
CS345
Data Mining

Crawling the Web

Web Crawling Basics

get next url

get page

extract urls

to visit urls

visited urls

web pages

Web

Start with a “seed set” of to-visit urls

Crawling Issues

� Load on web servers

� Insufficient resources to crawl entire
web

� Which subset of pages to crawl?

� How to keep crawled pages “fresh”?

� Detecting replicated content e.g.,
mirrors

� Can’t crawl the web from one
machine

� Parallelizing the crawl

Polite Crawling

� Minimize load on web servers by
spacing out requests to each server

� E.g., no more than 1 request to the
same server every 10 seconds

� Robot Exclusion Protocol

� Protocol for giving spiders (“robots”)
limited access to a website

� www.robotstxt.org/wc/norobots.html

Crawl Ordering

� Not enough storage or bandwidth to
crawl entire web

� Visit “important” pages first

� Importance metrics

� In-degree

� More important pages will have more
inlinks

� Page Rank

� To be discussed later

� For now, assume it is a metric we can
compute

Crawl Order

� Problem: we don’t know the actual in-
degree or page rank of a page until
we have the entire web!

� Ordering heuristics

� Partial in-degree

� Partial page rank

� Breadth-first search (BFS)

� Random Walk -- baseline

stanford.edu experiment

� 179K pages

Source: Cho et al (1998)

Overlap with

best x% by

indegree

x% crawled by O(u)

Larger study (328M pages)

BFS crawling brings in high quality

pages early in the crawl

Source: Najork and Wiener (2001)

Maintaining freshness

� How often do web pages change?

� What do we mean by freshness?

� What strategy should we use to
refresh pages?

How often do pages change?

� Cho et al (2000) experiment

� 270 sites visited (with permission)
� identified 400 sites with highest “PageRank”

� contacted administrators

� 720,000 pages collected
� 3,000 pages from each site daily

� start at root, visit breadth first (get new &
old pages)

� ran only 9pm - 6am, 10 seconds between
site requests

Average change interval

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 1day 1day-

1week

1week-

1month

1month-

4months

4 months+

Source: Cho et al (2000)

Modeling change

� Assume changes to a web page are a sequence
of random events that happen independently
at a fixed average rate

� Poisson process with parameter λλλλ

� Let X(t) be a random variable denoting the
number of changes in any time interval t

Pr[X(t)=k] = e-λt(λt)k/k! for k = 0,1,…

� “Memory-less” distribution

Poisson processes

� Let us compute the expected number of
changes in unit time

E[X(1)] = ∑kke
λλk/k! = λ

� λλλλ is therefore the average number of changes
in unit time

� Called the rate parameter

Time to next event

� Let T be a random variable denoting
the time to the next event

� Verify that

Pr[T>t] = e-λt (t>0)

� The corresponding density function is

f(t) = λe-λt

� The distribution of change intervals
should follow an exponential
distribution

Change intervals of pages

for pages that

change every

10 days on average

interval in days

fr
ac
ti
o
n
 o
f
ch
an
g
es

w
it
h
 g
iv
en
 i
n
te
rv
al

Poisson model

Source: Cho et al (2000)

Change Metrics (1) - Freshness

� Freshness of element ei at time t is

F(pi;t) = 1 if ei is up-to-date at time t
0 otherwise

pi pi

..
.

..
.

web databaseFreshness of the database S at time t is

F(S ; t) = F(pi ; t)

(Assume “equal importance” of pages)

Σ
N

1 N

i=1

Change Metrics (2) - Age

� Age of element ei at time t is
A(pi ; t) = 0 if ei is up-to-date at time t

t-(modification time pi) otherwise

pi pi

..
.

..
.

web database
Age of the database S at time t is

A(S ; t) = A(pi ; t)

(Assume “equal importance” of pages)

Σ
N

1 N

i=1

Change Metrics (3) - Delay

� Suppose crawler visits page p at times τ0, τ1,…

� Suppose page p is updated at times t1, t2,… tk
between times τ0 and τ1

� The delay associated with update ti is

D(tk) = τ
1
- t

i

� The total delay associated with the changes to
page p is D(p) = ∑i D(ti)

� At time time τ1 the delay drops back to 0

� Total crawler delay is sum of individual page
delays

Comparing the change metrics

F(p)

A(p)

0

0

1

time

time

update refresh

D(p)

Resource optimization problem

� Crawler can fetch M pages in time T

� Suppose there are N pages p1,…,pN

with change rates λ1,…,λN

� How often should the crawler visit
each page to minimize delay?

� Assume uniform interval between
visits to each page

A useful lemma

Lemma.

For page p with update rate λ, if the interval
between refreshes is τ, the expected delay
during this interval is λτ2/2.

Proof.

