CS345 --- Data Mining

Introductions
What Is It?
Cultures of Data Mining
Course Staff

✦ Instructors:
 ✦ Anand Rajaraman
 ✦ Jeff Ullman

✦ TA:
 ✦ Jeff Klingner
Requirements

- **Homework** (Gradiance and other) 20%
 - Gradiance class code **DD984360**
- **Project** 40%
- **Final Exam** 40%
Project

- Software implementation related to course subject matter.
- Should involve an original component or experiment.
- More later about available data and computing resources.
Team Projects

◆ Working in pairs OK, but ...

1. We will expect more from a pair than from an individual.

2. The effort should be roughly evenly distributed.
What is Data Mining?

◆ Discovery of useful, possibly unexpected, patterns in data.

◆ Subsidiary issues:
 - **Data cleansing**: detection of bogus data.
 - E.g., age = 150.
 - Entity resolution.
 - **Visualization**: something better than megabyte files of output.
 - **Warehousing** of data (for retrieval).
Typical Kinds of Patterns

1. **Decision trees**: succinct ways to classify by testing properties.
2. **Clusters**: another succinct classification by similarity of properties.
3. **Bayes models, hidden-Markov models, frequent-itemsets**: expose important associations within data.
Example: Clusters
Example: Frequent Itemsets

A common marketing problem: examine what people buy together to discover patterns.

1. What pairs of items are unusually often found together at Safeway checkout?
 • Answer: diapers and beer.

2. What books are likely to be bought by the same Amazon customer?
Applications (Among Many)

- **Intelligence-gathering.**
 - Tracking terrorists, e.g.

- **Web Analysis.**
 - PageRank, spam detection.

- **Marketing.**
 - Run a sale on diapers; raise the price of beer.
Cultures

- **Databases**: concentrate on large-scale (non-main-memory) data.
- **AI (machine-learning)**: concentrate on complex methods, small data.
- **Statistics**: concentrate on models.
Models vs. Analytic Processing

◆ To a database person, data-mining is an extreme form of *analytic processing* --- queries that examine large amounts of data.
 ✷ Result is the data that answers the query.

◆ To a statistician, data-mining is the inference of models.
 ✷ Result is the parameters of the model.
(Way too Simple) Example

- Given a billion numbers, a DB person would compute their average.
- A statistician might fit the billion points to the best Gaussian distribution and report the mean and standard deviation.
Meaningfulness of Answers

◆ A big risk when data mining is that you will “discover” patterns that are meaningless.

◆ Statisticians call it Bonferroni’s principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap.
Examples

- A big objection to TIA was that it was looking for so many vague connections that it was sure to find things that were bogus and thus violate innocents’ privacy.

- The Rhine Paradox: a great example of how not to conduct scientific research.
I gave these two examples last year.
The “hotels” example got picked up by a newspaper reporter who spun it as
- STANFORD PROFESSOR PROVES TRACKING TERRORISTS IS IMPOSSIBLE
I was also corrected in the story about Joseph Rhine (whom I called David).
Rhine Paradox --- (1)

- Joseph Rhine was a parapsychologist in the 1950’s who hypothesized that some people had Extra-Sensory Perception.
- He devised (something like) an experiment where subjects were asked to guess 10 hidden cards --- red or blue.
- He discovered that almost 1 in 1000 had ESP --- they were able to get all 10 right!
He told these people they had ESP and called them in for another test of the same type.
Alas, he discovered that almost all of them had lost their ESP.
What did he conclude?
Answer on next slide.
Rhine Paradox --- (3)

He concluded that you shouldn’t tell people they have ESP; it causes them to lose it.
Example: Bonferroni’s Principle

- This example illustrates a problem with intelligence-gathering.
- Suppose we believe that certain groups of evil-doers are meeting occasionally in hotels to plot doing evil.
- We want to find people who at least twice have stayed at the same hotel on the same day.
The Details

- 10^9 people being tracked.
- 1000 days.
- Each person stays in a hotel 1% of the time (10 days out of 1000).
- Hotels hold 100 people (so 10^5 hotels).
- If everyone behaves randomly (I.e., no evil-doers) will the data mining detect anything suspicious?
Calculations --- (1)

◆ Probability that persons p and q will be at the same hotel on day d:
 ✦ $1/100 \times 1/100 \times 10^{-5} = 10^{-9}$.

◆ Probability that p and q will be at the same hotel on two given days:
 ✦ $10^{-9} \times 10^{-9} = 10^{-18}$.

◆ Pairs of days:
 ✦ 5×10^5.
Calculations --- (2)

- Probability that p and q will be at the same hotel on some two days:
 - $5 \times 10^5 \times 10^{-18} = 5 \times 10^{-13}$.

- Pairs of people:
 - 5×10^{17}.

- Expected number of suspicious pairs of people:
 - $5 \times 10^{17} \times 5 \times 10^{-13} = 250,000$.
Conclusion

- Suppose there are (say) 10 pairs of evil-doers who definitely stayed at the same hotel twice.
- Analysts have to sift through 250,010 candidates to find the 10 real cases.
 - Not gonna happen.
 - But how can we improve the scheme?
Moral

When looking for a property (e.g., “two people stayed at the same hotel twice”), make sure that there are not so many possibilities that random data will not produce facts “of interest.”