CS345
Data Mining

Crawling the Web

Web Crawling Basics

Start with a “seed set” of to-visit urls

a to visit urls
get next url ¢
-»
DR get page {1 S
] visited urls
extracturls [— / ™.
\/ T
N —
web pages

N—

Crawling Issues

Load on web servers

Insufficient resources to crawl entire
web

B Which subset of pages to crawl?
How to keep crawled pages “fresh”?

Detecting replicated content e.qg.,
mirrors

Can’t crawl the web from one
machine

B Parallelizing the crawl

Polite Crawling

Minimize load on web servers by
spacing out requests to each server

B E.g., no more than 1 request to the
same server every 10 seconds

Robot Exclusion Protocol

B Protocol for giving spiders (“robots”)
limited access to a website

B www.robotstxt.org/wc/norobots.html

Crawl Ordering

Not enough storage or bandwidth to
crawl entire web

Visit “important” pages first
Importance metrics

B In-degree

[1 More important pages will have more
inlinks

B Page Rank
[0 To be discussed later

[J For now, assume it is a metric we can
compute

Crawl Order

Problem: we don’t know the actual in-
degree or page rank of a page until
we have the entire web!

Ordering heuristics
B Partial in-degree
Partial page rank

]
B Breadth-first search (BFS)
B Random Walk -- baseline

stanford.edu experiment

1/9K pages

100%
Overlap with &0%
best x% by Drdering O (U] is;
indegree B0 % —a—pagerank
—w—hacklink
40 % —&—hreadth
tandam
20%
0% | T T |

0% 20 % 40 % 60 % a0 %% 100%

x% crawled by O(u)

Source: Cho et al (1998)

Larger study (328M pages)

BFS crawling brings in high quality
pages early in the crawl

Average PageRank
I =
] |

b
l

0-
0 5 10 15 20 25 30 35 40 45 50 55

Day of crawl

Average PageRank score by day of crawl

Source: Najork and Wiener (2001)

Maintaining freshness

How often do web pages change?
What do we mean by freshness?

What strategy should we use to
refresh pages?

How often do pages change?

Cho et al (2000) experiment

270 sites visited (with permission)
B identified 400 sites with highest "PageRank”
B contacted administrators

/20,000 pages collected

B 3,000 pages from each site daily

B start at root, visit breadth first (get new &
old pages)

B ran only 9pm - 6am, 10 seconds between
site requests

Average change interval

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00 x x 1 ;

lday 1day- 1 week- Imonth- 4 months+
1week I month 4months

Source: Cho et al (2000)

Modeling change

[0 Assume changes to a web page are a sequence
of random events that happen independently
at a fixed average rate

[0 Poisson process with parameter A

[0 Let X(t) be a random variable denoting the
number of changes in any time interval t

PriX(t)=k] = e?*(at)/k! for k = 0,1,..

“"Memory-less” distribution

Poisson processes

[0 Let us compute the expected number of
changes in unit time

E[X(1)] = 2 ke*k/k! = A

[0 A is therefore the average number of changes
in unit time
[0 Called the rate parameter

Time to next event

Let T be a random variable denoting
the time to the next event

Verify that

PriT>t] = e (t>0)

he corresponding density function is
f(t) = reM

[he distribution of change intervals

should follow an exponential
distribution

Change intervals of pages

7 — : for pages that
%‘3 & . change every
SE o 1| 10 days on average
“—~ o C
© o
=
g on
95 0.01
SRR
E B
0.001 ¢)
- Poisson model
0.0001 }
0.00001 .,

o 20 40 &0 80
interval in days

Source: Cho et al (2000)

Change Metrics (1) - Freshness

Freshness of element e, at time t is
F(p;t) ={ 1 if e;is up-to-date at time t

0O otherwise

Freshness of the database S at time ¢ 1s web database

I N Pi— ["Pi

F(S;t)= 7; F(p;st)

(Assume “equal importance™ of pages)

Change Metrics (2) - Age

0 Age of element e, at time t is
A(p;; t)=|0 ife is up-to-date at time ¢
t-(modification time p;) otherwise

Age of the database S at time ¢ 1s web database

pi‘\:_*pi

N
A(S;t)= Z A(p;st)

(Assume “equal importance™ of pages)

Change Metrics (3) - Delay

L
[l

[

Suppose crawler visits page p at times 7y, t4,...

