
1

Intractable Problems

Time-Bounded Turing Machines
Classes P and NP

Polynomial-Time Reductions



2

Time-Bounded TM’s

A Turing machine that, given an input 
of length n, always halts within T(n) 
moves is said to be T(n)-time bounded.
 The TM can be multitape.
 Sometimes, it can be nondeterministic.

The deterministic, multitape case 
corresponds roughly to “an O(T(n)) 
running-time algorithm.”



3

The class P

If a DTM M is T(n)-time bounded for 
some polynomial T(n), then we say M is 
polynomial-time (“polytime ”) bounded.
And L(M) is said to be in the class P.
Important point: when we talk of P, it 

doesn’t matter whether we mean “by a 
computer” or “by a TM” (next slide).



4

Polynomial Equivalence of 
Computers and TM’s

A multitape TM can simulate a 
computer that runs for time O(T(n)) in 
at most O(T2(n)) of its own steps.
If T(n) is a polynomial, so is T2(n).



5

Examples of Problems in P

Is w in L(G), for a given CFG G?
 Input = w.
 Use CYK algorithm, which is O(n3).

Is there a path from node x to node y in 
graph G?
 Input = x, y, and G.
 Use Dijkstra’s algorithm, which is O(n log n) 

on a graph of n nodes and arcs.



6

Running Times Between 
Polynomials

You might worry that something like 
O(n log n) is not a polynomial.
However, to be in P, a problem only 

needs an algorithm that runs in time 
less than some polynomial.
Surely O(n log n) is less than the 

polynomial O(n2).



7

A Tricky Case: Knapsack

The Knapsack Problem is: given positive 
integers i1, i2 ,…, in, can we divide them 
into two sets with equal sums?
Perhaps we can solve this problem in 

polytime by a dynamic-programming 
algorithm:
 Maintain a table of all the differences we can 

achieve by partitioning the first j integers.



8

Knapsack – (2)

Basis: j = 0.  Initially, the table has 
“true” for 0 and “false” for all other 
differences.
Induction: To consider ij, start with a 

new table, initially all false.
Then, set k to true if, in the old table, 

there is a value m that was true, and k 
is either m+ij or m-ij.



9

Knapsack – (3)

Suppose we measure running time in 
terms of the sum of the integers, say m.
Each table needs only space O(m) to 

represent all the positive and negative 
differences we could achieve.
Each table can be constructed in time 

O(n).



10

Knapsack – (4)

Since n < m, we can build the final 
table in O(m2) time.
From that table, we can see if 0 is 

achievable and solve the problem.



11

Subtlety: Measuring Input Size

“Input size” has a specific meaning: the 
length of the representation of the 
problem instance as it is input to a TM.
For the Knapsack Problem, you cannot 

always write the input in a number of 
characters that is polynomial in either 
the number-of or sum-of the integers.



12

Knapsack – Bad Case

Suppose we have n integers, each of 
which is around 2n.
We can write integers in binary, so the 

input takes O(n2) space to write down.
But the tables require space O(n2n).
They therefore require at least that 

order of time to construct.



13

Bad Case – (2)

Thus, the proposed “polynomial” 
algorithm actually takes time O(n22n) on 
an input of length O(n2).
Or, since we like to use n as the input 

size, it takes time O(n2sqrt(n)) on an 
input of length n.
In fact, it appears no algorithm solves 

Knapsack in polynomial time.



14

Redefining Knapsack

We are free to describe another 
problem, call it Pseudo-Knapsack, 
where integers are represented in 
unary.
Pseudo-Knapsack is in P.



15

The Class NP

The running time of a nondeterministic 
TM is the maximum number of steps 
taken along any branch.
If that time bound is polynomial, the 

NTM is said to be polynomial-time 
bounded.
And its language/problem is said to be 

in the class NP.



16

Example: NP

The Knapsack Problem is definitely in 
NP, even using the conventional binary 
representation of integers.
Use nondeterminism to guess one of 

the subsets.
Sum the two subsets and compare.



17

P Versus NP

Originally a curiosity of Computer 
Science, mathematicians now recognize 
as one of the most important open 
problems the question P = NP?
There are thousands of problems that 

are in NP but appear not to be in P.
But no proof that they aren’t really in P.



18

Complete Problems

One way to address the P = NP
question is to identify complete 
problems for NP.
An NP-complete problem has the 

property that if it is in P, then every 
problem in NP is also in P.
Defined formally via “polytime 

reductions.”



19

Complete Problems – Intuition

A complete problem for a class 
embodies every problem in the class, 
even if it does not appear so.
Compare: PCP embodies every TM 

computation, even though it does not 
appear to do so.
Strange but true: Knapsack embodies 

every polytime NTM computation.



20

Polytime Reductions

Goal: find a way to show problem L to 
be NP-complete by reducing every 
language/problem in NP to L in such a 
way that if we had a deterministic 
polytime algorithm for L, then we could 
construct a deterministic polytime 
algorithm for any problem in NP.



21

Polytime Reductions – (2)

 We need the notion of a polytime 
transducer – a TM that:

1. Takes an input of length n.
2. Operates deterministically for some 

polynomial time p(n).
3. Produces an output on a separate output 

tape.

 Note: output length is at most p(n).



22

Polytime Transducer

state

ninput

scratch
tapes

output < p(n)

Remember: important requirement
is that time < p(n).



23

Polytime Reductions – (3)

Let L and M be langauges.
Say L is polytime reducible to M if 

there is a polytime transducer T such 
that for every input w to T, the output  
x = T(w) is in M if and only if w is in L.



24

Picture of Polytime Reduction

T

in L

not
in L

in M

not in M



25

NP-Complete Problems

A problem/language M is said to be NP-
complete if for every language L in NP, 
there is a polytime reduction from L to M.
Fundamental property: if M has a 

polytime algorithm, then L also has a 
polytime algorithm.
 I.e., if M is in P, then every L in NP is also in 

P, or “P = NP.”



26

The Plan

NP

SAT

All of NP polytime
reduces to SAT, which
is therefore NP-complete

3-
SAT

SAT polytime
reduces to
3-SAT

3-SAT polytime reduces
to many other problems;
they’re all NP-complete



27

Proof That Polytime 
Reductions “Work”

Suppose M has an algorithm of 
polynomial time q(n).
Let L have a polytime transducer T to 

M, taking polynomial time p(n).
The output of T, given an input of 

length n, is at most of length p(n).
The algorithm for M on the output of T 

takes time at most q(p(n)).



28

Proof – (2)

 We now have a polytime algorithm for L:
1. Given w of length n, use T to produce x of 

length < p(n), taking time < p(n).
2. Use the algorithm for M to tell if x is in M in 

time < q(p(n)).
3. Answer for w is whatever the answer for x 

is.

 Total time < p(n) + q(p(n)) = a 
polynomial.


