Nondeterministic Finite
Automata

Nondeterminism
Subset Construction



Nondeterminism

® A nondeterministic finite automaton
has the abllity to be in several states at
once.

€ Transitions from a state on an input
symbol can be to any set of states.



Nondeterminism — (2)

& Start in one start state.

@ Accept if any sequence of choices leads
to a final state.

@ Intuitively: the NFA always “guesses
right.”



- Moves on a
Chessboard

& States = squares.

@ Inputs = r (move to an adjacent red
square) and b (move to an adjacent
black square).

& Start state, final state are in opposite
corners.
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. Chessboard — (2)

r b
—| 1] 2,4 5
24,6 1,3,5
32,6 5
4| 2,8 1,5,7
512,4,6,8 1,3,7,9
62,8 3,5,9
74,8 5
81| 4,6 5,7,9
| 91 6,8 5

<+ Accept, since final state reached




Formal NFA

® A finite set of states, typically Q.
€ An input alphabet, typically 2.

@ A transition function, typical

@ A start state in Q, typically o
@ A set of final states F < Q.

y O.

O-



Transition Function of an NFA

®0(q, a) is a set of states.

@ Extend to strings as follows:
®Basis: 0(q, €) = {q}

@ Induction: (g, wa) = the union over
all states p in o(q, w) of d(p, a)



Language of an NFA

@ A string w is accepted by an NFA if
0(gy, W) contains at least one final

State.

€ The language of the NFA is the set of
strings It accepts.



. Language 2

4 15
of an NFA s o

@ For our chessboard NFA we saw that
rbb Is accepted.

@ If the input consists of only b’s, the set
of accessible states alternates between
{5} and {1,3,7,9}, so only even-length,
nonempty strings of b’s are accepted.

€ What about strings with at least one r?



Equivalence of DFA’s, NFA’s

€ A DFA can be turned into an NFA that
accepts the same language.

@ 1f 5,(q, a) = p, let the NFA have
on(Q, @) = {p}-

€ Then the NFA is always in a set
containing exactly one state — the state
the DFA Is In after reading the same
Input.
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Equivalence — (2)

@ Surprisingly, for any NFA there is a DFA

that acce
®Proof is t
® The num

nts the same language.
ne subset construction.

ner of states of the DFA can

be exponential in the number of states
of the NFA.

€ Thus, NFA's accept exactly the regular
languages.
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Subset Construction

€ Given an NFA with states Q, inputs 2,
transition function o,, state state qg,, and

final states F, construct equivalent DFA
with:

+ States 2Q (Set of subsets of Q).

¢ Inputs 2.

+ Start state {q,}-
+ Final states = all those with a member of F.
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¥ The DFA states have that are
sets of NFA states.

€ But as a DFA state, an expression like
{p.q} must be read as a single symbol,
not as a set.

€ Analogy: a class of objects whose
values are sets of objects of another
class.
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Subset Construction — (2)

@ The transition function o, is defined by:

o0,({q;,...,q,}, @) is the union over all | =
1,...k of o\(q; a).

¢ : We'll construct the DFA
equivalent of our “chessboard” NFA.
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- Subset Construction

r b
1| 2,4 5
21 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
51 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
74,8 5
8| 4,6 5,7,9
96,8 5

r b
— {1} {2,4} {5}
{2,4}
{5}

Alert: What we're doing here is
the /azy form of DFA construction,
where we only construct a state
If we are forced to. 15



- Subset Construction

r b
12,4 5
21 4,6 L2 5
3| 2,6 5
4| 2,8 1,5,7
51 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
74,8 5
8| 4,6 5,7,9
96,8 5

r b
— {1} {2,4} {5}
{2,4y {2,4,6,8} {1,3,5,7}
{5}
{2,4,6,8}
{1,3,5,7}
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- Subset Construction

r b
12,4 5
21 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
512,4,6,8 1,3,7,9
6| 2,8 3,5,9
74,8 5
8| 4,6 5,7,9
96,8 5

r b
— {1} {24} | {5}
{2,4y {2,4,6,8} {1,3,5,7}
{5} {2,4,6,8} {1,3,7,9}
{2,4,6,8}
{1,3,5,7}
* {1,3,7,9}
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- Subset Construction

r b
1| 2,4 5
2| 4,6 1,3,5
32,6 5
4| 2.8 1,5,7
512,4,6,8 1,3,7,9
6| 2,8 3,5,9
74,8 5
8| 4,6 5,7,9
96,8 5

r b
— {1} {24} | {5}
{2,4y {2,4,6,8} {1,3,5,7}
{5} {2,4,6,8} {1,3,7,9}
{2,4,6,8} | {2,4,6,8}({1,3,5,7,9}
{1,3,5,7}
* {1,3,7,9}
*{1,3,5,7,9}
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- Subset Construction

r b
1| 2,4 5
21 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
512,4,6,8 1,3,7,9
6| 2,8 3,5,9
74,8 5
8| 4,6 5,7,9
96,8 5

r

b

— 11}

12,4}

15}
{2,4,6,8}
{1,3,5,7}
* {1,3,7,9}
*{1,3,5,7,9}

12,4}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}

15}
{1,3,5,7}
{1,3,7,9}

{1,3,5,7,9}
{1,3,5,7,9}
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- Subset Construction

