CS345 Data Mining

Link Analysis Algorithms Page Rank

Anand Rajaraman, Jeffrey D. Ullman

Link Analysis Algorithms

- Page Rank
- Hubs and Authorities
- Topic-Specific Page Rank
- Spam Detection Algorithms
- Other interesting topics we won't cover
 - Detecting duplicates and mirrors
 - Mining for communities

Ranking web pages

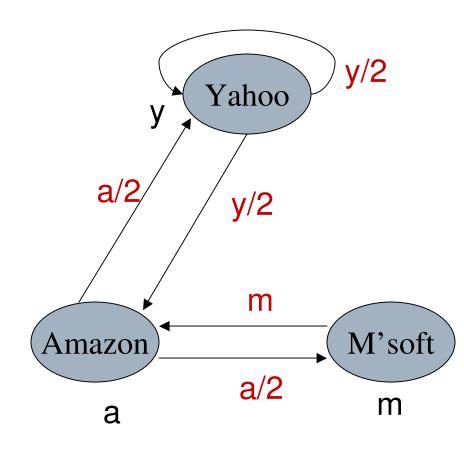
- Web pages are not equally "important"
 - www.joe-schmoe.com V www.stanford.edu
- Inlinks as votes
 - www.stanford.edu has 23,400 inlinks
 - www.joe-schmoe.com has 1 inlink
- □ Are all inlinks equal?
 - Recursive question!

Simple recursive formulation

- Each link's vote is proportional to the importance of its source page
- □ If page P with importance x has n outlinks, each link gets x/n votes
- Page P's own importance is the sum of the votes on its inlinks

Simple "flow" model

The web in 1839



$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

Solving the flow equations

- □ 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - y+a+m = 1
 - y = 2/5, a = 2/5, m = 1/5
- Gaussian elimination method works for small examples, but we need a better method for large graphs

Matrix formulation

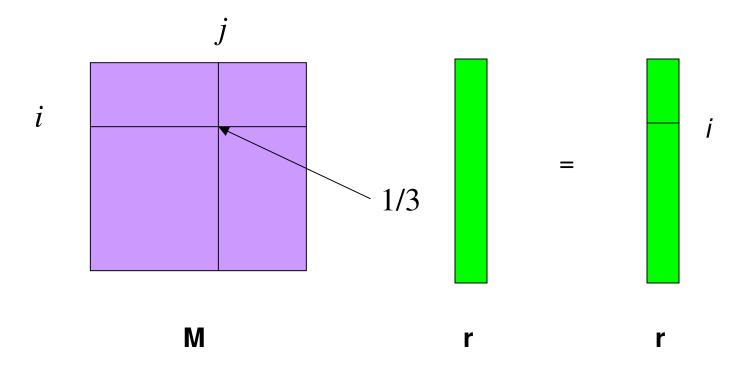
- Matrix M has one row and one column for each web page
- □ Suppose page j has n outlinks
 - If j ! i, then $M_{ij}=1/n$

■ Else M_{ij}=0

- □ **M** is a column stochastic matrix
 - Columns sum to 1
- Suppose r is a vector with one entry per web page
 - r_i is the importance score of page i
 - Call it the rank vector

Example

Suppose page j links to 3 pages, including i



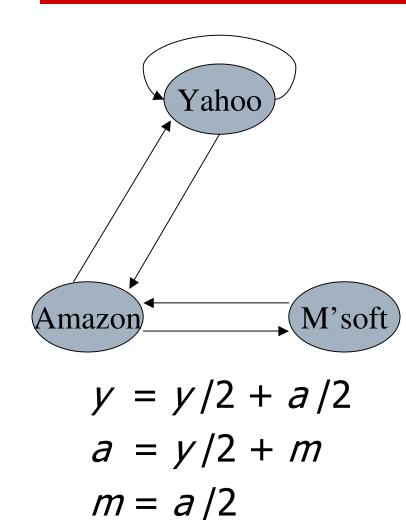
Eigenvector formulation

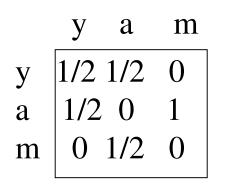
□ The flow equations can be written

r = Mr

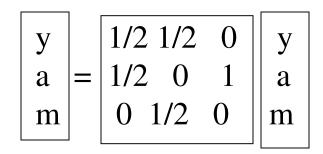
- So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

