Methods for High Degrees of
Similarity
Index-Based Methods

Exploiting Prefixes and Suffixes
Exploiting Length



Overview

€ LSH-based methods are excellent for
similarity thresholds that are not too
high.
* Possibly up to 80% or 90%.

€ But for similarities above that, there are
other methods that are more efficient.
* And also give exact answers.



Setting: Sets as Strings

¢ We'll again talk about Jaccard
similarity and distance of sets.

€ However, now represent sets by
strings (lists of symbols):
1. Enumerate the universal set.

2. Represent a set by the string of its
elements in sorted order.



. Shingles

@ If the universal set is k-shingles, there is
a natural lexicographic order.

@ Think of each shingle as a single symbol.

# Then the 2-shingling of , Which is
the set {ab, bc, ca, ad}, is represented by
the list ab, ad, bc, ca of length 4.

@ Alternative: hash shingles; order by
bucket number.



: Words

@ If we treat a document as a set of
words, we could order the words
alphabetically.

4 : Order words lowest-frequency-
first.

€ \Why? We shall index documents based
on the early words in their lists.

* Documents spread over more buckets.



Jaccard and Edit Distances

€ Suppose two sets have Jaccard distance J
and are represented by strings s, and s,.
Let the LCS of s; and s, have length C
and the edit distance of s, and s, be E.
Then:

+ 1-J = Jaccard similarity = C/(C+E).

+ ] =E/(C+E). Works because these
strings never repeat
a symbol, and symbols
appear in the same order. ¢



Indexes

€ The general approach is to build some
indexes on the set of strings.

€ Then, visit each string once and use
the index to find possible candidates for
similarity.

@ For thought: how does this approach

compare with bucketizing and looking
within buckets for similarity?



Length-Based Indexes

® The simplest thing to do is create an
index on the length of strings.

@ A string of length L can be Jaccard
distance J from a string of length M
only if Lx(1-J) < M < L/(1-]).

4 : if 1-J = 90% (Jaccard
similarity), then M is between 90% and
111% of L.



Why the Limit on Lengths?

< L >
< M >

1-J = M/L

M = Lx(1-])

A shortest candidate

«—L —

«— M —

1-] = M
M = L/(1-])

A longest candidate



B-Tree Indexes

& The B-tree is a perfect index structure
for a length-based index.

€ Given a string of length L, we can find
strings in the range Lx(1-J) to L/(1-J)
without looking at any candidates outside
that range.

€ But just because strings are similar in
length, doesn’t mean they are similar.
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: B-Trees

€ If you didn't take CS245 vyet, a B-tree is
a generalization of a binary search tree,
where each node has many children,
and each child leads to a segment of
the range of values handled by its
parent.

@ Typically, a node is a disk block.
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: B-Trees — (2)

From parent

/

|/|50|/|80|\|145| 1190| |225] |

/TN =

To values To values To values

<50

>50,<80 >80, <145
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Prefix-Based Indexing

@ If two strings are 90% similar, they
must share some symbol in their
prefixes whose length is just above
10% of the shorter.

€ Thus, we can index symbols in just the
first |JL+1 | positions of a string of

length L.
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Why the Limit on Prefixes?

X

+—__ Extreme case: second string has

none of the first E symbols of the

“‘BE*x

<« first string, but they agree thereafter.

Must bV'

Equal

If two strings do not share any of the
first E symbols, then J > E/L.

Thus, E = JL is possible, but any larger
E is impossible. Index E+1 positions.
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Indexing Prefixes

€ Think of a bucket for each possible
symbol.

@ Each string of length L is placed in the
bucket for of its first |JL+1 |

positions.

@ A B-tree with symbol as key leads to
pointers to the strings.
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Lookup

€ Given a probe string s of length L,
with J the limit on Jaccard distance:

for (each symbol among the

first |JL+1] positions of s)
look for other strings 1in
the bucket for ;
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: Indexing Prefixes

®Llet] =0.2.

@ String is indexed under @ and
D.

@ String is indexed under @ and ¢

@ String is indexed only under b.

@ If we search for strings similar to ,
we need look only in the bucket for ¢
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Using Positions Within Prefixes

@ If position /7 of string s is the first position
to match a prefix position of string ¢ and it
matches position j, then the edit distance
between s and ¢ is at least /+ j— 2.

& The LCS of s and ¢ is no longer than
L-/+1, where L is the length of s.
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Positions/Prefixes — (2)

@ If J is the limit on Jaccard distance,
then remember E/(E+C) < J.

