
1

Association Rules

Market Baskets

Frequent Itemsets

A-Priori Algorithm

2

The Market-Basket Model

�A large set of items, e.g., things sold in
a supermarket.

�A large set of baskets, each of which is
a small set of the items, e.g., the things
one customer buys on one day.

3

Market-Baskets – (2)

�Really a general many-many mapping
(association) between two kinds of
things.

� But we ask about connections among
“items,” not “baskets.”

�The technology focuses on common
events, not rare events (“long tail”).

4

Support

�Simplest question: find sets of items
that appear “frequently” in the baskets.

�Support for itemset I = the number of
baskets containing all items in I.

� Sometimes given as a percentage.

�Given a support threshold s, sets of
items that appear in at least s baskets
are called frequent itemsets.

5

Example: Frequent Itemsets

�Items={milk, coke, pepsi, beer, juice}.

�Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�Frequent itemsets: {m}, {c}, {b}, {j},

, {b,c}, {c,j}.{m,b}

6

Applications – (1)

�Items = products; baskets = sets of
products someone bought in one trip to
the store.

�Example application: given that many
people buy beer and diapers together:

� Run a sale on diapers; raise price of beer.

�Only useful if many buy diapers & beer.

7

Applications – (2)

�Baskets = sentences; items =
documents containing those sentences.

�Items that appear together too often
could represent plagiarism.

�Notice items do not have to be “in”
baskets.

8

Applications – (3)

�Baskets = Web pages; items = words.

�Unusual words appearing together in a
large number of documents, e.g.,
“Brad” and “Angelina,” may indicate an
interesting relationship.

9

Aside: Words on the Web

� Many Web-mining applications involve
words.

1. Cluster pages by their topic, e.g., sports.

2. Find useful blogs, versus nonsense.

3. Determine the sentiment (positive or
negative) of comments.

4. Partition pages retrieved from an
ambiguous query, e.g., “jaguar.”

10

Words – (2)

� Here’s everything I know about
computational linguistics.

1. Very common words are stop words.
� They rarely help determine meaning, and

they block from view interesting events, so
ignore them.

2. The TF/IDF measure distinguishes
“important” words from those that are
usually not meaningful.

11

Words – (3)

TF/IDF = “term frequency, inverse

document frequency”: relates the number
of times a word appears to the number
of documents in which it appears.

� Low values are words like “also” that appear
at random.

� High values are words like “computer” that
may be the topic of documents in which it
appears at all.

12

Scale of the Problem

�WalMart sells 100,000 items and can
store billions of baskets.

�The Web has billions of words and
many billions of pages.

13

Association Rules

�If-then rules about the contents of
baskets.

�{i1, i2,…,ik} → j means: “if a basket

contains all of i1,…,ik then it is likely to
contain j.”

�Confidence of this association rule is
the probability of j given i1,…,ik.

14

Example: Confidence

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�An association rule: {m, b} → c.

� Confidence = 2/4 = 50%.

+

_

_

+

15

Finding Association Rules

�Question: “find all association rules with
support ≥ s and confidence ≥ c .”

� Note: “support” of an association rule is the
support of the set of items on the left.

�Hard part: finding the frequent itemsets.
� Note: if {i1, i2,…,ik} → j has high support

and confidence, then both {i1, i2,…,ik} and
{i1, i2,…,ik ,j } will be “frequent.”

16

Computation Model

�Typically, data is kept in flat files rather
than in a database system.

� Stored on disk.

� Stored basket-by-basket.

� Expand baskets into pairs, triples, etc. as
you read baskets.

• Use k nested loops to generate all sets of size k.

17

File Organization

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Basket 1

Basket 2

Basket 3

Etc.

Example: items are
positive integers,
and boundaries
between baskets
are –1.

18

Computation Model – (2)

�The true cost of mining disk-resident
data is usually the number of disk I/O’s.

�In practice, association-rule algorithms
read the data in passes – all baskets
read in turn.

�Thus, we measure the cost by the
number of passes an algorithm takes.

19

Main-Memory Bottleneck

�For many frequent-itemset algorithms,
main memory is the critical resource.

� As we read baskets, we need to count
something, e.g., occurrences of pairs.

� The number of different things we can
count is limited by main memory.