r b
1| 2,4 5
21 4,6 1,3,5
3| 2,6 5
4| 2,8 1,5,7
51 2,4,6,8 1,3,7,9
6| 2,8 3,5,9
74,8 5
8| 4,6 5,7,9
9| 6,8 5

r

b

— 11}

12,4}

15}
{2,4,6,8}
{1,3,5,7}
* {1,3,7,9}
*{1,3,5,7,9}

12,4}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}

15}
{1,3,5,7}
{1,3,7,9}

{1,3,5,7,9}
{1,3,5,7,9}

15}
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- Subset Construction

r b
1| 2,4 5
24,6 1,3,5
32,6 5
4| 2,8 1,5,7
5(2,4,6,8| 1,3,7,9
62,8 3,5,9
7148 5
8| 4,6 5,7,9
96,8 5

r

b

— 11}

12,4}

15}
{2,4,6,8}
{1,3,5,7}
* {1,3,7,9}
*{1,3,5,7,9}

12,4}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}
{2,4,6,8}

15}
{1,3,5,7}
{1,3,7,9}

{1,3,5,7,9}

{1,3,5,7,9}
15}

{1,3,5,7,9}
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Proof of Equivalence: Subset
Construction

@ The proof is almost a pun.
€ Show by induction on |w| that
on(do, W) = 0p({de}, W)
@ Basis: w = €: 0\(qy, €) = 05({qy}, €) =
{do}-
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|nduction

@ Assume IH for strings shorter than w.

@ Let w = xa; IH holds for x.

®Let 0\(dy, X) = 0p({de}, X) = S.

@®Let T = the union over all states p in S of
on(p, ).

@ Then oy(dy, W) = 0p({de}, W) =T.
+ For NFA: the extension of 9.

* For DFA: definition of d, plus extension of op.
e That is, 0,(S, a) = T; then extend o, to w = xa.
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NFA’s With e-Transitions

® \We can allow state-to-state transitions
on € Input.

@ These transitions are done
spontaneously, without looking at the
Input string.

€ A convenience at times, but still only
regular languages are accepted.

24
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Closure of States

€ CL(g) = set of states you can reach
from state g following only arcs labeled

€. /E\

* ' CL(A) = {A}; 1B
CL(E) = {B, C, D, E}. @

0

® Closure of a set of states = union of
the closure of each state.
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Extended Delta

€ Basis: é(q, €) = CL(q).

€ Induction: §(qg, xa) is computed as
follows:

1. Start with §(g, x) = S.
2. Take the union of CL(O(p, a)) for all p in S.

¢ |Intuition: 8(q, w) is the set of states

you can reach from g following a path

labeled w. | |
And notice that &(q, a) is

that set of states, for symbol a.

27



7l

: 1 <B)—*C)
Extended Delta @

4 é(A, €)=C
® 0 0)=C

0

L(A) = {A}.

_({E}) = {B, C, D, E}.

@ 5(A, 01) = CL({C, D}) = {C, D}.
® Language of an e-NFA is the set of
strings w such that d(q,, w) contains a

final state.
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Equivalence of NFA, e-NFA

@®Every NFA is an e-NFA.
¢+ |t just has no transitions on €.
@ Converse requires us to take an e-NFA

and construct an NFA that accepts the
same language.

¥ We do so by combining e-transitions
with the next transition on a real input.

Warning: This treatment is a
bit different from that in the text. 29



Picture of e-Transition Removal

£ AN

Transitions

on € N
Transitions

on €
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Picture of e-Transition Removal

To here, and performs

Text goes )
J the subset construction

from here

0..
*
.

Transitions
on €

K AL

Transitions
on €
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Picture of e-Transition Removal

To here, with no
7 subset construction

_a<
We'll go
from here 3 i
%
a
Transitions
on €

Transitions
on €
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Equivalence — (2)

& Start with an e-NFA with states Q,
iInputs 2, start state q,, final states F,
and transition function o¢.

@ Construct an “ordinary” NFA with states
Q, Inputs 2, start state q,, final states

F', and transition function o

33



Equivalence — (3)

€ Compute 0y(q, a) as follows:

1. Let S = CL(q).
2. 0\(q, a) is the union over all p in S of

oc(p, a).
€ F' = the set of states g such that
CL(g) contains a state of F.
€ Intuition: d, incorporates e—transitions

before using a but not after.
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Equivalence — (4)

@ Prove by induction on |w| that

CL(On(dg, W)) = de(dg, W).
@ Thus, the e-NFA accepts w if and only if
the “ordinary” NFA does.
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: €-NFA-

: CL(B)

= {B,0}; CL(E) to-NFA
= {B,C,D,E}

0 |1 |€ 0 |1
A |{E} {B} & — A |{E} {B}
B| @ |{C}{D} * Bl © {C}
Clo |{D} @ C| © |{D}

«D @ @|0 * D O Y

E|{F} @ |{B,C} * E | {F} {C, D}
F| {0} 2|2 / SN

E-NFA Since closure of

Since closures of
B and E include
final state D.

E includes B and
C; which have
transitions on 1
to C and D.
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Summary

®DFA’s, NFA’s, and e-NFA's all accept

exactly the same set of languages: the
regular languages.

€ The NFA types are easier to design and
may have exponentially fewer states
than a DFA.

€ But only a DFA can be implemented!
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