*E=/7+7-2

+C=L-/+1.
®Thus, (/+j-2)/(L+j-1) < ].
®0r, j<(OL-J-/+2)/(1-1).
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Positions/Prefixes — (3)

¢ We only need to find a candidate
once, so we may as well:

1. Visit positions of our given string in
numerical order, and

2. Assume that there have been no matches
for earlier positions.
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Positions/Prefixes — Indexing

® Create a 2-attribute index on (symbol,
position).
@ If string s has symbol & as the /t

position of its prefix, add s to the
bucket (7, 7).

@ A B-tree index with keys ordered first
by symbol, then position is excellent.
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Lookup

@ If we want to find matches for probe
string s of length L, do:

for (1=1; 1<=J*L+1; 1++4+) {
let s have 1n position 1;
for (jJ=1;
Jj<=(J*L-J-1+2)/(1-3); J++)
compare s with strings 1in
bucket (=, J);
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: Lookup

@ Suppose J = 0.2.

# Given probe string , L=10
and the prefix is

@ For the /th position of the prefix, we
must look at buckets where j <
L-J-/+2)/(1-1]) =(3.8-/)/0.8.

®Fori=1,j<3;fori=2,j<2,and for
i=3,j<1.
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. Lookup — (2)

@ Thus, for probe we look in
the following buckets: (5, 1), (7, 2), (7, 3),

(,1),(,2),(,1)-
@ Suppose string £ is in (¢, 3). Either:
* We saw ¢, because ~ is in position 1 or 2, or

* The edit distance is at least 3 and the length
of the LCS is at most 9 (thus the Jaccard
distance is at least 4).
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1.

2.

We Win Two Ways

Triangular nested loops let us look at
only half the possible buckets.

Strings that are much longer than the
probe string but whose prefixes have
a symbol far from the beginning that
also appears in the prefix of the probe
string are not considered at all.
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Adding Length to the Mix

€ We can index on three attributes:
1. Character at a prefix position.
2. Number of that position.

3. Length of the suffix = number of
positions in the entire string to the right
of the given position.
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Edit Distance

€ Suppose we are given probe string s,
and we find string £ because its jt
position matches the /% position of s.

€ A lower bound on edit distance E is:
1. 7 +j —2plus
2. The absolute difference of the lengths of

the suffixes of s and ¢ (what follows
positions / and J, respectively).
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Longest Common Subsequence

€ Suppose we are given probe string s,
and we find string ¢ first because its jt
position matches the /% position of s.

¢ If the suffixes of s and £ have lengths
k and m, respectively, then an upper
bound on the length C of the LCS is
1 + min(k, m).
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Bound on Jaccard Distance

@ If J is the limit on Jaccard distance, then
E/(E+C) < J becomes:

®/+j-2+ |k—-m| <

J/i+j=2+ |k—m|+ 1+ min(k, m)).
®Thus: j + |[k—m| <

(J(/—1 + min(k, m)) -7+ 2)/(1-1).
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Positions/Prefixes/Suffixes —
Indexing

® Create a 3-attribute index on (symbol,
position, suffix-length).

@ If string s has symbol & as the /t
position of its prefix, and the length of

the suffix relative to that position is %,
add s to the bucket (-, 7, k).
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. Indexing

@ Consider string with J = 0.2.
@ Prefix length = 2.
®Indexin: (5 1, 4) and (/, 2, 3).
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Lookup

® As for the previous case, to find candidate
matches for a probe string s of length L,
with required similarity J, visit the positions
of s's prefix in order.

@ If position / has symbol - and suffix
length 4, look in index bucket (-, j; m) for
all 7 and m suchthatj + |[k—m| <
(J(/—1 + min(k, m))— 7+ 2)/(1-1).
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: Lookup

@ Consider with J = 0.2.
®Require: j + |[k—m | <

(J(/i-1 + min(k, m)) -7+ 2)/(1-1J).
®For/ =1, note kK =4. We want

J + |4-m] < (0.2min(4, m)+1)/0.8.
®Lookin(+1,3),(,1,4),(,1,5),

(5, 2,4), (5 1, 3).

From /=2, k=3,
j+ |3-m| < 0.2(1+min(4, m))/0.8. 33
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Physical-Index Issues

® A B-tree on (symbol, position, length)
isn’t perfect.

* For a given symbol and position, you only
want some of the suffix lengths.

+ Similar problem for any order of the
attributes.

@ Several two-dimensional index
structures might work better.
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