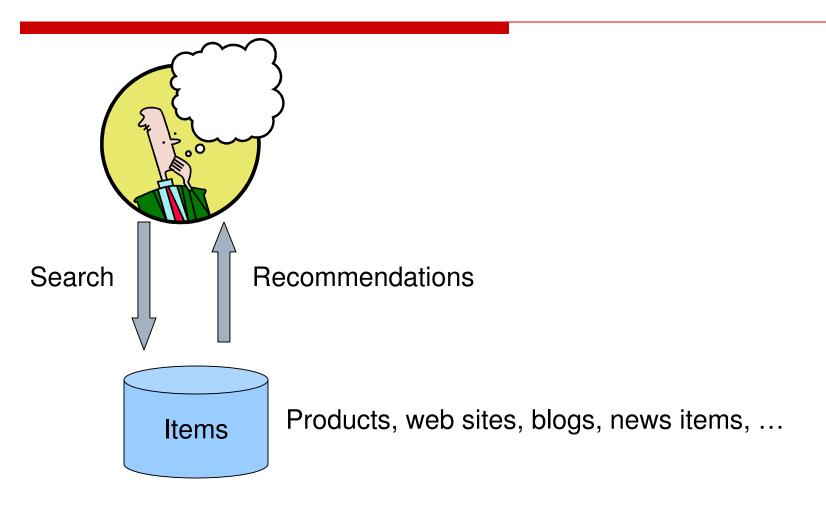
CS345 Data Mining

Recommendation Systems Netflix Challenge

Anand Rajaraman, Jeffrey D. Ullman

Recommendations



From scarcity to abundance

Shelf space is a scarce commodity for traditional retailers

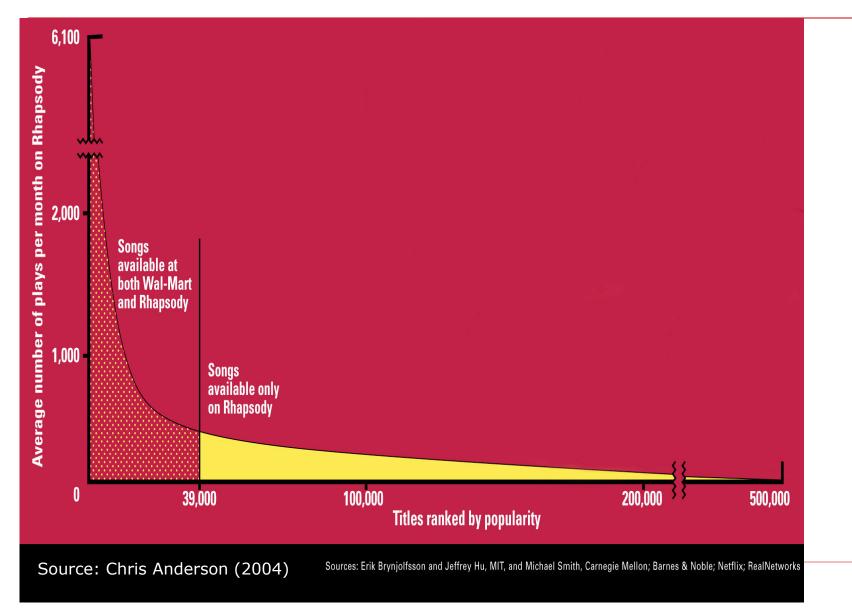
Also: TV networks, movie theaters,...

The web enables near-zero-cost dissemination of information about products

From scarcity to abundance

- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller

The Long Tail



Recommendation Types

Editorial

Simple aggregates
Top 10, Most Popular, Recent Uploads
Tailored to individual users
Amazon, Netflix, ...

Formal Model

- \Box *C* = set of Customers
- $\Box S = \text{set of Items}$
- **U** Utility function $u: C \leq S \leq R$
 - $\blacksquare R = set of ratings$
 - *R* is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	King Kong	LOTR	Matrix	Nacho Libre
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- □ Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered
- Implicit
 - Learn ratings from user actions
 - e.g., purchase implies high rating
 - What about low ratings?

