis: α =>* α for any string α.
Induction: if α =>* β and β => γ, then α =>* γ.

Example: Iterated Derivation



Sentential Forms

Any string of variables and/or terminals derived from the start symbol is called a *sentential form*.

• Formally, α is a sentential form iff $S = >^* \alpha$.

Language of a Grammar

If G is a CFG, then L(G), the *language* of G, is {w | S =>* w}.

- Note: w must be a terminal string, S is the start symbol.
- Example: G has productions S -> ε and S -> 0S1.
- $L(G) = \{0^n 1^n \mid n \ge 0\}.$ Note: ϵ is a legitimate right side.

Context-Free Languages

- A language that is defined by some CFG is called a *context-free language*.
- There are CFL's that are not regular languages, such as the example just given.

But not all languages are CFL's.

Intuitively: CFL's can count two things, not three.

BNF Notation

- Grammars for programming languages are often written in BNF (*Backus-Naur Form*).
- Variables are words in <...>; Example: <statement>.

 Terminals are often multicharacter strings indicated by boldface or underline; Example: while or WHILE.

BNF Notation – (2)

- Symbol ::= is often used for ->.
 Symbol | is used for "or."
 A shorthand for a list of productions with
 - the same left side.

Example: S -> 0S1 | 01 is shorthand for S -> 0S1 and S -> 01.

BNF Notation – Kleene Closure

Symbol ... is used for "one or more."
Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9
<unsigned integer> ::= <digit>...
Note: that's not exactly the * of RE's.
Translation: Replace α... with a new variable A and productions A -> Aα | α.

Example: Kleene Closure

Grammar for unsigned integers can be replaced by:
 U -> UD | D
 D -> 0|1|2|3|4|5|6|7|8|9

BNF Notation: Optional Elements

 Surround one or more symbols by [...] to make them optional.

Example: <statement> ::= if <condition> then <statement> [; else <statement>]

• Translation: replace $[\alpha]$ by a new variable A with productions A -> $\alpha \mid \epsilon$.

Example: Optional Elements

Grammar for if-then-else can be replaced by:

S -> iCtSA A -> ;eS | ε

BNF Notation – Grouping

- Use {...} to surround a sequence of symbols that need to be treated as a unit.
 - Typically, they are followed by a ... for "one or more."

Example: <statement list> ::=
 <statement> [{;<statement>}...]

Translation: Grouping

You may, if you wish, create a new variable A for {α}.

• One production for A: A -> α .

• Use A in place of $\{\alpha\}$.

Example: Grouping

 $L -> S [{;S}...]$ Replace by L -> S [A...]
A -> ;S A stands for {;S}. • Then by L -> SB B -> A... $|\epsilon A -> ;S$ B stands for [A...] (zero or more A's). • Finally by L -> SB $B -> C | \epsilon$ $C \rightarrow AC \mid A \rightarrow ;S$ C stands for A....

Leftmost and Rightmost Derivations

- Derivations allow us to replace any of the variables in a string.
- Leads to many different derivations of the same string.

By forcing the leftmost variable (or alternatively, the rightmost variable) to be replaced, we avoid these "distinctions without a difference."

Leftmost Derivations

• Say wA $\alpha =>_{Im} w\beta\alpha$ if w is a string of terminals only and A -> β is a production.

Also, $\alpha = {>^*}_{\text{Im}} \beta$ if α becomes β by a sequence of 0 or more $={>}_{\text{Im}}$ steps.

Example: Leftmost Derivations

◆ Balanced-parentheses grammar: S -> SS | (S) | ()
◆ S =>_{Im} SS =>_{Im} (S)S =>_{Im} (())S =>_{Im} (())()
◆ Thus, S =>*_{Im} (())()
◆ S => SS => S() => (S)() => (())() is a derivation, but not a leftmost derivation.

Rightmost Derivations

Say αAw =>_{rm} αβw if w is a string of terminals only and A -> β is a production.

Also, $\alpha = {\stackrel{*}{}_{rm}} \beta$ if α becomes β by a sequence of 0 or more $={\stackrel{*}{}_{rm}}$ steps.

Example: Rightmost Derivations

Balanced-parentheses grammar: S -> SS | (S) | ()• $S = \sum_{rm} SS = \sum_{rm} S() = \sum_{rm} (S)() = \sum_{rm} S()$ (())()• Thus, $S = {*}_{rm} (())()$ $\diamond S => SS => SSS => S()S => ()()S =>$ ()()() is neither a rightmost nor a leftmost derivation.