Intractable Problems

Time-Bounded Turing Machines

Classes P and NP

Polynomial-Time Reductions
Time-Bounded TM’s

◆ A Turing machine that, given an input of length n, always halts within $T(n)$ moves is said to be $T(n)$-time bounded.
 ♦ The TM can be multitape.
 ♦ Sometimes, it can be nondeterministic.

◆ The deterministic, multitape case corresponds roughly to “an $O(T(n))$ running-time algorithm.”
The class \mathbf{P}

◆ If a DTM M is $T(n)$-time bounded for some polynomial $T(n)$, then we say M is \textit{polynomial-time} ("\textit{polytime}") bounded.
◆ And $L(M)$ is said to be in the class \mathbf{P}.
◆ \textbf{Important point:} when we talk of \mathbf{P}, it doesn’t matter whether we mean “by a computer” or “by a TM” (next slide).
Polynomial Equivalence of Computers and TM’s

- A multitape TM can simulate a computer that runs for time $O(T(n))$ in at most $O(T^2(n))$ of its own steps.
- If $T(n)$ is a polynomial, so is $T^2(n)$.
Examples of Problems in P

- Is w in $L(G)$, for a given CFG G?
 - Input = w.
 - Use CYK algorithm, which is $O(n^3)$.

- Is there a path from node x to node y in graph G?
 - Input = x, y, and G.
 - Use Dijkstra’s algorithm, which is $O(n \log n)$ on a graph of n nodes and arcs.
Running Times Between Polynomials

◆ You might worry that something like $O(n \log n)$ is not a polynomial.

◆ However, to be in \mathbb{P}, a problem only needs an algorithm that runs in time less than some polynomial.

◆ Surely $O(n \log n)$ is less than the polynomial $O(n^2)$.
A Tricky Case: Knapsack

The Knapsack Problem is: given positive integers i_1, i_2, \ldots, i_n, can we divide them into two sets with equal sums?

Perhaps we can solve this problem in polytime by a dynamic-programming algorithm:
- Maintain a table of all the differences we can achieve by partitioning the first j integers.
Knapsack – (2)

- **Basis**: $j = 0$. Initially, the table has “true” for 0 and “false” for all other differences.

- **Induction**: To consider i_j, start with a new table, initially all false.

- Then, set k to true if, in the old table, there is a value m that was true, and k is either $m+i_j$ or $m-i_j$.
Suppose we measure running time in terms of the sum of the integers, say m.

Each table needs only space $O(m)$ to represent all the positive and negative differences we could achieve.

Each table can be constructed in time $O(n)$.
Knapsack – (4)

Since \(n \leq m \), we can build the final table in \(O(m^2) \) time.

From that table, we can see if 0 is achievable and solve the problem.
Subtlety: Measuring Input Size

◆ “Input size” has a specific meaning: the length of the representation of the problem instance as it is input to a TM.

◆ For the Knapsack Problem, you cannot always write the input in a number of characters that is polynomial in either the number-of or sum-of the integers.
Knapsack – Bad Case

- Suppose we have \(n \) integers, each of which is around \(2^n \).
- We can write integers in binary, so the input takes \(O(n^2) \) space to write down.
- But the tables require space \(O(n2^n) \).
- They therefore require at least that order of time to construct.
Bad Case – (2)

Thus, the proposed “polynomial” algorithm actually takes time $O(n^22^n)$ on an input of length $O(n^2)$.

Or, since we like to use n as the input size, it takes time $O(n^{2\sqrt{n}})$ on an input of length n.

In fact, it appears no algorithm solves Knapsack in polynomial time.
Redefining Knapsack

- We are free to describe another problem, call it *Pseudo-Knapsack*, where integers are represented in unary.
- *Pseudo-Knapsack* is in \(P \).
The Class \textbf{NP}

\begin{itemize}
 \item The running time of a nondeterministic TM is the maximum number of steps taken along any branch.
 \item If that time bound is polynomial, the NTM is said to be \textit{polynomial-time bounded}.
 \item And its language/problem is said to be in the class \textbf{NP}.
\end{itemize}
Example: NP

- The Knapsack Problem is definitely in NP, even using the conventional binary representation of integers.
- Use nondeterminism to guess one of the subsets.
- Sum the two subsets and compare.
P Versus NP

- Originally a curiosity of Computer Science, mathematicians now recognize as one of the most important open problems the question $P = NP$?
- There are thousands of problems that are in NP but appear not to be in P.
- But no proof that they aren’t really in P.
Complete Problems

◆ One way to address the $P = NP$ question is to identify complete problems for NP.

◆ An *NP-complete problem* has the property that if it is in P, then every problem in NP is also in P.

◆ Defined formally via “polytime reductions.”
Complete Problems – Intuition

◆ A complete problem for a class embodies every problem in the class, even if it does not appear so.

◆ Compare: PCP embodies every TM computation, even though it does not appear to do so.

◆ Strange but true: Knapsack embodies every polytime NTM computation.
Polytime Reductions

Goal: find a way to show problem L to be NP-complete by reducing every language/problem in NP to L in such a way that if we had a deterministic polytime algorithm for L, then we could construct a deterministic polytime algorithm for any problem in NP.
Polytime Reductions – (2)

◆ We need the notion of a polytime transducer – a TM that:

1. Takes an input of length n.
2. Operates deterministically for some polynomial time $p(n)$.
3. Produces an output on a separate output tape.

◆ Note: output length is at most $p(n)$.
Polytime Transducer

Remember: important requirement is that $time \leq p(n)$.

\[
\text{state} \\
\text{input} \quad n \\
\text{scratch tapes} \\
\text{output} \quad \leq p(n)
\]
Polytime Reductions – (3)

Let L and M be languages.

Say L is polytime reducible to M if there is a polytime transducer T such that for every input w to T, the output \(x = T(w) \) is in M if and only if w is in L.
Picture of Polytime Reduction

in L not in L T in M not in M
NP-Complete Problems

◆ A problem/language M is said to be \textit{NP-complete} if for every language L in NP, there is a polytime reduction from L to M.

◆ \textbf{Fundamental property}: if M has a polytime algorithm, then L also has a polytime algorithm.

◆ I.e., if M is in P, then every L in \textbf{NP} is also in P, or “P = NP.”
All of **NP** polytime reduces to SAT, which is therefore NP-complete

3-SAT polytime reduces to many other problems; they’re all NP-complete
Proof That Polytime Reductions “Work”

- Suppose M has an algorithm of polynomial time $q(n)$.
- Let L have a polytime transducer T to M, taking polynomial time $p(n)$.
- The output of T, given an input of length n, is at most of length $p(n)$.
- The algorithm for M on the output of T takes time at most $q(p(n))$.
Proof – (2)

◆ We now have a polytime algorithm for L:

1. Given w of length n, use T to produce x of length $\leq p(n)$, taking time $\leq p(n)$.
2. Use the algorithm for M to tell if x is in M in time $\leq q(p(n))$.
3. Answer for w is whatever the answer for x is.

◆ Total time $\leq p(n) + q(p(n)) = a$ polynomial.