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Products, web sites, blogs, news items, ...

From scarcity to abundance

O Shelf space is a scarce commodity for
traditional retailers
B Also: TV networks, movie theaters,...

O The web enables near-zero-cost
dissemination of information about
products
B From scarcity to abundance

O More choice necessitates better filters
B Recommendation engines

B How Into Thin Air made Touching the Void a
bestseller

The Long Tail
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Source: Chris Anderson (2004)

Recommendation Types

O Editorial
O Simple aggregates

® Top 10, Most Popular, Recent Uploads
O Tailored to individual users

B Amazon, Netflix, ...

Formal Model

O C = set of Customers
O S = set of Items
O Utility function u: C xS - R
B R = set of ratings
B R is a totally ordered set
B e.g., 0-5 stars, real number in [0,1]




Utility Matrix
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Key Problems

O Gathering “known” ratings for matrix
O Extrapolate unknown ratings from
known ratings
B Mainly interested in high unknown ratings
O Evaluating extrapolation methods

Gathering Ratings

O Explicit
B Ask people to rate items
B Doesn’t work well in practice — people can’t
be bothered
O Implicit
B |earn ratings from user actions
B e.g., purchase implies high rating
B What about low ratings?

Extrapolating Utilities

O Key problem: matrix U is sparse

B most people have not rated most items
O Three approaches

B Content-based

B Collaborative

® Hybrid

Content-based recommendations

O Main idea: recommend items to
customer C similar to previous items
rated highly by C

O Movie recommendations
B recommend movies with same actor(s),

director, genre, ...

O Websites, blogs, news

B recommend other sites with “similar”
content
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Item Profiles

O For each item, create an item profile
O Profile is a set of features

B movies: author, title, actor, director,...

B text: set of “important” words in document
O How to pick important words?

B Usual heuristic is TF.IDF (Term Frequency
times Inverse Doc Frequency)

TF.IDF

f; = frequency of term t; in document d;
e i
TF;; = W

n; = number of docs that mention term i
N = total number of docs

IDF; = log &
TF.IDF score w; = TF; x IDF;

Doc profile = set of words with highest
TF.IDF scores, together with their scores

User profiles and prediction

Model-based approaches

O User profile possibilities:
B Weighted average of rated item profiles

B Variation: weight by difference from average
rating for item
.

O Prediction heuristic

B Given user profile c and item profile s,
estimate u(c,s) = cos(c,s) = c.s/(|clIs])

B Need efficient method to find items with
high utility: later

O For each user, learn a classifier that
classifies items into rating classes
B liked by user and not liked by user
H e.g., Bayesian, regression, SVM

O Apply classifier to each item to find
recommendation candidates

O Problem: scalability
B Won't investigate further in this class

Limitations of content-based
approach

Collaborative Filtering

O Finding the appropriate features
H e.g., images, movies, music
O Overspecialization

B Never recommends items outside user’s
content profile

B People might have multiple interests
O Recommendations for new users
B How to build a profile?

O Consider user ¢

O Find set D of other users whose ratings
are “similar” to c's ratings

O Estimate user’s ratings based on ratings
of users in D




Similar users

Rating predictions

O Let r, be the vector of user x’s ratings
O Cosine similarity measure
B sim(x,y) = cos(ry, ry)

[0 Pearson correlation coefficient

B S, = items rated by both users x and y
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sim(z,y) =

O Let D be the set of k users most similar to c
who have rated item s

O Possibilities for prediction function (item s):
u rcs =1/k zdeD rds

B 1o = (Zaep sim(c,d)xrys)/ (X , sim(c,d))

d€ D

B Other options?
O Many tricks possible...

Complexity

Item-Item Collaborative Filtering

O Expensive step is finding k most similar
customers
B O(JuD

O Too expensive to do at runtime
B Need to pre-compute

O Naive precomputation takes time
O(NJUD)
B Simple trick gives some speedup

O Can use clustering, partitioning as
alternatives, but quality degrades

O So far: User-user collaborative filtering

O Another view
B For item s, find other similar items

B Estimate rating for item based on ratings for
similar items

B Can use same similarity metrics and
prediction functions as in user-user model
O In practice, it has been observed that
item-item often works better than user-
user

Pros and cons of collaborative
filtering

Hybrid Methods

O Works for any kind of item
B No feature selection needed

O New user problem
O New item problem

O Sparsity of rating matrix
B Cluster-based smoothing?

O Implement two separate recommenders
and combine predictions

O Add content-based methods to
collaborative filtering
B item profiles for new item problem

B demographics to deal with new user
problem

B Filterbots




Evaluating Predictions

O Compare predictions with known ratings
B Root-mean-square error (RMSE)

O Another approach: 0/1 model
B Coverage

O Number of items/users for which system
can make predictions

B Precision
O Accuracy of predictions
B Receiver operating characteristic (ROC)

O Tradeoff curve between false positives and
false negatives

Problems with Measures

O Narrow focus on accuracy sometimes
misses the point
B Prediction Diversity
B Prediction Context
B Order of predictions

Finding similar vectors

O Common problem that comes up in
many settings

O Given a large number N of vectors in
some high-dimensional space (M
dimensions), find pairs of vectors that
have high cosine-similarity

O Compare to min-hashing approach for
finding near-neighbors for Jaccard
similarity

Similarity-Preserving Hash
Functions

O Suppaose we can create a family F of
hash functions, such that for any heF,
given vectors x and y:

B Pr[h(x) = h(y)] = sim(x,y) = cos(x,y)

O We could then use E,_[h(X) = h(y)] as
an estimate of sim(x,y)

B Can get close to E.[h(x) = h(y)] by using
several hash functions

Similarity metric

O Let 6 be the angle between vectors x
and y

O cos(8) = x.y/(IxIlyD

O It turns out to be convenient to use
sim(x,y) =1 -6/n
B instead of sim(X,y) = cos(6)
B Can compute cos(0) once we estimate 0

Random hyperplanes

Vectors u, v subtend angle 6 u

Random hyperplane through

origin (normal r)

hu)=1ifru>0

Oifru<oO




Random hyperplanes

h(u)=21ifru>0
Oifru<o0

Prih(u) =h(v)] =1 - 0/n

Vector sketch

O For vector u, we can contruct a k-bit
sketch by concatenating the values of k
different hash functions
B sketch(u) = [hy(u) hy(u) ... h(W)]

O Can estimate 6 to arbitrary degree of
accuracy by comparing sketches of
increasing lengths

O Big advantage: each hash is a single bit
B So can represent 256 hashes using 32 bytes

Picking hyperplanes

O Picking a random hyperplane in M-
dimensions requires M random numbers
O In practice, can randomly pick each
dimension to be +1 or -1
B So we need only M random bits

Finding all similar pairs

O Compute sketches for each vector
B Easy if we can fit random bits for each
dimension in memory
O For k-bit sketch, we need Mk bits of
memory
B Might need to use ideas similar to page rank
computation (e.g., block algorithm)
O Can use DCM or LSH to find all similar
pairs

Project ldeas...

O Compare algos for near-duplicates

O Netflix

O Extracting relations, list-building

O Discovering synonyms, spelling variants
O Spam detection

O Identifying website boundaries

O and many, many others...




