Introduction to Finite Automata

Languages
Deterministic Finite Automata
Representations of Automata

Alphabets

- An alphabet is any finite set of symbols.
\rightarrow Examples: ASCII, Unicode, $\{0,1\}$ (binary alphabet), \{a,b,c\}.

Strings

- The set of strings over an alphabet Σ is the set of lists, each element of which is a member of Σ.
- Strings shown with no commas, e.g., abc.
Σ^{*} denotes this set of strings.
ϵ stands for the empty string (string of length 0).

Example: Strings

$\checkmark\{0,1\}^{*}=\{\epsilon, 0,1,00,01,10,11,000$, 001, . . . \}
Subtlety: 0 as a string, 0 as a symbol look the same.

- Context determines the type.

Languages

A language is a subset of \sum^{*} for some alphabet Σ.

- Example: The set of strings of 0's and 1's with no two consecutive 1's.
$\langle L=\{\epsilon, 0,1,00,01,10,000,001,010$, 100, 101, 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010, . . . \}

Deterministic Finite Automata

- A formalism for defining languages, consisting of:

1. A finite set of states (Q, typically).
2. An input alphabet (Σ, typically).
3. A transition function (δ, typically).
4. A start state (q_{0}, in Q , typically).
5. A set of final states ($\mathrm{F} \subseteq \mathrm{Q}$, typically).

- "Final" and "accepting" are synonyms.

The Transition Function

-Takes two arguments: a state and an input symbol.
$\delta(q, a)=$ the state that the DFA goes to when it is in state q and input a is received.

Graph Representation of DFA's

- Nodes = states.

Arcs represent transition function.

- Arc from state p to state q labeled by all those input symbols that have transitions from p to q.
- Arrow labeled "Start" to the start state.
- Final states indicated by double circles.

Example: Graph of a DFA

Accepts all strings without two consecutive 1's.

Previous	Previous	Consecutive
string OK,	String OK,	1's have
does not	ends in a	been seen.
end in 1.	single 1.	

Alternative Representation: Transition Table

Final states

starred	0	1	Columns = input symbols
\rightarrow *	A	B	
Arrow for * B	A	C	
start state C	C	C	

Rows $=$ states

Extended Transition Function

\checkmark We describe the effect of a string of inputs on a DFA by extending δ to a state and a string.

- Induction on length of string.

Basis: $\delta(q, \epsilon)=q$

- Induction: $\delta(q, w a)=\delta(\delta(q, w), a)$
- w is a string; a is an input symbol.

Extended δ : Intuition

-Convention:
-... w, x, y, x are strings.

- a, b, c, ... are single symbols.

Extended δ is computed for state q and inputs $a_{1} a_{2} \ldots a_{n}$ by following a path in the transition graph, starting at q and selecting the arcs with labels $a_{1}, a_{2}, \ldots, a_{n}$ in turn.

Example: Extended Delta

	0	1
A	A	B
B	A	C
C	C	C

$\delta(B, 011)=\delta(\delta(B, 01), 1)=\delta(\delta(\delta(B, 0), 1), 1)=$
$\delta(\delta(A, 1), 1)=\delta(B, 1)=C$

Delta-hat

- In book, the extended δ has a "hat" to distinguish it from δ itself.
\checkmark Not needed, because both agree when the string is a single symbol.
$\langle(q, a)=\delta(\delta(q, \epsilon), a)=\delta(q, a)$
Extended deltas

Language of a DFA

\checkmark Automata of all kinds define languages.

- If A is an automaton, $L(A)$ is its language.
\checkmark For a DFA A, L(A) is the set of strings labeling paths from the start state to a final state.

Formally: $L(A)=$ the set of strings w such that $\delta\left(q_{0}, w\right)$ is in F.

Example: String in a Language

String 101 is in the language of the DFA below. Start at A.

Example: String in a Language

String 101 is in the language of the DFA below.
Follow arc labeled 1.

Example: String in a Language

String 101 is in the language of the DFA below.
Then arc labeled 0 from current state B.

Example: String in a Language

String 101 is in the language of the DFA below.
Finally arc labeled 1 from current state A. Result is an accepting state, so 101 is in the language.

Example - Concluded

-The language of our example DFA is:
$\left\{w \mid w\right.$ is in $\{0,1\}^{*}$ and w does not have
two co
These conditions about w are true.
Read a set former as "The set of strings w...

Proofs of Set Equivalence

- Often, we need to prove that two descriptions of sets are in fact the same set.
\checkmark Here, one set is "the language of this DFA," and the other is "the set of strings of 0's and 1's with no consecutive 1's."

Proofs - (2)

- In general, to prove $S=T$, we need to prove two parts: $\mathrm{S} \subseteq \mathrm{T}$ and $\mathrm{T} \subseteq \mathrm{S}$. That is:

1. If w is in S, then w is in T.
2. If w is in T, then w is in S.

As an example, let $S=$ the language of our running DFA, and $T=$ "no consecutive 1's."

