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The Market-Basket Model

�A large set of items, e.g., things sold in 
a supermarket.

�A large set of baskets, each of which is 
a small set of the items, e.g., the things 
one customer buys on one day.
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Market-Baskets – (2)

�Really a general many-many mapping 
(association) between two kinds of 
things.

� But we ask about connections among 
“items,” not “baskets.”

�The technology focuses on common 
events, not rare events (“long tail”).
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Support

�Simplest question: find sets of items 
that appear “frequently” in the baskets.

�Support for itemset I  = the number of 
baskets containing all items in I.

� Sometimes given as a percentage. 

�Given a support threshold s, sets of 
items that appear in at least s baskets 
are called frequent itemsets.
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Example: Frequent Itemsets

�Items={milk, coke, pepsi, beer, juice}.

�Support = 3 baskets.

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�Frequent itemsets: {m}, {c}, {b}, {j},

, {b,c}, {c,j}.{m,b}
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Applications – (1)

�Items = products; baskets = sets of 
products someone bought in one trip to 
the store.

�Example application: given that many 
people buy beer and diapers together:

� Run a sale on diapers; raise price of beer.

�Only useful if many buy diapers & beer.
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Applications – (2)

�Baskets = sentences; items = 
documents containing those sentences.

�Items that appear together too often 
could represent plagiarism.

�Notice items do not have to be “in” 
baskets.
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Applications – (3)

�Baskets = Web pages; items = words.

�Unusual words appearing together in a 
large number of documents, e.g., 
“Brad” and “Angelina,” may indicate an 
interesting relationship.
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Aside: Words on the Web

� Many Web-mining applications involve 
words.

1. Cluster pages by their topic, e.g., sports.

2. Find useful blogs, versus nonsense.

3. Determine the sentiment (positive or 
negative) of comments.

4. Partition pages retrieved from an 
ambiguous query, e.g., “jaguar.”
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Words – (2)

� Here’s everything I know about 
computational linguistics.

1. Very common words are stop words.
� They rarely help determine meaning, and 

they block from view interesting events, so 
ignore them.

2. The TF/IDF measure distinguishes 
“important” words from those that are 
usually not meaningful.
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Words – (3)

TF/IDF = “term frequency, inverse

document frequency”: relates the number 
of times a word appears to the number 
of documents in which it appears.

� Low values are words like “also” that appear 
at random.

� High values are words like “computer” that 
may be the topic of documents in which it 
appears at all.



12

Scale of the Problem

�WalMart sells 100,000 items and can 
store billions of baskets.

�The Web has  billions of words and 
many billions of pages.
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Association Rules

�If-then rules about the contents of 
baskets.

�{i1, i2,…,ik} → j means: “if a basket 

contains all of i1,…,ik then it is likely to 
contain j.”

�Confidence of this association rule is 
the probability of j given i1,…,ik.
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Example: Confidence

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

�An association rule: {m, b} → c.

� Confidence = 2/4 = 50%.

+

_

_

+
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Finding Association Rules

�Question: “find all association rules with 
support ≥ s and confidence ≥ c .”

� Note: “support” of an association rule is the 
support of the set of items on the left.

�Hard part: finding the frequent itemsets.
� Note: if {i1, i2,…,ik} → j has high support 

and confidence, then both {i1, i2,…,ik} and 
{i1, i2,…,ik ,j } will be “frequent.”



16

Computation Model

�Typically, data is kept in flat files rather 
than in a database system.

� Stored on disk.

� Stored basket-by-basket.

� Expand baskets into pairs, triples, etc. as 
you read baskets.

• Use k nested loops to generate all sets of size k.
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File Organization

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Basket 1

Basket 2

Basket 3

Etc.

Example: items are
positive integers,
and boundaries
between baskets
are –1.
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Computation Model – (2)

�The true cost of mining disk-resident 
data is usually the number of disk I/O’s.

�In practice, association-rule algorithms 
read the data in passes – all baskets 
read in turn.

�Thus, we measure the cost by the 
number of passes an algorithm takes.
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Main-Memory Bottleneck

�For many frequent-itemset algorithms, 
main memory is the critical resource.

� As we read baskets, we need to count 
something, e.g., occurrences of pairs.

� The number of different things we can 
count is limited by main memory.

