More About Turing Machines

“Programming Tricks”
Restrictions
Extensions
Closure Properties
Overview

- At first, the TM doesn’t look very powerful.
 - Can it really do anything a computer can?
- We’ll discuss “programming tricks” to convince you that it can simulate a real computer.
Overview – (2)

- We need to study restrictions on the basic TM model (e.g., tapes infinite in only one direction).
- Assuming a restricted form makes it easier to talk about simulating arbitrary TM's.
 - That's essential to exhibit a language that is not recursively enumerable.
Overview – (3)

- We also need to study generalizations of the basic model.
- Needed to argue there is no more powerful model of what it means to “compute.”
- Example: A nondeterministic TM with 50 six-dimensional tapes is no more powerful than the basic model.
Programming Trick: Multiple Tracks

- Think of tape symbols as vectors with k components.
- Each component chosen from a finite alphabet.
- Makes the tape appear to have k tracks.
- Let input symbols be blank in all but one track.
Picture of Multiple Tracks

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>Z</td>
<td>B</td>
</tr>
</tbody>
</table>

- Represents input symbol 0
- Represents the blank
- Represents one symbol \([X,Y,Z]\)
Programming Trick: Marking

- A common use for an extra track is to mark certain positions.
- Almost all cells hold B (blank) in this track, but several hold special symbols (marks) that allow the TM to find particular places on the tape.
Marking

Marked Y

Unmarked W and Z

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>
Programming Trick: Caching in the State

- The state can also be a vector.
- First component is the “control state.”
- Other components hold data from a finite alphabet.
Example: Using These Tricks

◆ This TM doesn’t do anything terribly useful; it copies its input w infinitely.

◆ Control states:
 ◆ q: Mark your position and remember the input symbol seen.
 ◆ p: Run right, remembering the symbol and looking for a blank. Deposit symbol.
 ◆ r: Run left, looking for the mark.
Example – (2)

♦ States have the form \([x, Y]\), where \(x\) is \(q, p,\) or \(r\) and \(Y\) is \(0, 1,\) or \(B\).
 ♦ Only \(p\) uses \(0\) and \(1\).

♦ Tape symbols have the form \([U, V]\).
 ♦ \(U\) is either \(X\) (the “mark”) or \(B\).
 ♦ \(V\) is \(0, 1\) (the input symbols) or \(B\).
 ♦ \([B, B]\) is the TM blank; \([B, 0]\) and \([B, 1]\) are the inputs.
The Transition Function

- **Convention:** \(a \) and \(b \) each stand for “either 0 or 1.”
- \(\delta([q,B], [B,a]) = ([p,a], [X,a], R) \).
 - In state \(q \), copy the input symbol under the head (i.e., \(a \)) into the state.
 - Mark the position read.
 - Go to state \(p \) and move right.
Transition Function – (2)

\[
\delta([p,a], [B,b]) = ([p,a], [B,b], R).
\]
- In state \(p\), search right, looking for a blank symbol (not just B in the mark track).

\[
\delta([p,a], [B,B]) = ([r,B], [B,a], L).
\]
- When you find a B, replace it by the symbol (\(a\)) carried in the “cache.”
- Go to state \(r\) and move left.
Transition Function – (3)

\(\delta([r,B], [B,a]) = ([r,B], [B,a], L). \)
- In state \(r \), move left, looking for the mark.

\(\delta([r,B], [X,a]) = ([q,B], [B,a], R). \)
- When the mark is found, go to state \(q \) and move right.
- But remove the mark from where it was.
- \(q \) will place a new mark and the cycle repeats.
Simulation of the TM

\[q \]
\[B \]

...B B B B B...

...0 1 B B...

15
Simulation of the TM

\[
\begin{array}{llllll}
\cdots & X & B & B & B & \cdots \\
\cdots & 0 & 1 & B & B & \cdots \\
\end{array}
\]
Simulation of the TM

<table>
<thead>
<tr>
<th>p</th>
<th>0</th>
</tr>
</thead>
</table>

\[
\ldots X B B B \ldots
\]

\[
\ldots 0 1 B B \ldots
\]
Simulation of the TM

\[\ldots X \text{ B B B } \ldots \]

\[\ldots 0 1 0 \text{ B } \ldots \]
Simulation of the TM

\[\ldots X \ B \ B \ B \ldots \]

\[\ldots 0 \ 1 \ 0 \ B \ldots \]
Simulation of the TM

...B B B B B...