Example





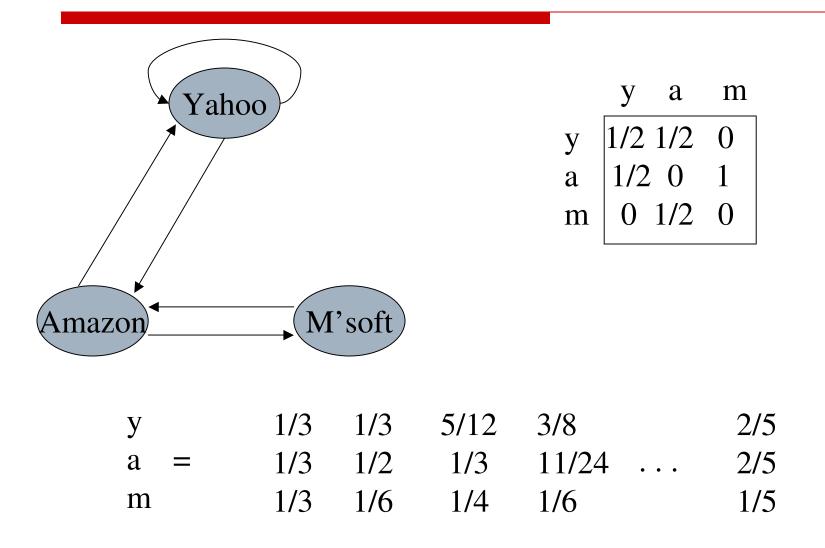
 $\mathbf{r} = \mathbf{M}\mathbf{r}$



Power Iteration method

- □ Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- $\square \text{ Initialize: } \mathbf{r}^0 = [1/N, \dots, 1/N]^{\mathsf{T}}$
- $\Box \text{ Iterate: } \mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
- □ Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \varepsilon$
 - $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example



Random Walk Interpretation

□ Imagine a random web surfer

- At any time t, surfer is on some page P
- At time t+1, the surfer follows an outlink from P uniformly at random
- Ends up on some page Q linked from P
- Process repeats indefinitely
- Let p(t) be a vector whose ith component is the probability that the surfer is at page i at time t
 - **p**(t) is a probability distribution on pages

The stationary distribution

- □ Where is the surfer at time t+1?
 - Follows a link uniformly at random
 - **p**(t+1) = **Mp**(t)
- □ Suppose the random walk reaches a state such that $\mathbf{p}(t+1) = \mathbf{Mp}(t) = \mathbf{p}(t)$
 - Then p(t) is called a stationary distribution for the random walk
- Our rank vector r satisfies r = Mr
 - So it is a stationary distribution for the random surfer

Existence and Uniqueness

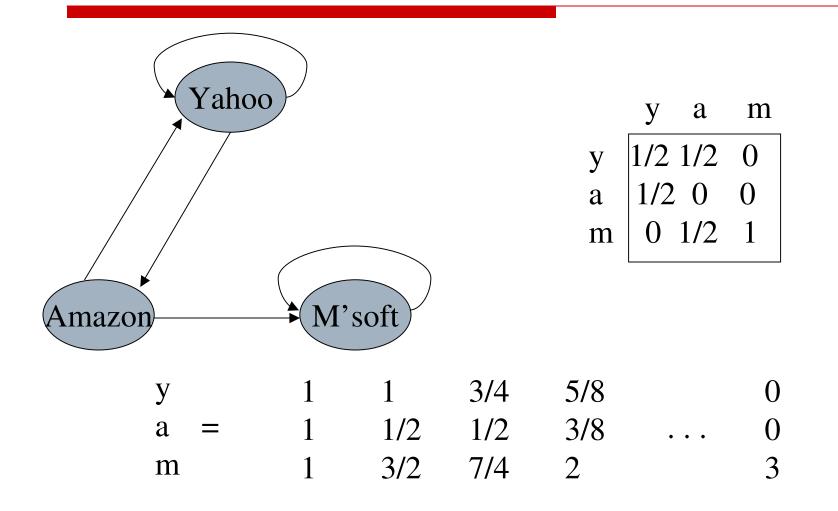
A central result from the theory of random walks (aka Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time t = 0.

