Regular Expressions

Definitions

Equivalence to Finite Automata
RE’s: Introduction

- *Regular expressions* are an algebraic way to describe languages.
- They describe exactly the regular languages.
- If E is a regular expression, then $L(E)$ is the language it defines.
- We’ll describe RE’s and their languages recursively.
RE’s: Definition

◆ **Basis 1:** If \(a \) is any symbol, then \(a \) is a RE, and \(L(a) = \{a\} \).

 ♦ **Note:** \(\{a\} \) is the language containing one string, and that string is of length 1.

◆ **Basis 2:** \(\epsilon \) is a RE, and \(L(\epsilon) = \{\epsilon\} \).

◆ **Basis 3:** \(\emptyset \) is a RE, and \(L(\emptyset) = \emptyset \).
RE’s: Definition – (2)

♦ Induction 1: If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression, and $L(E_1 + E_2) = L(E_1) \cup L(E_2)$.

♦ Induction 2: If E_1 and E_2 are regular expressions, then $E_1 E_2$ is a regular expression, and $L(E_1 E_2) = L(E_1) L(E_2)$.

Concatenation: the set of strings wx such that w is in $L(E_1)$ and x is in $L(E_2)$.
RE’s: Definition – (3)

◆ **Induction 3:** If E is a RE, then E^* is a RE, and $L(E^*) = (L(E))^*$.

Closure, or “Kleene closure” = set of strings $w_1w_2\ldots w_n$, for some $n \geq 0$, where each w_i is in $L(E)$.

Note: when $n=0$, the string is ϵ.
Precedence of Operators

- Parentheses may be used wherever needed to influence the grouping of operators.
- Order of precedence is * (highest), then concatenation, then + (lowest).
Examples: RE’s

\[L(01) = \{01\}. \]
\[L(01+0) = \{01, 0\}. \]
\[L(0(1+0)) = \{01, 00\}. \]

\[\text{Note order of precedence of operators.} \]
\[L(0^*) = \{\varepsilon, 0, 00, 000, \ldots\}. \]
\[L((0+10)^*(\varepsilon+1)) = \text{all strings of 0’s and 1’s without two consecutive 1’s.} \]
Equivalence of RE’s and Automata

- We need to show that for every RE, there is an automaton that accepts the same language.
 - Pick the most powerful automaton type: the ε-NFA.

- And we need to show that for every automaton, there is a RE defining its language.
 - Pick the most restrictive type: the DFA.
Converting a RE to an ϵ-NFA

- Proof is an induction on the number of operators (+, concatenation, *) in the RE.
- We always construct an automaton of a special form (next slide).
Form of ϵ-NFA’s Constructed

- **Start state:** Only state with external predecessors
 - No arcs from outside, no arcs leaving

- **“Final” state:** Only state with external successors
RE to ϵ-NFA: **Basis**

- **Symbol a:**
 - [Diagram showing a transition labeled a]

- **ϵ:**
 - [Diagram showing a transition labeled ϵ]

- **\emptyset:**
 - [Diagram showing transitions without any symbols]
RE to ε-NFA: Induction 1 – Union

For $E_1 \cup E_2$
RE to ϵ-NFA: Induction 2 – Concatenation

For E_1
For E_2
For E_1E_2
RE to ε-NFA: Induction 3 – Closure

For E

For E*

Diagram showing the closure operation for regular expressions.
DFA-to-RE

- A strange sort of induction.
- States of the DFA are assumed to be 1, 2, ..., n.
- We construct RE’s for the labels of restricted sets of paths.
 - **Basis**: single arcs or no arc at all.
 - **Induction**: paths that are allowed to traverse next state in order.
k-Paths

- A k-path is a path through the graph of the DFA that goes through no state numbered higher than k.
- Endpoints are not restricted; they can be any state.
Example: k-Paths

0-paths from 2 to 3:
RE for labels = \textbf{0}.

1-paths from 2 to 3:
RE for labels = \textbf{0+1}1.

2-paths from 2 to 3:
RE for labels = \((10)*0+1(01)*1 \)

3-paths from 2 to 3:
RE for labels = ??
Let R_{ij}^k be the regular expression for the set of labels of k-paths from state i to state j.

Basis: $k=0$. $R_{ij}^0 =$ sum of labels of arc from i to j.
- ∅ if no such arc.
- But add ϵ if $i=j$.

k-Path Induction
Example: Basis

\[R_{12}^0 = 0. \]
\[R_{11}^0 = \emptyset + \varepsilon = \varepsilon. \]
k-Path Inductive Case

- A k-path from i to j either:
 1. Never goes through state k, or
 2. Goes through k one or more times.

\[R_{ij}^k = R_{ij}^{k-1} + R_{ik}^{k-1}(R_{kk}^{k-1})^* R_{kj}^{k-1}. \]

- Doesn’t go through k
- Goes from i to k the first time
- Zero or more times from k to k
- Then, from k to j
Illustration of Induction

Paths not going through k

From k to k Several times

States < k

i

j

k

Path to k

From k to j
Final Step

◆ The RE with the same language as the DFA is the sum (union) of R_{ij}^n, where:

1. n is the number of states; i.e., paths are unconstrained.
2. i is the start state.
3. j is one of the final states.
Example

\[R_{23}^3 = R_{23}^2 + R_{23}^2(R_{33}^2)*R_{33}^2 = R_{23}^2(R_{33}^2)* \]

\[R_{23}^2 = (10)*0 + 1(01)*1 \]

\[R_{33}^2 = 0(01)*(1+00) + 1(10)*(0+11) \]

\[R_{23}^3 = [(10)*0 + 1(01)*1] \]
\[[(0(01)*(1+00) + 1(10)*(0+11))] \]
Summary

◆ Each of the three types of automata (DFA, NFA, ϵ-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.
Algebraic Laws for RE’s

- Union and concatenation behave sort of like addition and multiplication.
 - + is commutative and associative; concatenation is associative.
 - Concatenation distributes over +.
 - **Exception:** Concatenation is not commutative.
Identities and Annihilators

- \emptyset is the identity for $+$.
 - $R + \emptyset = R$.

- ϵ is the identity for concatenation.
 - $\epsilon R = R \epsilon = R$.

- \emptyset is the annihilator for concatenation.
 - $\emptyset R = R \emptyset = \emptyset$.