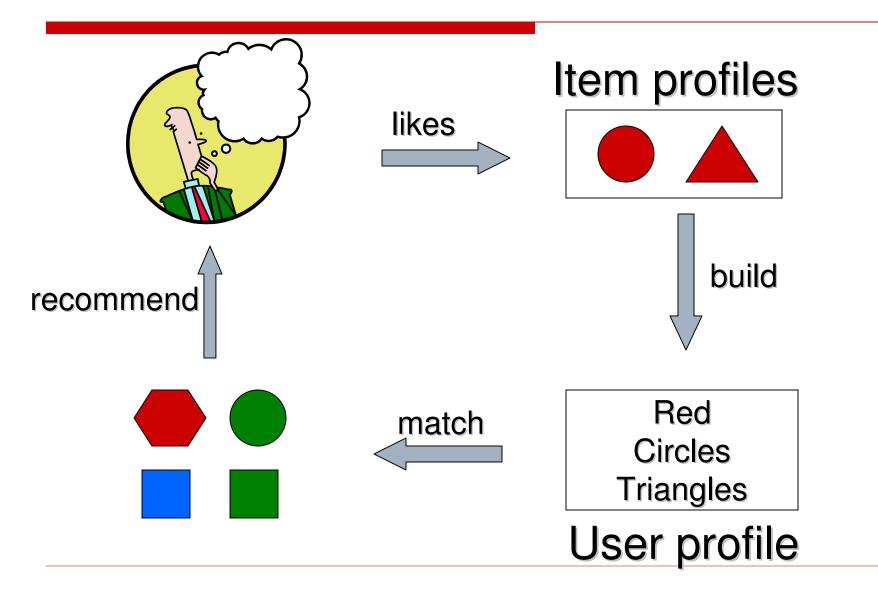
Extrapolating Utilities

- □ Key problem: matrix U is sparse
 - most people have not rated most items
- □ Three approaches
 - Content-based
 - Collaborative
 - Hybrid

Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C
- Movie recommendations
 - recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - recommend other sites with "similar" content

Plan of action



Item Profiles

- □ For each item, create an item profile
- Profile is a set of features
 - movies: author, title, actor, director,...
 - text: set of "important" words in document
- □ How to pick important words?
 - Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)

TF.IDF

 $f_{ij} = frequency of term t_i in document d_j$ $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$

 n_i = number of docs that mention term i N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF.IDF score $w_{ij} = TF_{ij} \pm IDF_i$ Doc profile = set of words with highest TF.IDF scores, together with their scores

User profiles and prediction

□ User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- Prediction heuristic
 - Given user profile c and item profile s, estimate u(c,s) = cos(c,s) = c.s/(|c||s|)
 - Need efficient method to find items with high utility: later

Model-based approaches

- For each user, learn a classifier that classifies items into rating classes
 - liked by user and not liked by user
 - e.g., Bayesian, regression, SVM
- Apply classifier to each item to find recommendation candidates
- Problem: scalability
 - Won't investigate further in this class

Limitations of content-based approach

- □ Finding the appropriate features
 - e.g., images, movies, music
- Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
- Recommendations for new users
 - How to build a profile?

Collaborative Filtering

- Consider user c
- Find set D of other users whose ratings are "similar" to c's ratings
- Estimate user's ratings based on ratings of users in D

Similar users

 \Box Let r_x be the vector of user x's ratings

- Cosine similarity measure
 - $sim(x,y) = cos(r_x, r_y)$

Pearson correlation coefficient

S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

Rating predictions

- Let D be the set of k users most similar to c who have rated item s
- Possibilities for prediction function (item s):

$$\mathbf{r}_{cs} = 1/k \sum_{d_2D} r_{ds}$$

$$r_{cs} = (\sum_{d_{2}D} sim(c,d) \pounds r_{ds}) / (\sum_{d^2D} sim(c,d))$$

Other options?

□ Many tricks possible...

Complexity

- Expensive step is finding k most similar customers
 - O(|U|)
- Too expensive to do at runtime
 - Need to pre-compute
- Naïve precomputation takes time O(N|U|)
 - Simple trick gives some speedup
- Can use clustering, partitioning as alternatives, but quality degrades

Item-Item Collaborative Filtering

- □ So far: User-user collaborative filtering
- Another view
 - For item s, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model
- In practice, it has been observed that item-item often works better than useruser

Pros and cons of collaborative filtering

- Works for any kind of item
 - No feature selection needed
- New user problem
- New item problem
- Sparsity of rating matrix
 - Cluster-based smoothing?

Hybrid Methods

- Implement two separate recommenders and combine predictions
- Add content-based methods to collaborative filtering
 - item profiles for new item problem
 - demographics to deal with new user problem

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
- □ Another approach: 0/1 model
 - Coverage
 - Number of items/users for which system can make predictions
 - Precision

□ Accuracy of predictions

Receiver operating characteristic (ROC)
Tradeoff curve between false positives and false negatives

Problems with Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings
 - RMSE might penalize a method that does well for high ratings and badly for others

Tip: Add data

Leverage all the Netflix data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More Data Beats Better Algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

Finding similar vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high cosine-similarity

e.g., user profiles, item profiles

- Perfect set-up for next topic!
 - Near-neighbor search in high dimensions