Number of changes generated at between
times t and t+dt = λ dt

Delay for these changes = τ-t

Total delay =

= λτ2/2

0 τ

t

dt

Optimum resource allocation

Total number of accesses in time T = M

Suppose allocate mi fetches to page pi

Then

Interval between fetches of page pi = T/mi

Delay for page pi between fetches =

Total delay for page p =

Minimize

subject to

Method of Lagrange Multipliers

To maximize or minimize a function f(x1,…xn)
subject to the constraint g(x1,…xn)=0

Introduce a new variable µ and define

h = f - µg

Solve the system of equations:

for i = 1,…,n

g(x1,…xn)=0

n+1 equations in n+1 variables

Optimum refresh policy

Applying the Lagrange multiplier method to our
problem, we have

Optimum refresh policy

� To minimize delay, we must allocate
to each page a number of visits
proportional to the square root of its
average rate of change

� Very different answer to minimze the
freshness and age metrics; see
references.

Estimating the rate parameter λ

� Simple estimator

� Visit page N times in time interval T

� Suppose we see that page has changed
X times

� Estimate λ = X/T

� What is the problem with this
estimator?

A better estimator

� The page may have actually changed
more than once between visits

� We therefore tend to understimate λ

� A better estimator is

� For N=10, X=3, we get:

� λ = 0.3 with the simple estimator

� λ = 0.34 with the improved estimator.

� Details in Cho and Garcia-Molina
(2000)

Detecting duplicate pages

� Duplicates waste crawler resources

� We can quickly test for duplicates by
computing a fingerprint for every
page (e.g., MD5 hash)

� Make fingerprint long enough to make
collisions very unlikely

� Problem: pages may differ only in ads
or other formatting changes

� Also an issue in counting changes for
rate estimation

Detecting approximate duplicates

� Can compare the pages using known
distance metrics e.g., edit distance

� Takes far too long when we have
millions of pages!

� One solution: create a sketch for each
page that is much smaller than the
page

� Assume: we have converted page
into a sequence of tokens

� Eliminate punctuation, HTML markup, etc

Shingling

� Given document D, a w-shingle is a
contiguous subsequence of w tokens

� The w-shingling S(D,w) of D, is the set
of all w-shingles in D

� e.g., D=(a,rose,is,a,rose,is,a,rose)

� S(D,W) = {(a,rose,is,a),(rose,is,a,rose),
(is,a,rose,is)}

� Can also define S(D,w) to be the bag of
all shingles in D

� We’ll use sets in the lecture to keep it
simple

Resemblance

� Let us define the resemblance of docs A
and B as:

� In general, 0 ≤ rw(A,B) ≤ 1

� Note rw(A,A) = 1

� But rw(A,B)=1 does not mean A and B
are identical!

� What is a good value for w?

Sketches

� Set of all shingles is still large

� Let Ω be the set of all shingles

� Let π:Ω→Ω be a random permutation of Ω

� Assume Ω is totally ordered

� For a set of shingles W and parameter s

MINs(W) = set of smallest s elements of W, if |W|≥ s

W, otherwise

� The sketch of document A is

M(A) = MINs(π(S(A,w)))

Estimating resemblance

� Define r’(A,B) as follows:

� Easy to show that r’(A,B) is a good
estimate of the resemblance rw(A,B)

� E[r’(A,B)] = rw(A,B)

Proof

Implementation

� By increasing sample size (s) we can make it
very unlikely r’(A,B) is significantly different
from rw(A,B)

� 100-200 shingles is sufficient in practice

� Size of each shingle is still large

� e.g., each shingle = 7 English words = 40-50 bytes

� 100 shingles = 4K-5K

� Compute a fingerprint f for each shingle (e.g.,
Rabin fingerprint)

� 40 bits is usually enough to keep estimates
reasonably accurate

� Fingerprint also eliminates need for random
permutation

Finding all near-duplicates

� Naïve implementation makes O(N^2)
sketch comparisons

� Suppose N=100 million

� Divide-Compute-Merge (DCM)

� Divide data into batches that fit in
memory

� Operate on individual batch and write
out partial results in sorted order

� Merge partial results

Finding all near-duplicates

1. Calculate a sketch for each document

2. For each document, write out the pairs
<shingle_id, docId>

3. Sort by shingle_id (DCM)

4. In a sequential scan, generate triplets of the
form <docId1,docId2,1> for pairs of docs that
share a shingle (DCM)

5. Sort on <docId1,docId2> (DCM)

6. Merge the triplets with common docids to
generate triplets of the form
<docId1,docId2,count> (DCM)

7. Output document pairs whose resemblance
exceeds the threshold

Some optimizations

� Step 4 is the most expensive

� We can speed it up eliminating very
common shingles

� Common headers, footers, etc.

� Do it as a preprocessing step

� Also, eliminate exact duplicates up
front

Mirrors

� Replication at a higher level

� Entire collections of documents

� Java APIs, perl manuals,…

� Use document comparison as a
building block

