Decidability

Turing Machines Coded as Binary Strings
Diagonalizing over Turing Machines
Problems as Languages
Undecidable Problems
Binary-Strings from TM’s

◆ We shall restrict ourselves to TM’s with input alphabet \{0, 1\}.
◆ Assign positive integers to the three classes of elements involved in moves:
 1. States: \(q_1\) (start state), \(q_2\) (final state), \(q_3\), …
 2. Symbols \(X_1\) (0), \(X_2\) (1), \(X_3\) (blank), \(X_4\), …
 3. Directions \(D_1\) (L) and \(D_2\) (R).
Binary Strings from TM’s – (2)

◆ Suppose $\delta(q_i, X_j) = (q_k, X_l, D_m)$.
◆ Represent this rule by string $0^i10^j10^k10^l10^m$.
◆ **Key point:** since integers i, j, \ldots are all > 0, there cannot be two consecutive 1’s in these strings.
Binary Strings from TM’s – (2)

- Represent a TM by concatenating the codes for each of its moves, separated by 11 as punctuation.
 - That is: Code₁₁Code₂₁₁Code₃₁₁ ...
Enumerating TM’s and Binary Strings

- Recall we can convert binary strings to integers by prepending a 1 and treating the resulting string as a base-2 integer.

- Thus, it makes sense to talk about “the i-th binary string” and about “the i-th Turing machine.”

- **Note**: if i makes no sense as a TM, assume the i-th TM accepts nothing.
Table of Acceptance

String j

1 2 3 4 5 6 . . .

<table>
<thead>
<tr>
<th>TM i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>.</th>
<th>.</th>
</tr>
</thead>
</table>

$x = 0$ means the i-th TM does not accept the j-th string; 1 means it does.
Diagonalization Again

Whenever we have a table like the one on the previous slide, we can diagonalize it.

That is, construct a sequence D by complementing each bit along the major diagonal.

Formally, $D = a_1a_2\ldots$, where $a_i = 0$ if the (i, i) table entry is 1, and vice-versa.
The Diagonalization Argument

Could D be a row (representing the language accepted by a TM) of the table?

Suppose it were the j-th row.

But D disagrees with the j-th row at the j-th column.

Thus D is not a row.
Diagonalization – (2)

- Consider the diagonalization language $L_d = \{w \mid w$ is the i-th string, and the i-th TM does not accept w$\}$.

- We have shown that L_d is not a recursively enumerable language; i.e., it has no TM.
Problems

- Informally, a “problem” is a yes/no question about an infinite set of possible instances.

- Example: “Does graph G have a Hamilton cycle (cycle that touches each node exactly once)?”
 - Each undirected graph is an instance of the “Hamilton-cycle problem.”
Problems – (2)

◆ Formally, a problem is a language.
◆ Each string encodes some instance.
◆ The string is in the language if and only if the answer to this instance of the problem is “yes.”
Example: A Problem About Turing Machines

- We can think of the language L_d as a problem.
- “Does this TM not accept its own code?”
- Aside: We could also think of it as a problem about binary strings.
 - Do you see how to phrase it?
A problem is *decidable* if there is an algorithm to answer it.

- **Recall**: An “algorithm,” formally, is a TM that halts on all inputs, accepted or not.
- Put another way, “decidable problem” = “recursive language.”

Otherwise, the problem is *undecidable.*
Decidable problems = Recursive languages

Not recursively enumerable languages

Recursively enumerable languages

Are there any languages here?

L_d
From the Abstract to the Real

- While the fact that L_d is undecidable is interesting intellectually, it doesn’t impact the real world directly.
- We first shall develop some TM-related problems that are undecidable, but our goal is to use the theory to show some real problems are undecidable.
Examples: Undecidable Problems

◆ Can a particular line of code in a program ever be executed?
◆ Is a given context-free grammar ambiguous?
◆ Do two given CFG’s generate the same language?
The Universal Language

- An example of a recursively enumerable, but not recursive language is the language L_u of a *universal Turing machine*.

- That is, the UTM takes as input the code for some TM M and some binary string w and accepts if and only if M accepts w.
Designing the UTM

- Inputs are of the form: Code for M 111 w

- **Note**: A valid TM code never has 111, so we can split M from w.

- The UTM must accept its input if and only if M is a valid TM code and that TM accepts w.
The UTM – (2)

◆ The UTM will have several tapes.
◆ Tape 1 holds the input M_{111w}
◆ Tape 2 holds the tape of M.
 ◦ Mark the current head position of M.
◆ Tape 3 holds the state of M.
The UTM – (3)

◆ **Step 1**: The UTM checks that M is a valid code for a TM.
 - E.g., all moves have five components, no two moves have the same state/symbol as first two components.

◆ If M is not valid, its language is empty, so the UTM immediately halts without accepting.
The UTM – (4)

◆ Step 2: The UTM examines M to see how many of its own tape squares it needs to represent one symbol of M.

◆ Step 3: Initialize Tape 2 to represent the tape of M with input w, and initialize Tape 3 to hold the start state.
The UTM – (5)

♦ Step 4: Simulate M.
 ♦ Look for a move on Tape 1 that matches the state on Tape 3 and the tape symbol under the head on Tape 2.
 ♦ If found, change the symbol and move the head marker on Tape 2 and change the State on Tape 3.
 ♦ If M accepts, the UTM also accepts.
A Question

Do we see anything like universal Turing machines in real life?
Proof That L_u is Recursively Enumerable, but not Recursive

- We designed a TM for L_u, so it is surely RE.
- Suppose it were recursive; that is, we could design a UTM U that always halted.
- Then we could also design an algorithm for L_d, as follows.
Proof – (2)

Given input w, we can decide if it is in L_d by the following steps.

1. Check that w is a valid TM code.
 - If not, then its language is empty, so w is in L_d.
2. If valid, use the hypothetical algorithm to decide whether $w111w$ is in L_u.
3. If so, then w is not in L_d; else it is.
Proof – (3)

- But we already know there is no algorithm for L_d.
- Thus, our assumption that there was an algorithm for L_u is wrong.
- L_u is RE, but not recursive.
Bullseye Picture

Decidable problems = Recursive languages

Not recursively enumerable languages

Recursively enumerable languages

L_u

L_d

All these are undecidable