
1

Context-Free Grammars

Formalism
Derivations

Backus-Naur Form
Left- and Rightmost Derivations

2

Informal Comments

A context-free grammar is a notation
for describing languages.
It is more powerful than finite

automata or RE’s, but still cannot define
all possible languages.
Useful for nested structures, e.g.,

parentheses in programming languages.

3

Informal Comments – (2)

Basic idea is to use “variables” to stand
for sets of strings (i.e., languages).
These variables are defined recursively,

in terms of one another.
Recursive rules (“productions”) involve

only concatenation.
Alternative rules for a variable allow

union.

4

Example: CFG for { 0n1n | n > 1}

Productions:
S -> 01
S -> 0S1

Basis: 01 is in the language.
Induction: if w is in the language, then

so is 0w1.

5

CFG Formalism

Terminals = symbols of the alphabet
of the language being defined.
Variables = nonterminals = a finite

set of other symbols, each of which
represents a language.
Start symbol = the variable whose

language is the one being defined.

6

Productions

A production has the form variable ->
string of variables and terminals.
Convention:
 A, B, C,… are variables.
 a, b, c,… are terminals.
…, X, Y, Z are either terminals or variables.
…, w, x, y, z are strings of terminals only.
 , , ,… are strings of terminals and/or

variables.

7

Example: Formal CFG

Here is a formal CFG for { 0n1n | n > 1}.
Terminals = {0, 1}.
Variables = {S}.
Start symbol = S.
Productions =

S -> 01
S -> 0S1

8

Derivations – Intuition

We derive strings in the language of a
CFG by starting with the start symbol,
and repeatedly replacing some variable
A by the right side of one of its
productions.
 That is, the “productions for A” are those

that have A on the left side of the ->.

9

Derivations – Formalism

We say A =>  if A ->  is a
production.
Example: S -> 01; S -> 0S1.
S => 0S1 => 00S11 => 000111.

10

Iterated Derivation

=>* means “zero or more derivation
steps.”
Basis:  =>*  for any string .
Induction: if  =>*  and  => , then
 =>* .

11

Example: Iterated Derivation

S -> 01; S -> 0S1.
S => 0S1 => 00S11 => 000111.
So S =>* S; S =>* 0S1; S =>* 00S11;

S =>* 000111.

12

Sentential Forms

Any string of variables and/or terminals
derived from the start symbol is called a
sentential form.
Formally,  is a sentential form iff

S =>* .

13

Language of a Grammar

If G is a CFG, then L(G), the language
of G, is {w | S =>* w}.
 Note: w must be a terminal string, S is the

start symbol.
Example: G has productions S -> ε and

S -> 0S1.
L(G) = {0n1n | n > 0}. Note: ε is a legitimate

right side.

14

Context-Free Languages

A language that is defined by some
CFG is called a context-free language.
There are CFL’s that are not regular

languages, such as the example just
given.
But not all languages are CFL’s.
Intuitively: CFL’s can count two things,

not three.

15

BNF Notation

Grammars for programming languages
are often written in BNF (Backus-Naur
Form).
Variables are words in <…>; Example:

<statement>.
Terminals are often multicharacter

strings indicated by boldface or
underline; Example: while or WHILE.

16

BNF Notation – (2)

Symbol ::= is often used for ->.
Symbol | is used for “or.”
 A shorthand for a list of productions with

the same left side.

Example: S -> 0S1 | 01 is shorthand
for S -> 0S1 and S -> 01.

17

BNF Notation – Kleene Closure

Symbol … is used for “one or more.”
Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9
<unsigned integer> ::= <digit>…
 Note: that’s not exactly the * of RE’s.

Translation: Replace … with a new
variable A and productions A -> A | .

18

Example: Kleene Closure

Grammar for unsigned integers can be
replaced by:

U -> UD | D
D -> 0|1|2|3|4|5|6|7|8|9

19

BNF Notation: Optional Elements

Surround one or more symbols by […]
to make them optional.
Example: <statement> ::= if

<condition> then <statement> [; else
<statement>]
Translation: replace [] by a new

variable A with productions A ->  | ε.

20

Example: Optional Elements

Grammar for if-then-else can be
replaced by:

S -> iCtSA
A -> ;eS | ε

21

BNF Notation – Grouping

Use {…} to surround a sequence of
symbols that need to be treated as a
unit.
 Typically, they are followed by a … for

“one or more.”

Example: <statement list> ::=
<statement> [{;<statement>}…]

22

Translation: Grouping

You may, if you wish, create a new
variable A for {}.
One production for A: A -> .
Use A in place of {}.

23

Example: Grouping

L -> S [{;S}…]
Replace by L -> S [A…] A -> ;S
 A stands for {;S}.

Then by L -> SB B -> A… | ε A -> ;S
 B stands for [A…] (zero or more A’s).

Finally by L -> SB B -> C | ε
C -> AC | A A -> ;S
 C stands for A… .

24

Leftmost and Rightmost
Derivations

Derivations allow us to replace any of
the variables in a string.
Leads to many different derivations of

the same string.
By forcing the leftmost variable (or

alternatively, the rightmost variable) to
be replaced, we avoid these
“distinctions without a difference.”

25

Leftmost Derivations

Say wA =>lm w if w is a string of
terminals only and A ->  is a
production.
Also,  =>*lm  if  becomes  by a

sequence of 0 or more =>lm steps.

26

Example: Leftmost Derivations

Balanced-parentheses grammmar:
S -> SS | (S) | ()

 S =>lm SS =>lm (S)S =>lm (())S =>lm
(())()
Thus, S =>*lm (())()
S => SS => S() => (S)() => (())() is a

derivation, but not a leftmost derivation.

27

Rightmost Derivations

Say Aw =>rm w if w is a string of
terminals only and A ->  is a
production.
Also,  =>*rm  if  becomes  by a

sequence of 0 or more =>rm steps.

28

Example: Rightmost Derivations

Balanced-parentheses grammmar:
S -> SS | (S) | ()

 S =>rm SS =>rm S() =>rm (S)() =>rm
(())()
Thus, S =>*rm (())()
S => SS => SSS => S()S => ()()S =>

()()() is neither a rightmost nor a
leftmost derivation.