...0 1 0 B...

\[q \]
\[B \]
Simulation of the TM
Semi-infinite Tape

◆ We can assume the TM never moves left from the initial position of the head.

◆ Let this position be 0; positions to the right are 1, 2, … and positions to the left are –1, –2, …

◆ New TM has two tracks.
 ◆ Top holds positions 0, 1, 2, …
 ◆ Bottom holds a marker, positions –1, –2, …
Simulating Infinite Tape by Semi-infinite Tape

State remembers whether simulating upper or lower track. Reverse directions for lower track.

Put * here at the first move

You don’t need to do anything, because these are initially B.
More Restrictions – Read in Text

◆ Two stacks can simulate one tape.
 ♦ One holds positions to the left of the head; the other holds positions to the right.

◆ In fact, by a clever construction, the two stacks to be *counters* = only two stack symbols, one of which can only appear at the bottom.

 Factoid: Invented by Pat Fischer, whose main claim to fame is that he was a victim of the Unabomber.
Extensions

- More general than the standard TM.
- But still only able to define the RE languages.
 1. Multitape TM.
 2. Nondeterministic TM.
 3. Store for key-value pairs.
Multitape Turing Machines

- Allow a TM to have k tapes for any fixed k.
- Move of the TM depends on the state and the symbols under the head for each tape.
- In one move, the TM can change state, write symbols under each head, and move each head independently.
Simulating k Tapes by One

- Use $2k$ tracks.
- Each tape of the k-tape machine is represented by a track.
- The head position for each track is represented by a mark on an additional track.
Picture of Multitape Simulation

\[q \]

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th></th>
<th></th>
<th>head for tape 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ldots</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>head for tape 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ldots</td>
<td>U</td>
<td>V</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>
Nondeterministic TM’s

◆ Allow the TM to have a choice of move at each step.
 ◆ Each choice is a state-symbol-direction triple, as for the deterministic TM.

◆ The TM accepts its input if any sequence of choices leads to an accepting state.
Simulating a NTM by a DTM

◆ The DTM maintains on its tape a queue of ID’s of the NTM.

◆ A second track is used to mark certain positions:
 1. A mark for the ID at the head of the queue.
 2. A mark to help copy the ID at the head and make a one-move change.
Picture of the DTM Tape

Front of queue

Where you are copying ID$_k$ with a move

X Y

ID$_0$ # ID$_1$ # ... # ID$_k$ # ID$_{k+1}$... # ID$_n$ # New ID

Rear of queue
Operation of the Simulating DTM

- The DTM finds the ID at the current front of the queue.
- It looks for the state in that ID so it can determine the moves permitted from that ID.
- If there are m possible moves, it creates m new ID’s, one for each move, at the rear of the queue.
Operation of the DTM – (2)

- The m new ID’s are created one at a time.
- After all are created, the marker for the front of the queue is moved one ID toward the rear of the queue.
- However, if a created ID has an accepting state, the DTM instead accepts and halts.
Why the NTM -> DTM Construction Works

- There is an upper bound, say k, on the number of choices of move of the NTM for any state/symbol combination.

- Thus, any ID reachable from the initial ID by n moves of the NTM will be constructed by the DTM after constructing at most \((k^{n+1}-k)/(k-1)\) ID’s.

\[
\text{Sum of } k+k^2+\ldots+k^n
\]
Why? – (2)

- If the NTM accepts, it does so in some sequence of \(n \) choices of move.
- Thus the ID with an accepting state will be constructed by the DTM in some large number of its own moves.
- If the NTM does not accept, there is no way for the DTM to accept.
Taking Advantage of Extensions

- We now have a really good situation.
- When we discuss construction of particular TM’s that take other TM’s as input, we can assume the input TM is as simple as possible.
 - E.g., one, semi-infinite tape, deterministic.
- But the simulating TM can have many tapes, be nondeterministic, etc.
Real Computers

◆ Recall that, since a real computer has finite memory, it is in a sense weaker than a TM.

