Parse Trees

Definitions
Relationship to Left- and Rightmost Derivations
Ambiguity in Grammars
Parse Trees

- **Parse trees** are trees labeled by symbols of a particular CFG.
- **Leaves**: labeled by a terminal or ϵ.
- **Interior nodes**: labeled by a variable.
 - Children are labeled by the right side of a production for the parent.
- **Root**: must be labeled by the start symbol.
Example: Parse Tree

S \rightarrow SS \mid (S) \mid ()
Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order
 - That is, in the order of a preorder traversal.

 is called the *yield* of the parse tree.

Example: yield of $S \rightarrow SS | (S) | ()$ is $((()))()$
Parse Trees, Left- and Rightmost Derivations

- For every parse tree, there is a unique leftmost, and a unique rightmost derivation.

- We’ll prove:
 1. If there is a parse tree with root labeled A and yield w, then A =>* lm w.
 2. If A =>* lm w, then there is a parse tree with root A and yield w.
Proof – Part 1

◆ Induction on the *height* (length of the longest path from the root) of the tree.

◆ **Basis**: height 1. Tree looks like

◆ $A \rightarrow a_1 \ldots a_n$ must be a production.

◆ Thus, $A \Rightarrow^*_{lm} a_1 \ldots a_n$.
Assume (1) for trees of height < h, and let this tree have height h:

By IH, \(X_i \Rightarrow^*_{lm} w_i \).

Note: if \(X_i \) is a terminal, then \(X_i = w_i \).

Thus, \(A \Rightarrow_{lm} X_1 \ldots X_n \Rightarrow^*_{lm} w_1 X_2 \ldots X_n \Rightarrow^*_{lm} \ldots \Rightarrow^*_{lm} w_1 \ldots w_n \).
Proof: Part 2

- Given a leftmost derivation of a terminal string, we need to prove the existence of a parse tree.
- The proof is an induction on the length of the derivation.
Part 2 – Basis

If $A \Rightarrow^*_{lm} a_1 \ldots a_n$ by a one-step derivation, then there must be a parse tree

```
       A
      / \  
  a_1   . . .  a_n
```
Part 2 – Induction

◆ Assume (2) for derivations of fewer than $k > 1$ steps, and let $A \Rightarrow_{lm}^* w$ be a k-step derivation.

◆ First step is $A \Rightarrow_{lm} X_1 \ldots X_n$.

◆ Key point: w can be divided so the first portion is derived from X_1, the next is derived from X_2, and so on.
 ◆ If X_i is a terminal, then $w_i = X_i$.
Induction – (2)

- That is, $X_i \Rightarrow^*_{lm} w_i$ for all i such that X_i is a variable.
 - And the derivation takes fewer than k steps.
- By the IH, if X_i is a variable, then there is a parse tree with root X_i and yield w_i.
- Thus, there is a parse tree

![Parse Tree Diagram]

$A \rightarrow X_1 \ldots X_n$

$w_1 \ldots w_n$
Parse Trees and Rightmost Derivations

- The ideas are essentially the mirror image of the proof for leftmost derivations.
- Left to the imagination.
The proof that you can obtain a parse tree from a leftmost derivation doesn’t really depend on “leftmost.”

First step still has to be $A \Rightarrow X_1 \ldots X_n$.

And w still can be divided so the first portion is derived from X_1, the next is derived from X_2, and so on.
Ambiguous Grammars

◆ A CFG is *ambiguous* if there is a string in the language that is the yield of two or more parse trees.

◆ Example: $S \rightarrow SS \mid (S) \mid ()$

◆ Two parse trees for $(()())()$ on next slide.
Example – Continued
Ambiguity, Left- and Rightmost Derivations

- If there are two different parse trees, they must produce two different leftmost derivations by the construction given in the proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.
Thus, equivalent definitions of “ambiguous grammar” are:

1. There is a string in the language that has two different leftmost derivations.
2. There is a string in the language that has two different rightmost derivations.
Ambiguity is a Property of Grammars, not Languages

- For the balanced-parentheses language, here is another CFG, which is unambiguous.

\[
\begin{align*}
B & \rightarrow (RB | \epsilon) \\
R & \rightarrow) | (RR
\end{align*}
\]

- B, the start symbol, derives balanced strings.
- R generates strings that have one more right paren than left.
Example: Unambiguous Grammar

\[B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR) \]

Construct a unique leftmost derivation for a given balanced string of parentheses by scanning the string from left to right.