Part 1: S \subseteq T

\rightarrow To prove: if w is accepted by then w has no consecutive l's.
\checkmark Proof is an induction on length of w.

- Important trick: Expand the inductive hypothesis to be more detailed than you need.

The I nductive Hypothesis

1. If $\delta(A, w)=A$, then w has no consecutive 1's and does not end in 1.
2. If $\delta(A, w)=B$, then w has no consecutive l's and ends in a single 1.

- Basis: $|\mathrm{w}|=0$; i.e., $w=\epsilon$.
- (1) holds since ϵ has no l's at all.
(2) holds vacuously, since $\delta(A, \epsilon)$ is not B. the statement is true.

Inductive Step

- Assume (1) and (2) are true for strings shorter than w, where $|w|$ is at least 1.
Because w is not empty, we can write $w=x a$, where a is the last symbol of w, and x is the string that precedes.
$\forall I H$ is true for x.

I nductive Step - (2) $\int_{\text {Start } 0}^{\infty}$

- Need to prove (1) and (2) for $w=x a$.
(1) for w is: If $\delta(A, w)=A$, then w has no consecutive 1's and does not end in 1.
Since $\delta(A, w)=A, \delta(A, x)$ must be A or B, and a must be 0 (look at the DFA).
- By the IH, x has no 11's.

Thus, w has no 11's and does not end in 1.

- Now, prove (2) for $w=x a$: If $\delta(A, w)=$ B, then w has no 11 's and ends in 1.
Since $\delta(A, w)=B, \delta(A, x)$ must be A, and a must be 1 (look at the DFA).
By the IH, x has no 11's and does not end in 1.
Thus, w has no 11's and ends in 1.

Part 2: T \subseteq S

- Now, we must prove: if w has no 11's, then w is accepted by

- Gontrapositive: If w is not accepted by

Key idea: contrapositive of "if X then Y " is the equivalent statement "if not Y then not X."

Every w gets the DFA to exactly one state.

- Simple inductive proof based on:
- Every state has exactly one transition on 1, one transition on 0.
The only way w is not accepted is if it gets to C.

Using the Contrapositive - (2)

- The only way to get to C [formally: $\delta(A, w)=C]$ is if $w=x l y, x$ gets to B, and y is the tail of w that follows what gets to C for the first time.
\rightarrow If $\delta(A, x)=B$ then surely $x=z 1$ for some z.
Thus, w = z11y and has 11.

Regular Languages

\checkmark A language L is regular if it is the language accepted by some DFA.

- Note: the DFA must accept only the strings in L, no others.
Some languages are not regular.
- Intuitively, regular languages "cannot count" to arbitrarily high integers.

Example: A Nonregular Language

$\mathrm{L}_{1}=\left\{0^{n} 1^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$

- Note: ai is conventional for i a's.
- Thus, $0^{4}=0000$, e.g.

Read: "The set of strings consisting of n O's followed by n 1 's, such that n is at least 1.
Thus, $\mathrm{L}_{1}=\{01,0011,000111, \ldots\}$

Another Example

$L_{2}=\left\{w \mid w\right.$ in $\{(,)\}^{*}$ and w is balanced $\}$

- Note: alphabet consists of the parenthesis symbols '(' and ')'.
- Balanced parens are those that can appear in an arithmetic expression.
- E.g.: (), ()(), (()), (()()),...

But Many Languages are Regular

- Regular Languages can be described in many ways, e.g., regular expressions.
- They appear in many contexts and have many useful properties.
- Example: the strings that represent floating point numbers in your favorite language is a regular language.

Example: A Regular Language

$L_{3}=\left\{w \mid w\right.$ in $\{0,1\}^{*}$ and w, viewed as a binary integer is divisible by 23$\}$

- The DFA:
- 23 states, named 0, 1,..,22.
- Correspond to the 23 remainders of an integer divided by 23.
- Start and only final state is 0.

Transitions of the DFA for L_{3}

\checkmark If string w represents integer i , then assume $\delta(0, w)=i \% 23$.
\rightarrow Then wO represents integer 2 i , so we want $\delta(i \% 23,0)=(2 i) \% 23$.

Similarly: w1 represents $2 \mathrm{i}+1$, so we want $\delta(i \% 23,1)=(2 i+1) \% 23$.
Example: $\delta(15,0)=30 \% 23=7$; $\delta(11,1)=23 \% 23=0$. Key idea: design a DFA by figuring out what each state needs to remember about the past.

Another Example

$L_{4}=\left\{w \mid w\right.$ in $\{0,1\}^{*}$ and w, viewed as the reverse of a binary integer is divisible by 23\}

- Example: 01110100 is in L_{4}, because its reverse, 00101110 is 46 in binary.
- Hard to construct the DFA.

But theorem says the reverse of a regular language is also regular.