◆ Imagine a computer with an infinite store for name-value pairs.
 ◆ Generalizes an address space.
Simulating a Name-Value Store by a TM

- The TM uses one of several tapes to hold an arbitrarily large sequence of name-value pairs in the format
 `#name*value#...`
- Mark, using a second track, the left end of the sequence.
- A second tape can hold a name whose value we want to look up.
Starting at the left end of the store, compare the lookup name with each name in the store.

When we find a match, take what follows between the * and the next # as the value.
Insertion

- Suppose we want to insert name-value pair \((n, v)\), or replace the current value associated with name \(n\) by \(v\).
- Perform lookup for name \(n\).
- If not found, add \(n^*v#\) at the end of the store.
Insertion – (2)

◆ If we find \#n*v’\#, we need to replace v’ by v.
◆ If v is shorter than v’, you can leave blanks to fill out the replacement.
◆ But if v is longer than v’, you need to make room.
Insertion – (3)

- Use a third tape to copy everything from the first tape at or to the right of \(v' \).
- Mark the position of the * to the left of \(v' \) before you do.
- Copy from the third tape to the first, leaving enough room for \(v \).
- Write \(v \) where \(v' \) was.
Closure Properties of Recursive and RE Languages

- Both closed under union, concatenation, star, reversal, intersection, inverse homomorphism.
- Recursive closed under difference, complementation.
- RE closed under homomorphism.
Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$.

Assume M_1 and M_2 are single-semi-infinite-tape TM’s.

Construct 2-tape TM M to copy its input onto the second tape and simulate the two TM’s M_1 and M_2 each on one of the two tapes, “in parallel.”
Union – (2)

- **Recursive languages**: If M_1 and M_2 are both algorithms, then M will always halt in both simulations.
- Accept if either accepts.
- **RE languages**: accept if either accepts, but you may find both TM’s run forever without halting or accepting.
Picture of Union/Recursive

Input \(w \)

\[M_1 \]
- Accept
- Reject

\[M_2 \]
- Accept
- Reject

\[M \]
- OR
- Accept
- AND
- Reject

Remember: = “halt without accepting”
Picture of Union/RE

Input w

$M_1 \rightarrow $ Accept

$M_2 \rightarrow $ Accept

$M \rightarrow $ OR $→$ Accept
Intersection/Recursive – Same Idea

Input w

M_1

Accept

Reject

AND

Accept

M_2

Accept

Reject

OR

Reject

M
Intersection/RE

\[M_1 \rightarrow \text{Accept} \quad \text{AND} \quad M \rightarrow \text{Accept} \quad \text{AND} \quad M_2 \rightarrow \text{Accept} \]

Input w
Difference, Complement

◆ **Recursive languages**: both TM’s will eventually halt.

◆ **Accept if** M_1 **accepts and** M_2 **does not.**

 ◇ **Corollary**: Recursive languages are closed under complementation.

◆ **RE Languages**: can’t do it; M_2 may never halt, so you can’t be sure input is in the difference.
Let $L_1 = L(M_1)$ and $L_2 = L(M_2)$.

Assume M_1 and M_2 are single-semi-infinite-tape TM’s.

Construct 2-tape Nondeterministic TM M:
1. Guess a break in input $w = xy$.
2. Move y to second tape.
3. Simulate M_1 on x, M_2 on y.
4. Accept if both accept.
Concatenation/Recursive

- Can’t use a NTM.
- Systematically try each break $w = xy$.
- M_1 and M_2 will eventually halt for each break.
- Accept if both accept for any one break.
- Reject if all breaks tried and none lead to acceptance.
Star

- Same ideas work for each case.
- RE: guess many breaks, accept if M_1 accepts each piece.
- Recursive: systematically try all ways to break input into some number of pieces.
Reversal

- Start by reversing the input.
- Then simulate TM for L to accept w if and only if \(w^R \) is in L.
- Works for either Recursive or RE languages.
Inverse Homomorphism

- Apply h to input w.
- Simulate TM for L on $h(w)$.
- Accept w iff $h(w)$ is in L.
- Works for Recursive or RE.
Homomorphism/RE

- Let $L = L(M_1)$.
- Design NTM M to take input w and guess an x such that $h(x) = w$.
- M accepts whenever M_1 accepts x.
- **Note**: won’t work for Recursive languages.