- If we need to expand B, then use \(B \rightarrow (RB \) if the next symbol is “(” and \(\epsilon \) if at the end.
- If we need to expand R, use \(R \rightarrow) \) if the next symbol is “)” and \((RR \) if it is “(”.

19
The Parsing Process

Remaining Input: (())()

Next symbol

Steps of leftmost derivation:

B

B -> (RB | \(\epsilon \))

R ->) | (RR
The Parsing Process

Remaining Input:
(()())

Steps of leftmost derivation:

\[
B => (RB | \epsilon) \\
R =>) | (RR
\]
The Parsing Process

Remaining Input:)) ()

Steps of leftmost derivation:

B
(RB
((RRB

B -> (RB | ε
R ->) | (RR

Next symbol
The Parsing Process

Remaining Input:)()

Steps of leftmost derivation:

B
(RB
((RRB
(()RB

B -> (RB | ε
R ->) | (RR
The Parsing Process

Remaining Input:

()

Steps of leftmost derivation:

B

(RB

((RRB

(()RB

(()B

B -> (RB | ε

R ->) | (RR
The Parsing Process

Remaining Input:
)

Next symbol

Steps of leftmost derivation:
B \rightarrow (RB | \epsilon
R \rightarrow) | (RR

\begin{array}{c}
B \rightarrow (RB | \epsilon \\
(B (RB | \epsilon)

\end{array}

\begin{array}{c}
R \rightarrow) | (RR

\end{array}
The Parsing Process

Remaining Input: B (())(RB
Steps of leftmost derivation:
B ((()))(RB
(RB ((()))()B
((RRB
(()RB
(()))B

B -> (RB | ε
R ->) | (RR
The Parsing Process

Remaining Input: B

Steps of leftmost derivation:
- B
- (RB
- ((()))(RB
- (())B
- (((RRB
- ((())()B
- ((()))
- ()RB
- (()RB
- ((())B

B -> (RB | ε
R ->) | (RR
LL(1) Grammars

As an aside, a grammar such as \(B \rightarrow (RB | \epsilon) \)
\(R \rightarrow) | (RR, \text{ where you can always figure out the production to use in a leftmost derivation by scanning the given string left-to-right and looking only at the next one symbol is called LL(1).} \)

“Leftmost derivation, left-to-right scan, one symbol of lookahead.”
LL(1) Grammars - (2)

- Most programming languages have LL(1) grammars.
- LL(1) grammars are never ambiguous.
Inherent Ambiguity

◆ It would be nice if for every ambiguous grammar, there were some way to “fix” the ambiguity, as we did for the balanced-parentheses grammar.

◆ Unfortunately, certain CFL’s are inherently ambiguous, meaning that every grammar for the language is ambiguous.
Example: Inherent Ambiguity

The language \(\{0^i1^j2^k \mid i = j \text{ or } j = k \} \) is inherently ambiguous.

Intuitively, at least some of the strings of the form \(0^n1^n2^n \) must be generated by two different parse trees, one based on checking the 0’s and 1’s, the other based on checking the 1’s and 2’s.
One Possible Ambiguous Grammar

\[S \rightarrow AB \mid CD \]
\[A \rightarrow 0A1 \mid 01 \quad \text{A generates equal 0’s and 1’s} \]
\[B \rightarrow 2B \mid 2 \quad \text{B generates any number of 2’s} \]
\[C \rightarrow 0C \mid 0 \quad \text{C generates any number of 0’s} \]
\[D \rightarrow 1D2 \mid 12 \quad \text{D generates equal 1’s and 2’s} \]

And there are two derivations of every string with equal numbers of 0’s, 1’s, and 2’s. E.g.:
\[S \Rightarrow AB \Rightarrow 01B \Rightarrow 012 \]
\[S \Rightarrow CD \Rightarrow 0D \Rightarrow 012 \]