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Nondeterministic Finite 
Automata

Nondeterminism
Subset Construction
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Nondeterminism

A nondeterministic finite automaton
has the ability to be in several states at 
once.
Transitions from a state on an input 

symbol can be to any set of states.
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Nondeterminism – (2)

Start in one start state.
Accept if any sequence of choices leads 

to a final state.
Intuitively: the NFA always “guesses 

right.”
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Example: Moves on a 
Chessboard

States = squares.
Inputs = r (move to an adjacent red 

square) and b (move to an adjacent 
black square).
Start state, final state are in opposite 

corners.



5

Example: Chessboard – (2)
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r         b
1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

Accept, since final state reached
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Formal NFA

A finite set of states, typically Q.
An input alphabet, typically Σ.
A transition function, typically δ.

A start state in Q, typically q0.
A set of final states F ⊆ Q.
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Transition Function of an NFA

δ(q, a) is a set of states.

Extend to strings as follows:
Basis: δ(q, ε) = {q}
Induction: δ(q, wa) = the union over 

all states p in δ(q, w) of δ(p, a)



8

Language of an NFA

A string w is accepted by an NFA if 
δ(q0, w) contains at least one final 
state.
The language of the NFA is the set of 

strings it accepts.
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Example: Language 
of an NFA

For our chessboard NFA we saw that 
rbb is accepted.
If the input consists of only b’s, the set 

of accessible states alternates between 
{5} and {1,3,7,9}, so only even-length, 
nonempty strings of b’s are accepted.
What about strings with at least one r?
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Equivalence of DFA’s, NFA’s

A DFA can be turned into an NFA that 
accepts the same language.
If δD(q, a) = p, let the NFA have 
δN(q, a) = {p}.

Then the NFA is always in a set 
containing exactly one state – the state 
the DFA is in after reading the same 
input. 
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Equivalence – (2)

Surprisingly, for any NFA there is a DFA 
that accepts the same language.
Proof is the subset construction.
The number of states of the DFA can 

be exponential in the number of states 
of the NFA.
Thus, NFA’s accept exactly the regular 

languages.
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Subset Construction

Given an NFA with states Q, inputs Σ, 
transition function δN, state state q0, and 
final states F, construct equivalent DFA 
with:
 States 2Q (Set of subsets of Q).
 Inputs Σ.

 Start state {q0}.
 Final states = all those with a member of F.
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Critical Point

The DFA states have names that are 
sets of NFA states.
But as a DFA state, an expression like 

{p,q} must be read as a single symbol, 
not as a set.
Analogy: a class of objects whose 

values are sets of objects of another 
class.
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Subset Construction – (2)

The transition function δD is defined by:
δD({q1,…,qk}, a) is the union over all i = 

1,…,k  of δN(qi, a).

Example: We’ll construct the DFA 
equivalent of our “chessboard” NFA.
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1} {2,4}       {5}

{2,4}
{5}

Alert: What we’re doing here is
the lazy form of DFA construction,
where we only construct a state
if we are forced to.
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

{2,4,6,8}
{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

*   {1,3,7,9}

{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

* {1,3,5,7,9}
*   {1,3,7,9}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

* {1,3,5,7,9}
*   {1,3,7,9}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

* {1,3,5,7,9}
*   {1,3,7,9} {2,4,6,8}     {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Example: Subset Construction
r         b

1 2,4    5
2 4,6       1,3,5
3 2,6    5
4 2,8   1,5,7
5 2,4,6,8  1,3,7,9
6 2,8      3,5,9
7 4,8      5
8 4,6      5,7,9
9 6,8   5*

r b
{1}

* {1,3,5,7,9} {2,4,6,8} {1,3,5,7,9}
*   {1,3,7,9} {2,4,6,8}     {5}

{2,4,6,8} {1,3,5,7,9}{2,4,6,8}
{2,4,6,8}  {1,3,7,9}{5}

{2,4} {2,4,6,8}  {1,3,5,7}

{1,3,5,7}

{2,4}       {5}

{2,4,6,8} {1,3,5,7,9}
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Proof of Equivalence: Subset 
Construction

The proof is almost a pun.
Show by induction on |w| that

δN(q0, w) = δD({q0}, w)
Basis: w = ε: δN(q0, ε) = δD({q0}, ε) = 

{q0}.
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Induction

Assume IH for strings shorter than w.
Let w = xa; IH holds for x.
Let δN(q0, x) = δD({q0}, x) = S.

