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Finding Similar Pairs

�Suppose we have in main memory data 
representing a large number of objects.

� May be the objects themselves (e.g., 
summaries of faces).

� May be signatures as in minhashing.

�We want to compare each to each, 
finding those pairs that are sufficiently 
similar.
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Candidate Generation From 
Minhash Signatures

�Pick a similarity threshold s, a fraction 
< 1.

�A pair of columns c and d is a 
candidate pair if their signatures agree 
in at least fraction s of the rows.

� I.e., M (i, c ) = M (i, d )  for at least 
fraction s values of i.
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Other Notions of “Sufficiently 
Similar”

�For images, a pair of vectors is a 
candidate if they differ by at most a 
small amount t in at least s % of the 
components.

�For entity records, a pair is a candidate 
if the sum of similarity scores of 
corresponding components exceeds a 
threshold.
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Checking All Pairs is Hard

�While the signatures of all columns may 
fit in main memory, comparing the 
signatures of all pairs of columns is 
quadratic in the number of columns.

�Example: 106 columns implies 5*1011

comparisons.

�At 1 microsecond/comparison: 6 days.
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Solutions

1. Divide-Compute-Merge (DCM) uses 
external sorting, merging.

2. Locality-Sensitive Hashing (LSH) can 
be carried out in main memory, but 
admits some false negatives.
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Divide-Compute-Merge

�Designed for “shingles” and docs.

� Or other problems where data is presented 
by column. 

�At each stage, divide data into batches 
that fit in main memory.

�Operate on individual batches and write 
out partial results to disk.

�Merge partial results from disk.
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doc1: s11,s12,…,s1k

doc2: s21,s22,…,s2k
…

DCM Steps

s11,doc1
s12,doc1
…
s1k,doc1
s21,doc2

…

Invert
t1,doc11
t1,doc12
…
t2,doc21
t2,doc22

…

sort on

shingleId

doc11,doc12,1
doc11,doc13,1
…
doc21,doc22,1
…

Invert and pair

doc11,doc12,1
doc11,doc12,1
…
doc11,doc13,1
…

sort on

<docId1,
docId2>

doc11,doc12,2
doc11,doc13,10
…

Merge
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DCM Summary

1. Start with the pairs <shingleId, docId>.

2. Sort by shingleId.

3. In a sequential scan, generate triplets <docId1, 
docId2, 1> for pairs of docs that share a shingle.

4. Sort on <docId1, docId2>.

5. Merge triplets with common docIds to generate 
triplets of the form <docId1,docId2,count>.

6. Output document pairs with count > threshold.
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Some Optimizations

�“Invert and Pair” is the most expensive 
step.

�Speed it up by eliminating very 
common shingles.

� “the”, “404 not found”, “<A HREF”, etc.

�Also, eliminate exact-duplicate docs 
first.
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Locality-Sensitive Hashing

�Big idea: hash columns of signature 
matrix M several times.

�Arrange that (only) similar columns are 
likely to hash to the same bucket.

�Candidate pairs are those that hash at 
least once to the same bucket.
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Partition Into Bands

Matrix M

r rows
per band

b bands
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Partition into Bands – (2)

�Divide matrix M into b bands of r rows.

�For each band, hash its portion of each 
column to a hash table with k buckets.

�Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band.

�Tune b and r to catch most similar pairs, 
but few nonsimilar pairs.
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Matrix M

r rows b bands

Buckets
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Simplifying Assumption

�There are enough buckets that columns 
are unlikely to hash to the same bucket 
unless they are identical in a particular 
band.

�Hereafter, we assume that “same 
bucket” means “identical.”
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Example

�Suppose 100,000 columns.

�Signatures of 100 integers.

�Therefore, signatures take 40Mb.

�But 5,000,000,000 pairs of signatures 
can take a while to compare.

�Choose 20 bands of 5 integers/band.
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Suppose C1, C2 are 80% Similar

�Probability C1, C2 identical in one 
particular band: (0.8)5 = 0.328.

�Probability C1, C2 are not similar in any 
of the 20 bands: (1-0.328)20 = .00035 .

� i.e., we miss about 1/3000th of the 80%-
similar column pairs.
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Suppose C1, C2 Only 40% Similar

�Probability C1, C2 identical in any one 
particular band: (0.4)5 = 0.01 .

