CS 345A
Data Mining

MapReduce



Single-node architecture

CPU

Machine Learning, Statistics

Memory

“Classical” Data Mining




Commodity Clusters

Web data sets can be very large
B Tens to hundreds of terabytes

Cannot mine on a single server (why?)

Standard architecture emerging:

B Cluster of commodity Linux nodes

B Gigabit ethernet interconnect

How to organize computations on this
architecture?

B Mask issues such as hardware failure




Cluster Architecture

2-10 Gbps backbone between racks

1 Gbps between
any pair of nodes
in a rack

Switch

Switch

ch

CPU

Mem

CPU

Mem

Disk

Each rack contains 16-64 nodes

CPU

Mem




Stable storage

First order problem: if nhodes can fail,
how can we store data persistently?

Answer: Distributed File System
B Provides global file namespace
B Google GFS; Hadoop HDFS; Kosmix KFS

[ypical usage pattern

B Huge files (100s of GB to TB)

B Data is rarely updated in place
B Reads and appends are common




Distributed File System

Chunk Servers

B File is split into contiguous chunks

B Typically each chunk is 16-64MB

B Each chunk replicated (usually 2x or 3x)
B Try to keep replicas in different racks

Master node

B a.k.a. Name Nodes in HDFS
B Stores metadata

B Might be replicated

Client library for file access

B Talks to master to find chunk servers

B Connects directly to chunkservers to access data




Warm up: Word Count

We have a large file of words, one
word to a line

Count the number of times each
distinct word appears in the file

Sample application: analyze web
server logs to find popular URLSs




Word Count (2)

Case 1: Entire file fits in memory

Case 2: File too large for mem, but all
<word, count> pairs fit in mem

Case 3: File on disk, too many
distinct words to fit in memory

B sort datafile | uniqg -c




Word Count (3)

o make it slightly harder, suppose
we have a large corpus of documents

Count the number of times each
distinct word occurs in the corpus
B words (docs/*) | sort | unig -c

B where words takes a file and outputs the
words in it, one to a line

'he above captures the essence of
MapReduce

B Great thing is it is naturally parallelizable




MapReduce: The Map Step

Input Intermediate
key-value pairs key-value pairs

@
A B @ my
Am 2 @/

A OE




MapReduce: The Reduce Step

: Output
Intermediate P

. Key-value groups key-value pairs
key-value pairs

@ @ e
SN o O =56
®

om o P




MapReduce

Input: a set of key/value pairs

User supplies two functions:
B map(k,v) = list(kl,v1)
B reduce(kl, list(vl)) = v2

(k1,v1) is an intermediate key/value
pair
Output is the set of (k1,v2) pairs




Word Count using MapReduce

map(key, value):
// key: document name; value: text of document
for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
result +=v
emit(result)




Distributed Execution Overview

User
~Program <

/

fork / fork \fork
,f’aSSIQIﬂ,'// —@ . assign
/- map- “reduce
Input Data Worker
local
read write
Worker
Worker remote

read,
sort




Data flow

Input, final output are stored on a
distributed file system

B Scheduler tries to schedule map tasks
“close” to physical storage location of
input data

Intermediate results are stored on

local FS of map and reduce workers

Output is often input to another map
reduce task




Coordination

Master data structures

B Task status: (idle, in-progress, completed)

B Idle tasks get scheduled as workers
become available

B When a map task completes, it sends the
master the location and sizes of its R
intermediate files, one for each reducer

B Master pushes this info to reducers

Master pings workers periodically to
detect failures




Failures

Map worker failure

B Map tasks completed or in-progress at
worker are reset to idle

B Reduce workers are notified when task is
rescheduled on another worker

Reduce worker failure
B Only in-progress tasks are reset to idle

Master failure

B MapReduce task is aborted and client is
notified




How many Map and Reduce jobs?

M map tasks, R reduce tasks

Rule of thumb:

B Make M and R much larger than the
number of nodes in cluster

B One DFS chunk per map is common

B Improves dynamic load balancing and
speeds recovery from worker failure

Usually R is smaller than M, because

output is spread across R files




Combiners

Often a map task will produce many
pairs of the form (k,v1), (k,v2), ... for
the same key k

B E.g., popular words in Word Count

Can save network time by pre-
aggregating at mapper

B combine(kl, list(vl)) - v2

B Usually same as reduce function

Works only if reduce function is
commutative and associative




Partition Function

Inputs to map tasks are created by
contiguous splits of input file

For reduce, we need to ensure that
records with the same intermediate
key end up at the same worker

System uses a default partition
function e.g., hash(key) mod R

Sometimes useful to override

B E.g., hash(hostname(URL)) mod R
ensures URLs from a host end up in the
same output file




Exercise 1: Host size

Suppose we have a large web corpus

Let’s look at the metadata file
B Lines of the form (URL, size, date, ...)

For each host, find the total number

of bytes

B i.e., the sum of the page sizes for all
URLs from that host




Exercise 2: Distributed Grep

Find all occurrences of the given
pattern in a very large set of files




Exercise 3: Graph reversal

Given a directed graph as an
adjacency list:

srcl: destll, destl?2, ...
src2: dest21, dest22, ...

Construct the graph in which all the
links are reversed




Exercise 4: Frequent Pairs

Given a large set of market baskets,
find all frequent pairs

B Remember definitions from Association
Rules lectures




Implementations

Google

B Not available outside Google

Hadoop

B An open-source implementation in Java
B Uses HDFS for stable storage

B Download: http:/lucene.apache.org/hadoop/
Aster Data

B Cluster-optimized SQL Database that
also implements MapReduce

B Made available free of charge for this
class




Cloud Computing

Ability to rent computing by the hour

B Additional services e.g., persistent
storage

We will be using Amazon’s “Elastic
Compute Cloud” (EC2)

Aster Data and Hadoop can both be
run on EC2

In discussions with Amazon to
provide access free of charge for class




Special Section on MapReduce

[utorial on how to access Aster Data,
EC2, etc

Intro to the available datasets

Friday, January 16, at 5:15pm
B Right after InfoSeminar

B Tentatively, in the same classroom
(Gates B12)




Reading

[0 Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing
on Large Clusters

http://labs.google.com/papers/mapreduce.html|

[0 Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung, The Google File System

http://labs.google.com/papers/gfs.html