Let T = the union over all states p in S of 
δN(p, a).
Then δN(q0, w) = δD({q0}, w) = T.
 For NFA: the extension of δN.
 For DFA: definition of δD plus extension of δD.

• That is, δD(S, a) = T; then extend δD to w = xa.
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NFA’s With ε-Transitions

We can allow state-to-state transitions 
on ε input.

These transitions are done 
spontaneously, without looking at the 
input string.
A convenience at times, but still only 

regular languages are accepted.
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Example: ε-NFA

C

E F

A

B D1
1 1

0
0

0

ε

ε ε

0     1 ε
A  {E}  {B}  ∅
B   ∅ {C} {D}
C   ∅   {D}  ∅
D ∅ ∅   ∅
E   {F}   ∅ {B, C}
F   {D} ∅  ∅

*
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Closure of States

CL(q) = set of states you can reach 
from state q following only arcs labeled 
ε.
Example: CL(A) = {A};

CL(E) = {B, C, D, E}.

Closure of a set of states = union of 
the closure of each state. 

C

E F

A

B D1 1 1

0
0

0

ε

ε ε
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Extended Delta

 Basis:   (q, ε) = CL(q).

 Induction:   (q, xa) is computed as 
follows:

1. Start with   (q, x) = S.
2. Take the union of CL(δ(p, a)) for all p in S.

 Intuition:   (q, w) is the set of states 
you can reach from q following a path 
labeled w.

˄
δ

˄
δ

˄
δ

˄
δ

And notice that δ(q, a) is not
that set of states, for symbol a.
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Example: 
Extended Delta
 (A, ε) = CL(A) = {A}.

 (A, 0) = CL({E}) = {B, C, D, E}.
 (A, 01) = CL({C, D}) = {C, D}.
Language of an ε-NFA is the set of 

strings w such that   (q0, w) contains a 
final state.

C

E F

A

B D1 1 1

0
0

0

ε

ε ε
˄
δ
˄
δ
˄
δ

˄
δ
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Equivalence of NFA, ε-NFA

Every NFA is an ε-NFA.
 It just has no transitions on ε.

Converse requires us to take an ε-NFA 
and construct an NFA that accepts the 
same language.
We do so by combining ε–transitions 

with the next transition on a real input.
Warning: This treatment is a
bit different from that in the text.
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Picture of ε-Transition Removal

Transitions
on ε

a

a

a

Transitions
on ε
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Picture of ε-Transition Removal

Transitions
on ε

a

a

a

Transitions
on ε

Text goes
from here

To here, and performs
the subset construction
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Picture of ε-Transition Removal

Transitions
on ε

a

a

a

Transitions
on ε

We’ll go
from here

To here, with no
subset construction
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Equivalence – (2)

Start with an ε-NFA with states Q, 
inputs Σ, start state q0, final states F, 
and transition function δE.

Construct an “ordinary” NFA with states 
Q, inputs Σ, start state q0, final states 
F’, and transition function δN.
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Equivalence – (3)

 Compute δN(q, a) as follows:
1. Let S = CL(q).
2. δN(q, a) is the union over all p in S of 
δE(p, a).

 F’ = the set of states q such that 
CL(q) contains a state of F.

 Intuition: δN incorporates ε–transitions 
before using a but not after.
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Equivalence – (4)

Prove by induction on |w| that

CL(δN(q0, w)) =   E(q0, w).
Thus, the ε-NFA accepts w if and only if 

the “ordinary” NFA does.

˄
δ
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Example: ε-NFA-
to-NFA

0     1 ε
A  {E}  {B}  ∅
B   ∅ {C} {D}
C   ∅   {D}  ∅
D ∅ ∅   ∅
E   {F}   ∅ {B, C}
F   {D} ∅  ∅

*

ε-NFA

0     1
A  {E}  {B}
B   ∅ {C}
C   ∅   {D}
D ∅ ∅
E   {F}  {C, D}
F   {D}   ∅

*
*

*

Since closure of
E includes B and
C; which have
transitions on 1
to C and D.

Since closures of
B and E include
final state D.

Interesting
closures: CL(B)
= {B,D}; CL(E)
= {B,C,D,E}
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Summary

DFA’s, NFA’s, and ε–NFA’s all accept 
exactly the same set of languages: the 
regular languages.
The NFA types are easier to design and 

may have exponentially fewer states 
than a DFA.
But only a DFA can be implemented!