� Swapping counts in/out is a disaster
(why?).

20

Finding Frequent Pairs

�The hardest problem often turns out to
be finding the frequent pairs.

�Why? Often frequent pairs are common,
frequent triples are rare.

• Why? Probability of being frequent drops
exponentially with size; number of sets grows
more slowly with size.

�We’ll concentrate on pairs, then extend
to larger sets.

21

Naïve Algorithm

�Read file once, counting in main
memory the occurrences of each pair.

� From each basket of n items, generate its
n (n -1)/2 pairs by two nested loops.

�Fails if (#items)2 exceeds main
memory.

� Remember: #items can be 100K (Wal-
Mart) or 10B (Web pages).

22

Example: Counting Pairs

�Suppose 105 items.

�Suppose counts are 4-byte integers.

�Number of pairs of items: 105(105-1)/2
= 5*109 (approximately).

�Therefore, 2*1010 (20 gigabytes) of
main memory needed.

23

Details of Main-Memory Counting

� Two approaches:

1. Count all pairs, using a triangular matrix.

2. Keep a table of triples [i, j, c] = “the count
of the pair of items {i, j } is c.”

� (1) requires only 4 bytes/pair.

� Note: always assume integers are 4 bytes.

� (2) requires 12 bytes, but only for
those pairs with count > 0.

24

4 per pair

Method (1) Method (2)

12 per
occurring pair

25

Triangular-Matrix Approach – (1)

�Number items 1, 2,…

� Requires table of size O(n) to convert item
names to consecutive integers.

�Count {i, j } only if i < j.

�Keep pairs in the order {1,2}, {1,3},…,
{1,n }, {2,3}, {2,4},…,{2,n }, {3,4},…,
{3,n },…{n -1,n }.

26

Triangular-Matrix Approach – (2)

�Find pair {i, j } at the position
(i –1)(n –i /2) + j – i.

�Total number of pairs n (n –1)/2; total
bytes about 2n 2.

27

Details of Approach #2

�Total bytes used is about 12p, where p is
the number of pairs that actually occur.

� Beats triangular matrix if at most 1/3 of
possible pairs actually occur.

�May require extra space for retrieval
structure, e.g., a hash table.

28

A-Priori Algorithm – (1)

�A two-pass approach called a-priori
limits the need for main memory.

�Key idea: monotonicity : if a set of
items appears at least s times, so does
every subset.

� Contrapositive for pairs: if item i does not
appear in s baskets, then no pair including
i can appear in s baskets.

29

A-Priori Algorithm – (2)

�Pass 1: Read baskets and count in
main memory the occurrences of each
item.

� Requires only memory proportional to
#items.

�Items that appear at least s times are
the frequent items.

30

A-Priori Algorithm – (3)

�Pass 2: Read baskets again and count
in main memory only those pairs both
of which were found in Pass 1 to be
frequent.

� Requires memory proportional to square
of frequent items only (for counts), plus a
list of the frequent items (so you know
what must be counted).

31

Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of
pairs of
frequent
items

32

Detail for A-Priori

�You can use the triangular matrix
method with n = number of frequent
items.

�May save space compared with storing
triples.

�Trick: number frequent items 1,2,…
and keep a table relating new numbers
to original item numbers.

33

A-Priori Using Triangular
Matrix for Counts

Item counts

Pass 1 Pass 2

1. Freq- Old
2. quent item
… items #’s

Counts of
pairs of
frequent
items

34

Frequent Triples, Etc.

�For each k, we construct two sets of
k -sets (sets of size k):

� Ck = candidate k -sets = those that might
be frequent sets (support > s) based on
information from the pass for k –1.

� Lk = the set of truly frequent k -sets.

35

C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

First
pass

Second
pass

All
items

All pairs
of items
from L1

Count
the pairs

To be
explained

Count
the items

Frequent
items

Frequent
pairs

36

A-Priori for All Frequent
Itemsets

�One pass for each k.

�Needs room in main memory to count
each candidate k -set.

�For typical market-basket data and
reasonable support (e.g., 1%), k = 2
requires the most memory.

37

Frequent Itemsets – (2)

�C1 = all items

�In general, Lk = members of Ck with
support ≥ s.

�Ck +1 = (k +1) -sets, each k of which is
in Lk .

