Equivalence of PDA, CFG

Conversion of CFG to PDA
Conversion of PDA to CFG
Overview

◆ When we talked about closure properties of regular languages, it was useful to be able to jump between RE and DFA representations.

◆ Similarly, CFG’s and PDA’s are both useful to deal with properties of the CFL’s.
Also, PDA’s, being “algorithmic,” are often easier to use when arguing that a language is a CFL.

Example: It is easy to see how a PDA can recognize balanced parentheses; not so easy as a grammar.

But all depends on knowing that CFG’s and PDA’s both define the CFL’s.
Converting a CFG to a PDA

- Let \(L = L(G) \).
- Construct PDA \(P \) such that \(N(P) = L \).
- \(P \) has:
 - One state \(q \).
 - Input symbols = terminals of \(G \).
 - Stack symbols = all symbols of \(G \).
 - Start symbol = start symbol of \(G \).
Intuition About P

- Given input w, P will step through a leftmost derivation of w from the start symbol S.
- Since P can’t know what this derivation is, or even what the end of w is, it uses nondeterminism to “guess” the production to use at each step.
Intuition – (2)

- At each step, P represents some left-sentential form (step of a leftmost derivation).
- If the stack of P is α, and P has so far consumed x from its input, then P represents left-sentential form $x\alpha$.
- At empty stack, the input consumed is a string in $L(G)$.
Transition Function of P

1. $\delta(q, a, a) = (q, \varepsilon)$. (Type 1 rules)
 - This step does not change the LSF represented, but “moves” responsibility for a from the stack to the consumed input.

2. If $A \rightarrow \alpha$ is a production of G, then $\delta(q, \varepsilon, A)$ contains (q, α). (Type 2 rules)
 - Guess a production for A, and represent the next LSF in the derivation.
Proof That $L(P) = L(G)$

◆ We need to show that $(q, wx, S) \vdash^* (q, x, \alpha)$ for any x if and only if $S \Rightarrow^*_{lm} w\alpha$.

◆ Part 1: “only if” is an induction on the number of steps made by P.

◆ Basis: 0 steps.
 ◆ Then $\alpha = S$, $w = \epsilon$, and $S \Rightarrow^*_{lm} S$ is surely true.
Induction for Part 1

◆ Consider \(n \) moves of \(P: (q, wx, S) \vdash^* (q, x, \alpha) \) and assume the IH for sequences of \(n-1 \) moves.

◆ There are two cases, depending on whether the last move uses a Type 1 or Type 2 rule.
Use of a **Type 1** Rule

- The move sequence must be of the form $(q, yax, S) \vdash^* (q, ax, a\alpha) \vdash (q, x, \alpha)$, where $ya = w$.
- By the IH applied to the first $n-1$ steps, $S \Rightarrow^*_{lm} ya\alpha$.
- But $ya = w$, so $S \Rightarrow^*_{lm} w\alpha$.
Use of a **Type 2 Rule**

- The move sequence must be of the form
 \[(q, wx, S) \vdash^* (q, x, A\beta) \vdash (q, x, \gamma\beta),\]
 where \(A \rightarrow \gamma\) is a production and \(\alpha = \gamma\beta\).

- By the IH applied to the first \(n-1\) steps,
 \(S \Rightarrow^*_{lm} wA\beta\).

- Thus, \(S \Rightarrow^*_{lm} w\gamma\beta = w\alpha\).
Proof of Part 2 ("if")

- We also must prove that if $S \Rightarrow^*_{lm} w\alpha$, then $(q, wx, S) \vdash^* (q, x, \alpha)$ for any x.
- Induction on number of steps in the leftmost derivation.
- Ideas are similar; read in text.
Proof – Completion

◆ We now have \((q, wx, S) \vdash^* (q, x, \alpha)\) for any \(x\) if and only if \(S \Rightarrow_{lm}^* w\alpha\).

◆ In particular, let \(x = \alpha = \epsilon\).

◆ Then \((q, w, S) \vdash^* (q, \epsilon, \epsilon)\) if and only if \(S \Rightarrow_{lm}^* w\).

◆ That is, \(w\) is in \(N(P)\) if and only if \(w\) is in \(L(G)\).
From a PDA to a CFG

- Now, assume $L = N(P)$.
- We’ll construct a CFG G such that $L = L(G)$.
- **Intuition**: G will have variables generating exactly the inputs that cause P to have the net effect of popping a stack symbol X while going from state p to state q.
 - P never gets below this X while doing so.
Variables of G

G’s variables are of the form \([pXq]\).

This variable generates all and only the strings \(w\) such that
\[(p, w, X) \vdash * (q, \epsilon, \epsilon). \]

Also a start symbol \(S\) we’ll talk about later.
Productions of G

- Each production for \([pXq]\) comes from a move of \(P\) in state \(p\) with stack symbol \(X\).
- **Simplest case:** \(\delta(p, a, X)\) contains \((q, \varepsilon)\).
- Then the production is \([pXq] \rightarrow a\).
 - Note \(a\) can be an input symbol or \(\varepsilon\).
- Here, \([pXq]\) generates \(a\), because reading \(a\) is one way to pop \(X\) and go from \(p\) to \(q\).
Productions of G – (2)

- **Next simplest case:** \(\delta(p, a, X) \) contains
 (r, Y) for some state r and symbol Y.
- **G** has production \([pXq] \rightarrow a[rYq]\).

 - We can erase X and go from p to q by reading a (entering state r and replacing the X by Y) and then reading some w that gets P from r to q while erasing the Y.

- **Note:** \([pXq] \Rightarrow^* aw\) whenever \([rYq] \Rightarrow^* w\).
Productions of G – (3)

- **Third simplest case:** $\delta(p, a, X)$ contains (r, YZ) for some state r and symbols Y and Z.
- Now, P has replaced X by YZ.
- To have the net effect of erasing X, P must erase Y, going from state r to some state s, and then erase Z, going from s to q.
Picture of Action of P
Third-Simplest Case – Concluded

Since we do not know state s, we must generate a family of productions:

$$[pXq] \rightarrow a[rYs][sZq]$$

for all states s.

$$[pXq] \Rightarrow^* awx \text{ whenever } [rYs] \Rightarrow^* w \text{ and } [sZq] \Rightarrow^* x.$$
Productions of G: General Case

- Suppose $\delta(p, a, X)$ contains (r, Y_1, \ldots, Y_k) for some state r and $k \geq 3$.
- Generate family of productions

$[pXq] \rightarrow a[rY_1s_1][s_1Y_2s_2][s_k-1Y_kq]$
Completion of the Construction

- We can prove that \((q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon)\) if and only if \([q_0Z_0p] \Rightarrow^* w\).
 - Proof is in text; it is two easy inductions.
- But state \(p\) can be anything.
- Thus, add to \(G\) another variable \(S\), the start symbol, and add productions \(S \rightarrow [q_0Z_0p]\) for each state \(p\).