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem

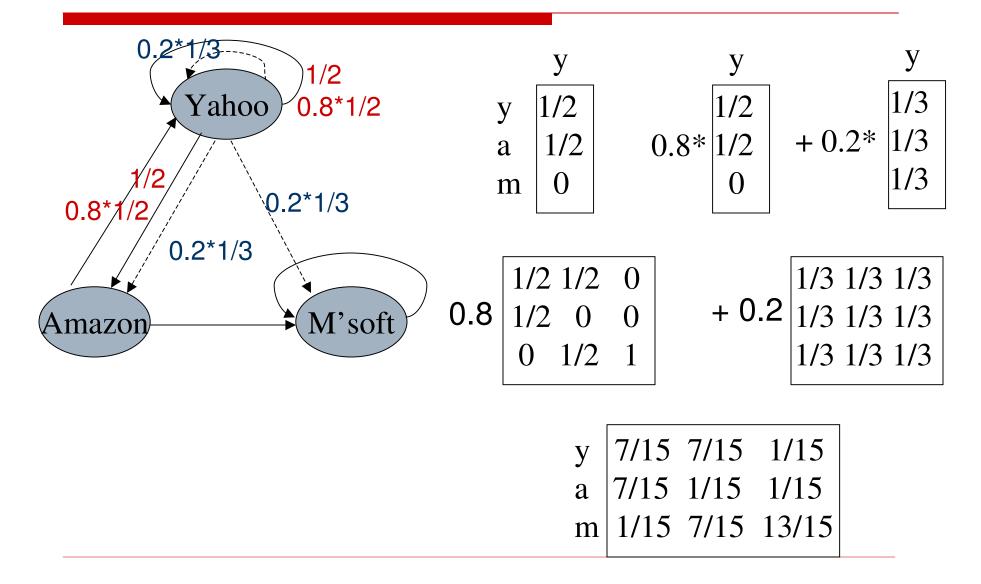
Microsoft becomes a spider trap



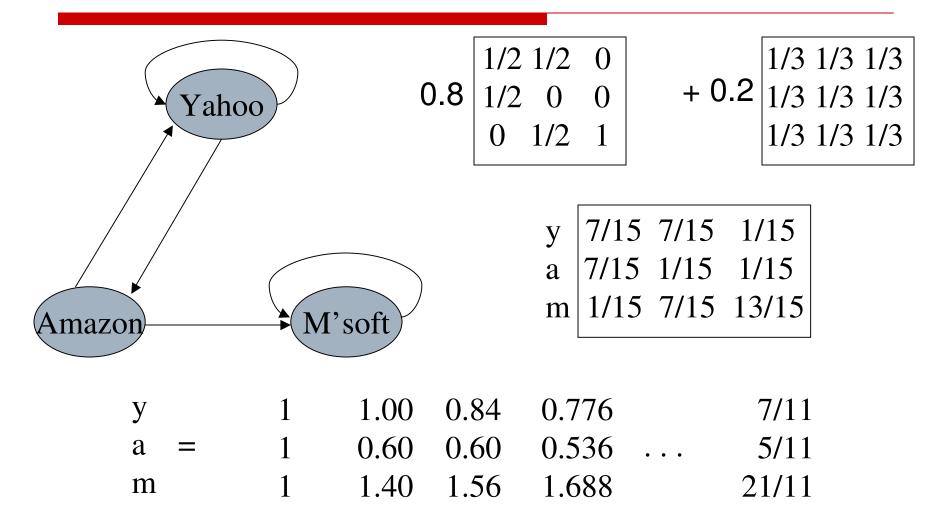
Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1-β, jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta = 0.8$)



