Methods for High Degrees of
Similarity
Index-Based Methods

Exploiting Prefixes and Suffixes
Exploiting Length

Overview

€ LSH-based methods are excellent for
similarity thresholds that are not too
high.
* Possibly up to 80% or 90%.

€ But for similarities above that, there are
other methods that are more efficient.
* And also give exact answers.

Setting: Sets as Strings

¢ We'll again talk about Jaccard
similarity and distance of sets.

€ However, now represent sets by
strings (lists of symbols):
1. Enumerate the universal set.

2. Represent a set by the string of its
elements in sorted order.

. Shingles

@ If the universal set is k-shingles, there is
a natural lexicographic order.

@ Think of each shingle as a single symbol.

Then the 2-shingling of , Which is
the set {ab, bc, ca, ad}, is represented by
the list ab, ad, bc, ca of length 4.

@ Alternative: hash shingles; order by
bucket number.

: Words

@ If we treat a document as a set of
words, we could order the words
alphabetically.

4 : Order words lowest-frequency-
first.

€ \Why? We shall index documents based
on the early words in their lists.

* Documents spread over more buckets.

Jaccard and Edit Distances

€ Suppose two sets have Jaccard distance J
and are represented by strings s, and s,.
Let the LCS of s; and s, have length C
and the edit distance of s, and s, be E.
Then:

+ 1-J = Jaccard similarity = C/(C+E).

+] =E/(C+E). Works because these
strings never repeat
a symbol, and symbols
appear in the same order. ¢

Indexes

€ The general approach is to build some
indexes on the set of strings.

€ Then, visit each string once and use
the index to find possible candidates for
similarity.

@ For thought: how does this approach

compare with bucketizing and looking
within buckets for similarity?

Length-Based Indexes

® The simplest thing to do is create an
index on the length of strings.

@ A string of length L can be Jaccard
distance J from a string of length M
only if Lx(1-J) < M < L/(1-]).

4 : if 1-J = 90% (Jaccard
similarity), then M is between 90% and
111% of L.

Why the Limit on Lengths?

< L >
< M >

1-J = M/L

M = Lx(1-])

A shortest candidate

«—L —

«— M —

1-] = M
M = L/(1-])

A longest candidate

B-Tree Indexes

& The B-tree is a perfect index structure
for a length-based index.

€ Given a string of length L, we can find
strings in the range Lx(1-J) to L/(1-J)
without looking at any candidates outside
that range.

€ But just because strings are similar in
length, doesn’t mean they are similar.

10

: B-Trees

€ If you didn't take CS245 vyet, a B-tree is
a generalization of a binary search tree,
where each node has many children,
and each child leads to a segment of
the range of values handled by its
parent.

@ Typically, a node is a disk block.

11

: B-Trees — (2)

From parent

/

|/|50|/|80|\|145| 1190| |225] |

/TN =

To values To values To values

<50

>50,<80 >80, <145

12

Prefix-Based Indexing

@ If two strings are 90% similar, they
must share some symbol in their
prefixes whose length is just above
10% of the shorter.

€ Thus, we can index symbols in just the
first |JL+1 | positions of a string of

length L.

13

Why the Limit on Prefixes?

X

+—__ Extreme case: second string has

none of the first E symbols of the

“‘BE*x

<« first string, but they agree thereafter.

Must bV'

Equal

If two strings do not share any of the
first E symbols, then J > E/L.

Thus, E = JL is possible, but any larger
E is impossible. Index E+1 positions.

14

Indexing Prefixes

€ Think of a bucket for each possible
symbol.

@ Each string of length L is placed in the
bucket for of its first |JL+1 |

positions.

@ A B-tree with symbol as key leads to
pointers to the strings.

15

Lookup

€ Given a probe string s of length L,
with J the limit on Jaccard distance:

for (each symbol among the

first |JL+1] positions of s)
look for other strings 1in
the bucket for ;

16

: Indexing Prefixes

®Llet] =0.2.

@ String is indexed under @ and
D.

@ String is indexed under @ and ¢

@ String is indexed only under b.

@ If we search for strings similar to ,
we need look only in the bucket for ¢

17

Using Positions Within Prefixes

@ If position /7 of string s is the first position
to match a prefix position of string ¢ and it
matches position j, then the edit distance
between s and ¢ is at least /+ j— 2.

& The LCS of s and ¢ is no longer than
L-/+1, where L is the length of s.

18

Positions/Prefixes — (2)

@ If J is the limit on Jaccard distance,
then remember E/(E+C) < J.

