Context-Free Grammars

Formalism
Derivations
Backus-Naur Form
Left- and Rightmost Derivations

Informal Comments

® A context-free grammar is a notation
for describing languages.

@ It is more powerful than finite
automata or RE’s, but still cannot define
all possible languages.

@ Useful for nested structures, e.g.,
parentheses Iin programming languages.

Informal Comments — (2)

¥ Basic idea is to use “variables” to stand
for sets of strings (i.e., languages).

@ These variables are defined recursively,
In terms of one another.

@ Recursive rules (“productions”) involve
only concatenation.

& Alternative rules for a variable allow
union.

. CFG for{0"1" | n>1}

&® Productions:
S->01
S -> 0S1

#Basis: 01 is in the language.

@ Induction: if w is in the language, then
so Is Owl.

CFG Formalism

® 7erminals = symbols of the alphabet
of the language being defined.

&® Variables = nonterminals = a finite
set of other symbols, each of which
represents a language.

® Start symbol = the variable whose
language Is the one being defined.

Productions

& A production has the form variable ->
string of variables and terminals.

& Convention:
*+ A, B, C,... are variables.
*a, b, c,... are terminals.
* ..., X, Y, Z are either terminals or variables.
* ..., W, X, YV, z are strings of terminals only.

*a, B, v,... are strings of terminals and/or
variables.

- Formal CFG

® Here is a formal CFG for { 0"1" | n > 1}.
€ Terminals = {0, 1}.

@ Variables = {S}.

@ Start symbol = S.

@® Productions =
S->01
S -> 0S1

Derivations — Intuition

®\We derive strings in the language of a
CFG by starting with the start symbol,
and repeatedly replacing some variable
A by the right side of one of Its
productions.

* That Is, the “productions for A” are those
that have A on the left side of the ->.

Derivations — Formalism

®We say aAB == ayf if A->yis a
production.
¢ : S ->01; S -> 0S1.

=> (1 => 000711.
N

Iterated Derivation

€ =>* means “zero or more derivation
steps.”

@ Basis: oo =>* a for any string c.

@ Induction: if o« =>* 3 and B => y, then
o =>%vy,

10

- lterated Derivation

¢S > 01; S -> 0S1.

€S => 0S1 => 00S11 => 000111.

€®S0S =>*S;S=>*0S1; S =>* 00S11;
S =>*000111.

11

Sentential Forms

@ Any string of variables and/or terminals
derived from the start symbol Is called a
sentential form.

& Formally, o is a sentential form iff
S =>* q.

12

Language of a Grammar

@ If G is a CFG, then L(G), the /anguage
of G, 1s {w | S =>* w}.
+ Note: w must be a terminal string, S Is the
start symbol.

¢ : G has productions S -> € and
S -> 0S1. f

®L(G) ={0"1" | n > 0}. Note: € is a legitimate
right side.

13

Context-Free Languages

€ A language that is defined by some
CFG is called a context-free language.

& There are CFL’s that are not regular
languages, such as the example just
given.

€ But not all languages are CFL'’s.

@ Intuitively: CFL’s can count two things,
not three.

14

BNF Notation

€ Grammars for programming languages
are often written in BNF (Backus-Naur
Form).

@ Variables are words in <...>;
<statement>.

® Terminals are often multicharacter
strings indicated by boldface or
underline; - while or WHILE.

15

BNF Notation — (2)

€ Symbol ::= is often used for ->.

€ Symbol | is used for “or.”

+ A shorthand for a list of productions with
the same left side.

¢ : S -> (0S1 | 01 is shorthand
for S -> 0S1 and S -> 0O1.

16

BNF Notation — Kleene Closure

€ Symbol ... is used for “one or more.”
¢ . <digit> ::= 0]1]2]3]4]5]6]7]8]9
<unsigned integer> ::= <digit>...

* Note: that's not exactly the * of RE’s.

& Translation: Replace a... with a new
variable A and productions A -> Aa | a.

17

- Kleene Closure

€ Grammar for unsigned integers can be
replaced by:

J->UD|D
D -> 0]1]2]3]415]6]7]8]|9

18

BNF Notation: Optional Elements

€ Surround one or more symbols by [...]
to make them optional.

¢ : <statement> ::= if
<condition> then <statement> [; else
<statement>]

& Translation: replace [a] by a new
variable A with productions A -> a | €.

19

. Optional Elements

& Grammar for if-then-else can be
replaced by:

S -> ICtSA

A-> eS| €

20

BNF Notation — Grouping

®Use {...} to surround a sequence of
symbols that need to be treated as a
unit.

* Typically, they are followed by a ... for
“one or more.”

4 . <statement list> ::=
<statement> [{;<statement>}..]

21

Translation: Grouping

€ You may, if you wish, create a new
variable A for {a}.

€ One production for A: A -> a.
Use A in place of {a}.

22

. Grouping

L -= S [{;S}..]
®Replaceby L ->S[A..] A->;S
* A stands for {;S}.
®ThenbyL->SB B->A..|]e A->;S
+ B stands for [A...] (zero or more A’s).
¢ Finally by L -> SB B->C|e€
C->AC|A A ->:S
¢ C stands for A... .

23

Leftmost and Rightmost
Derivations

Derivations allow us to replace any of
the variables in a string.

® Leads to many different derivations of
the same string.

@By forcing the leftmost variable (or
alternatively, the rightmost variable) to
be replaced, we avoid these
“distinctions without a difference.”

24

Leftmost Derivations

@ Say wAa ==, wpa if w is a string of
terminals only and A -> B Is a
production.

@®Also, a =>* B if o becomes B by a
sequence of 0 or more ==, steps.

25

- Leftmost Derivations

€ Balanced-parentheses grammmar:
S->S5[(®) 10
‘ S :>Im SS :>Im (S)S :>Im (())S :>Im
(0)0
®Thus, S =>*,, (0)0

€S=>S55=>5()=>(0)0)==> ()0 isa
derivation, but not a leftmost derivation.

26

Rightmost Derivations

& Say oAw =>__ offw if w is a string of
terminals only and A -> B Is a
production.

@®Also, o =>* [if o becomes B by a
sequence of 0 or more ==, steps.

27

. Rightmost Derivations

€ Balanced-parentheses grammmar:
S->S5[(®) 10
‘ S :>rm SS :>rm S() :>rm (S)O :>rm
(0)0
®Thus, S =>*,(0)0

®S => SS => SSS => S()S ==> ()()S =>
OO is neither a rightmost nor a
leftmost derivation.

28