Random teleports ($\beta = 0.8$)



Matrix formulation

Suppose there are N pages

- Consider a page j, with set of outlinks O(j)
- We have M_{ij} = 1/|O(j)| when j!i and M_{ij} = 0 otherwise
- The random teleport is equivalent to
 - \square adding a teleport link from j to every other page with probability $(1-\beta)/N$
 - □ reducing the probability of following each outlink from 1/|O(j)| to $\beta/|O(j)|$
 - Equivalent: tax each page a fraction (1-β) of its score and redistribute evenly

Page Rank

□ Construct the N£N matrix **A** as follows

• $A_{ij} = \beta M_{ij} + (1-\beta)/N$

□ Verify that **A** is a stochastic matrix

□ The page rank vector **r** is the principal eigenvector of this matrix

satisfying r = Ar

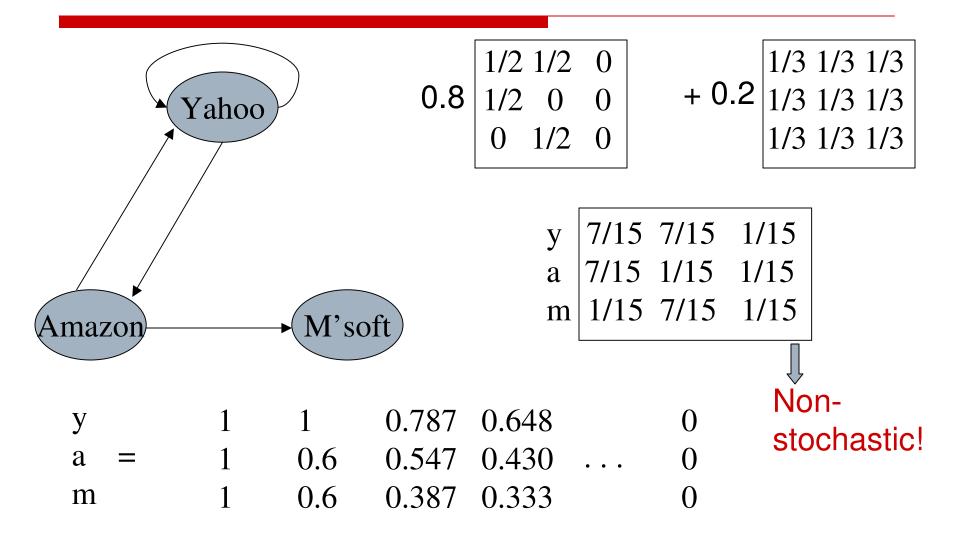
Equivalently, r is the stationary distribution of the random walk with teleports

Dead ends

Pages with no outlinks are "dead ends" for the random surfer

Nowhere to go on next step

Microsoft becomes a dead end



Dealing with dead-ends

Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

Computing page rank

Key step is matrix-vector multiplication **r**^{new} = **Ar**^{old}

- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- \Box Say N = 1 billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N² entries
 - \Box 10¹⁸ is a large number!

Rearranging the equation

$$\begin{aligned} \mathbf{r} &= \mathbf{A}\mathbf{r}, \text{ where} \\ A_{ij} &= \beta M_{ij} + (1 - \beta)/N \\ r_i &= \sum_{1 \le j \le N} A_{ij} r_j \\ r_i &= \sum_{1 \le j \le N} [\beta M_{ij} + (1 - \beta)/N] r_j \\ &= \beta \sum_{1 \le j \le N} M_{ij} r_j + (1 - \beta)/N \sum_{1 \le j \le N} r_j \\ &= \beta \sum_{1 \le j \le N} M_{ij} r_j + (1 - \beta)/N, \text{ since } |\mathbf{r}| = 1 \\ \mathbf{r} &= \beta \mathbf{M}\mathbf{r} + [(1 - \beta)/N]_N \\ \text{where } [\mathbf{x}]_N \text{ is an N-vector with all entries } \mathbf{x} \end{aligned}$$