*E=/7+7-2

+C=L-/+1.
®Thus, (/+j-2)/(L+j-1) <].
®0r, j<(OL-J-/+2)/(1-1).

19

Positions/Prefixes — (3)

¢ We only need to find a candidate
once, so we may as well:

1. Visit positions of our given string in
numerical order, and

2. Assume that there have been no matches
for earlier positions.

20

Positions/Prefixes — Indexing

® Create a 2-attribute index on (symbol,
position).
@ If string s has symbol & as the /t

position of its prefix, add s to the
bucket (7, 7).

@ A B-tree index with keys ordered first
by symbol, then position is excellent.

21

Lookup

@ If we want to find matches for probe
string s of length L, do:

for (1=1; 1<=J*L+1; 1++4+) {
let s have 1n position 1;
for (jJ=1;
Jj<=(J*L-J-1+2)/(1-3); J++)
compare s with strings 1in
bucket (=, J);

22

: Lookup

@ Suppose J = 0.2.

Given probe string , L=10
and the prefix is

@ For the /th position of the prefix, we
must look at buckets where j <
L-J-/+2)/(1-1]) =(3.8-/)/0.8.

®Fori=1,j<3;fori=2,j<2,and for
i=3,j<1.

23

. Lookup — (2)

@ Thus, for probe we look in
the following buckets: (5, 1), (7, 2), (7, 3),

(,1),(,2),(,1)-
@ Suppose string £ is in (¢, 3). Either:
* We saw ¢, because ~ is in position 1 or 2, or

* The edit distance is at least 3 and the length
of the LCS is at most 9 (thus the Jaccard
distance is at least 4).

24

1.

2.

We Win Two Ways

Triangular nested loops let us look at
only half the possible buckets.

Strings that are much longer than the
probe string but whose prefixes have
a symbol far from the beginning that
also appears in the prefix of the probe
string are not considered at all.

25

Adding Length to the Mix

€ We can index on three attributes:
1. Character at a prefix position.
2. Number of that position.

3. Length of the suffix = number of
positions in the entire string to the right
of the given position.

26

Edit Distance

€ Suppose we are given probe string s,
and we find string £ because its jt
position matches the /% position of s.

€ A lower bound on edit distance E is:
1. 7 +j —2plus
2. The absolute difference of the lengths of

the suffixes of s and ¢ (what follows
positions / and J, respectively).

27

Longest Common Subsequence

€ Suppose we are given probe string s,
and we find string ¢ first because its jt
position matches the /% position of s.

¢ If the suffixes of s and £ have lengths
k and m, respectively, then an upper
bound on the length C of the LCS is
1 + min(k, m).

28

Bound on Jaccard Distance

@ If J is the limit on Jaccard distance, then
E/(E+C) < J becomes:

®/+j-2+ |k—-m| <

J/i+j=2+ |k—m|+ 1+ min(k, m)).
®Thus: j + |[k—m| <

(J(/—1 + min(k, m)) -7+ 2)/(1-1).

29

Positions/Prefixes/Suffixes —
Indexing

® Create a 3-attribute index on (symbol,
position, suffix-length).

@ If string s has symbol & as the /t
position of its prefix, and the length of

the suffix relative to that position is %,
add s to the bucket (-, 7, k).

30

. Indexing

@ Consider string with J = 0.2.
@ Prefix length = 2.
®Indexin: (5 1, 4) and (/, 2, 3).

31

Lookup

® As for the previous case, to find candidate
matches for a probe string s of length L,
with required similarity J, visit the positions
of s's prefix in order.

@ If position / has symbol - and suffix
length 4, look in index bucket (-, j; m) for
all 7 and m suchthatj + |[k—m| <
(J(/—1 + min(k, m))— 7+ 2)/(1-1).

32

: Lookup

@ Consider with J = 0.2.
®Require: j + |[k—m | <

(J(/i-1 + min(k, m)) -7+ 2)/(1-1J).
®For/ =1, note kK =4. We want

J + |4-m] < (0.2min(4, m)+1)/0.8.
®Lookin(+1,3),(,1,4),(,1,5),

(5, 2,4), (5 1, 3).

From /=2, k=3,
j+ |3-m| < 0.2(1+min(4, m))/0.8. 33

|

Position

Pattern of Search

K

Length of suffix —

34

|

Position

Pattern of Search

Kk

Length of suffix —

35

|

Position

Pattern of Search

K

Length of suffix —

36

Physical-Index Issues

® A B-tree on (symbol, position, length)
isn’t perfect.

* For a given symbol and position, you only
want some of the suffix lengths.

+ Similar problem for any order of the
attributes.

@ Several two-dimensional index
structures might work better.

37