� Swapping counts in/out is a disaster 
(why?).
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Finding Frequent Pairs

�The hardest problem often turns out to 
be finding the frequent pairs.

�Why? Often frequent pairs are common, 
frequent triples are rare.

• Why? Probability of being frequent drops 
exponentially with size; number of sets grows 
more slowly with size.

�We’ll concentrate on pairs, then extend 
to larger sets.
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Naïve Algorithm

�Read file once, counting in main 
memory the occurrences of each pair.

� From each basket of n items, generate its            
n (n -1)/2 pairs by two nested loops.

�Fails if (#items)2 exceeds main 
memory.

� Remember: #items can be 100K (Wal-
Mart) or 10B (Web pages).
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Example: Counting Pairs

�Suppose 105 items.

�Suppose counts are 4-byte integers.

�Number of pairs of items: 105(105-1)/2 
= 5*109 (approximately).

�Therefore, 2*1010 (20 gigabytes) of 
main memory needed.
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Details of Main-Memory Counting

� Two approaches:

1. Count all pairs, using a triangular matrix.

2. Keep a table of triples [i, j, c] = “the count 
of the pair of items {i, j } is c.”

� (1) requires only 4 bytes/pair.

� Note: always assume integers are 4 bytes.

� (2) requires 12 bytes, but only for 
those pairs with count > 0.
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4 per pair

Method (1) Method (2)

12 per
occurring pair
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Triangular-Matrix Approach – (1)

�Number items 1, 2,…

� Requires table of size O(n) to convert item 
names to consecutive integers.

�Count {i, j } only if i < j. 

�Keep pairs in the order {1,2}, {1,3},…, 
{1,n }, {2,3}, {2,4},…,{2,n }, {3,4},…, 
{3,n },…{n -1,n }.
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Triangular-Matrix Approach – (2)

�Find pair {i, j } at the position              
(i –1)(n –i /2) + j – i.

�Total number of pairs n (n –1)/2; total 
bytes about 2n 2.
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Details of Approach #2

�Total bytes used is about 12p, where p is 
the number of pairs that actually occur.

� Beats triangular matrix if at most 1/3 of 
possible pairs actually occur.

�May require extra space for retrieval 
structure, e.g., a hash table.
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A-Priori Algorithm – (1)

�A two-pass approach called a-priori
limits the need for main memory.

�Key idea: monotonicity :  if a set of 
items appears at least s times, so does 
every subset.

� Contrapositive for pairs: if item i does not 
appear in s baskets, then no pair including 
i can appear in s baskets.
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A-Priori Algorithm – (2)

�Pass 1: Read baskets and count in 
main memory the occurrences of each 
item.

� Requires only memory proportional to 
#items.

�Items that appear at least s times are 
the frequent items.
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A-Priori Algorithm – (3)

�Pass 2: Read baskets again and count 
in main memory only those pairs both 
of which were found in Pass 1 to be 
frequent.

� Requires memory proportional to square 
of frequent items only (for counts), plus a 
list of the frequent items (so you know 
what must be counted).
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Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of
pairs of
frequent
items
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Detail for A-Priori

�You can use the triangular matrix 
method with n = number of frequent 
items.

�May save space compared with storing 
triples.

�Trick: number frequent items 1,2,… 
and keep a table relating new numbers 
to original item numbers.
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A-Priori Using Triangular 
Matrix for Counts

Item counts

Pass 1 Pass 2

1. Freq- Old 
2. quent   item 
… items   #’s 

Counts of
pairs of
frequent
items
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Frequent Triples, Etc.

�For each k, we construct two sets of    
k -sets  (sets of size k ):

� Ck = candidate k -sets = those that might 
be frequent sets (support > s ) based on 
information from the pass for k –1.

� Lk = the set of truly frequent k -sets.
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C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

First
pass

Second
pass

All
items

All pairs
of items
from L1

Count
the pairs

To be
explained

Count
the items

Frequent
items

Frequent
pairs
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A-Priori for All Frequent 
Itemsets

�One pass for each k.

�Needs room in main memory to count 
each candidate k -set.

�For typical market-basket data and 
reasonable support (e.g., 1%), k = 2 
requires the most memory.
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Frequent Itemsets – (2)

�C1 = all items

�In general, Lk = members of Ck with 
support ≥ s.

�Ck +1 = (k +1) -sets, each k of which is 
in Lk .