Sparse matrix formulation

- □ We can rearrange the page rank equation:
 - $\mathbf{r} = \beta \mathbf{Mr} + [(1-\beta)/N]_{N}$
 - [(1-β)/N]_N is an N-vector with all entries (1-β)/N
- □ **M** is a sparse matrix!
 - 10 links per node, approx 10N entries
- □ So in each iteration, we need to:
 - **Compute** $\mathbf{r}^{\text{new}} = \beta \mathbf{M} \mathbf{r}^{\text{old}}$
 - Add a constant value $(1-\beta)/N$ to each entry in \mathbf{r}^{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or 4*10*1 billion = 40GB
 - still won't fit in memory, but will fit on disk

source node	degree	destination nodes
0	3	1, 5, 7
1	5	17, 64, 113, 117, 245
2	2	13, 23

Basic Algorithm

- Assume we have enough RAM to fit r^{new}, plus some working memory
 - Store **r**^{old} and matrix **M** on disk

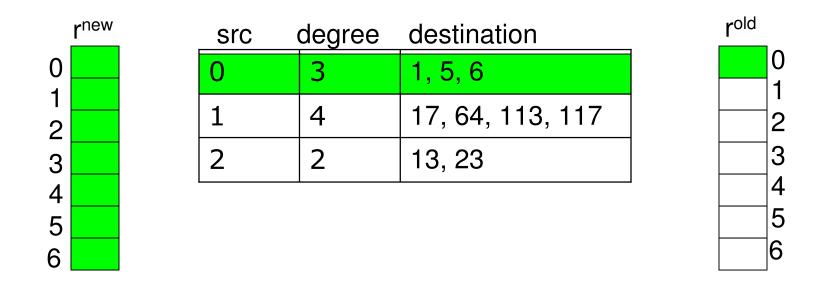
Basic Algorithm:

- \square Initialize: $\mathbf{r}^{\text{old}} = [1/N]_{\text{N}}$
- Iterate:
 - Update: Perform a sequential scan of M and r^{old} to update r^{new}
 - Write out r^{new} to disk as r^{old} for next iteration
 - Every few iterations, compute |r^{new}-r^{old}| and stop if it is below threshold

□ Need to read in both vectors into memory

Update step

Initialize all entries of \mathbf{r}^{new} to $(1-\beta)/N$ For each page p (out-degree n): Read into memory: p, n, dest₁,...,dest_n, r^{old}(p) for j = 1..n: $r^{new}(dest_j) += \beta^* r^{old}(p)/n$



Analysis

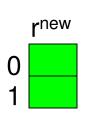
- □ In each iteration, we have to:
 - Read r^{old} and M
 - Write r^{new} back to disk
 - IO Cost = 2|**r**| + |**M**|
- What if we had enough memory to fit both r^{new} and r^{old}?
- What if we could not even fit r^{new} in memory?
 - 10 billion pages

Block-based update algorithm

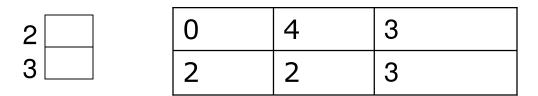
Analysis of Block Update

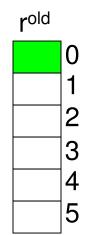
- □ Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and r^{old} once for each block
- □ k scans of M and r^{old}
 - $k(|\mathbf{M}| + |\mathbf{r}|) + |\mathbf{r}| = k|\mathbf{M}| + (k+1)|\mathbf{r}|$
- □ Can we do better?
- Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration

Block-Stripe Update algorithm



src	degree	destination
0	4	0, 1
1	2	0
2	2	1





4

0	4	5
1	2	5
2	2	4

Block-Stripe Analysis

Break M into stripes

- Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But usually worth it
- Cost per iteration
 - **M** $|(1+\epsilon) + (k+1)|\mathbf{r}|$

Next

- Topic-Specific Page Rank
- Hubs and Authorities
- Spam Detection