�Probability C1, C2 identical in ≥ 1 of 20 
bands: ≤ 20 * 0.01 = 0.2 .

�But false positives much lower for 
similarities << 40%. 
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LSH Involves a Tradeoff

�Pick the number of minhashes, the 
number of bands, and the number of 
rows per band to balance false 
positives/negatives.

�Example: if we had fewer than 20 
bands, the number of false positives 
would go down, but the number of false 
negatives would go up.
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Analysis of LSH – What We Want

Similarity s of two columns

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t
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What One Row Gives You

Similarity s of two columns

Probability
of sharing
a bucket

t

Remember:
probability of
equal hash-values
= similarity
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What b Bands of r Rows Gives You

Similarity s of two columns

Probability
of sharing
a bucket

t

s r 

All rows
of a band
are equal

1 -

Some row
of a band
unequal

( )b 

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r 
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LSH Summary

�Tune to get almost all pairs with similar 
signatures, but eliminate most pairs 
that do not have similar signatures.

�Check in main memory that candidate 
pairs really do have similar signatures.

�Optional: In another pass through data, 
check that the remaining candidate 
pairs really are similar columns .
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LSH for Other Applications

1. Face recognition from 1000 
measurements/face.

2. Entity resolution from name-address-
phone records.

� General principle: find many hash 
functions for elements; candidate 
pairs share a bucket for > 1 hash.
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Face-Recognition Hash Functions

1. Pick a set of r of the 1000 
measurements.

2. Each bucket corresponds to a range of 
values for each of the r measurements.

3. Hash a vector to the bucket such that 
each of its r components is in-range.

4. Optional: if near the edge of a range, 
also hash to an adjacent bucket.
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Example: r = 2

0-4

5-9

10-14

15-19

38-4431-3724-3017-2310-16

One bucket, for
(x,y) if 10<x<16

and 0<y<4

(27,9)
goes
here.

Maybe
put a
copy

here, too.
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Many-One Face Lookup

�As for boolean matrices, use many 
different hash functions.

� Each based on a different set of the 1000 
measurements.

�Each bucket of each hash function 
points to the images that hash to that 
bucket.
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Face Lookup – (2)

�Given a new image (the probe ), hash 
it according to all the hash functions.

�Any member of any one of its buckets 
is a candidate.

�For each candidate, count the number 
of components in which the candidate 
and probe are close.

�Match if #components > threshold.
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Hashing the Probe

h1 h2 h3 h4 h5

probe

Look in all
these buckets
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Many-Many Problem

�Make each pair of images that are in 
the same bucket according to any hash 
function be a candidate pair.

�Score each candidate pair as for the 
many-one problem.
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Entity Resolution

�You don’t have the convenient 
multidimensional view of data that you 
do for “face-recognition” or “similar-
columns.”

�We actually used an LSH-inspired 
simplification.
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Matching Customer Records

�I once took a consulting job solving the 
following problem:

� Company A agreed to solicit customers for 
Company B, for a fee.

� They then had a parting of the ways, and 
argued over how many customers.

� Neither recorded exactly which customers 
were involved.
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Customer Records – (2)

�Company B had about 1 million records 
of all its customers.

�Company A had about 1 million records 
describing customers, some of which it 
had signed up for B.

�Records had name, address, and 
phone, but for various reasons, they 
could be different for the same person.



34

Customer Records – (3)

�Step 1: design a measure of how 
similar records are:

� E.g., deduct points for small misspellings 
(“Jeffrey” vs. “Geoffery”), same phone, 
different area code.

�Step 2: score all pairs of records; report 
very similar records as matches.
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Customer Records – (4)

�Problem: (1 million)2 is too many pairs 
of records to score.

�Solution: A simple LSH.

� Three hash functions: exact values of name, 
address, phone.

• Compare iff records are identical in at least one.

� Misses similar records with a small 
difference in all three fields.
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Customer Records – Aside

�We were able to tell what values of the 
scoring function were reliable in an 
interesting way.

� Identical records had a creation date 
difference of 10 days.

� We only looked for records created within 
90 days, so bogus matches had a 45-day 
average.
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Aside – (2)

�By looking at the pool of matches with 
a fixed score, we could compute the 
average time-difference, say x, and 
deduce that fraction (45-x)/35 of them 
were valid matches.

�Alas, the lawyers didn’t think the jury 
would understand.