Suppose page p is updated at times t;, t,,... t,
between times 1, and 1,

The delay associated with update t is

D(t,) = T, " 1:i

The total delay associated with the changes to
page p is D(p) = 2; D(t)

At time time 1, the delay drops back to O

Total crawler delay is sum of individual page
delays

Comparing the change metrics

F(p)1

time

time

D(p)

update refresh

Resource optimization problem

Crawler can fetch M pages in time T

Suppose there are N pages pq,...,Py
with change rates A,,..., A,

How often should the crawler visit
each page to minimize delay?

Assume uniform interval between
visits to each page

A useful lemma

Lemma.

For page p with update rate 2, if the interval
between refreshes is t, the expected delay
during this interval is At2/2.

Proof.

Number of changes generated at between
times t and t+dt = A dt

Delay for these changes = t-t
Total delay = Jo A(r —¢t)dt
= \t2/2

Optimum resource allocation

Total number of accesses intime T = M
Suppose allocate m, fetches to page p,

Then Zivzl m; = M

Interval between fetches of page p, = T/m,
Delay for page p, between fetches = A (T/mz)2

Total delay for page p =)\;T?
2mZ
Minimize f = 3% AT

1=1 2?’)’2,,&

subjectto g=M — Y ;-1 m; =0

Method of Lagrange Multipliers

To maximize or minimize a function f(xy,...X,)
subject to the constraint g(x4,...x,)=0

Introduce a new variable u and define
h =f-ug

Solve the system of equations:
oh __ fori=1,...,n
oz, — O

g(Xq,...X,)=0

n+1 equations in n+1 variables

Optimum refresh policy

Applying the Lagrange multiplier method to our
problem, we have

h—TNl(I,umq;)—M
h —)\Z-TQ
aézni — 2m?2 I KT

T2
mi = X = kv,

Optimum refresh policy

[0 minimize delay, we must allocate
to each page a number of visits
proportional to the square root of its
average rate of change

Very different answer to minimze the
freshness and age metrics; see
references.

Estimating the rate parameter A

Simple estimator
M Visit page N times in time interval T

B Suppose we see that page has changed
X times

B Estimate L = X/T

What is the problem with this
estimator?

A better estimator

[he page may have actually changed
more than once between visits

B We therefore tend to understimate A

: : _ N—40.5
A better estimator is A = log(x—=515%)
B For N=10, X=3, we get:
[0 2 = 0.3 with the simple estimator
0 A = 0.34 with the improved estimator.

Details in Cho and Garcia-Molina
(2000)

Detecting duplicate pages

Duplicates waste

crawler resources

We can quickly test for duplicates by

computing a fingerprint for every

page (e.g., MD5
Make fingerprint
collisions very un

nash)
ong enough to make

ikely

Problem: pages may differ only in ads

or other formatting changes

rate estimation

Also an issue in counting changes for

Detecting approximate duplicates

Can compare the pages using known
distance metrics e.g., edit distance

[akes far too long when we have
millions of pages!

One solution: create a sketch for each
page that is much smaller than the
page

Assume: we have converted page
into a sequence of tokens

B Eliminate punctuation, HTML markup, etc

Shingling

Given document D, a w-shingle is a
contiguous subsequence of w tokens
The w-shingling S(D,w) of D, is the set
of all w-shingles in D

e.g., b=(a,rose,is,a,rose,is,a,rose)
S(D,W) = {(a,rose,is,a),(rose,is,a,rose),
(is,a,rose,is) }

Can also define S(D,w) to be the bag of
all shingles in D

B We'll use sets in the lecture to keep it
simple

Resemblance

Let us define the resemblance of docs A
and B as:

rw(A, B)

_ |S(Aw) N S(B,w)]
— [S(A,w) US(B,w)|
In general, 0 <r,(A,B) <1

Note r ,(AA) =1

But r,,(A,B)=1 does not mean A and B
are identical!

What is a good value for w?

Sketches

Set of all shingles is still large

Let O be the set of all shingles

Let n:Q2—>Q be a random permutation of QO
Assume Q is totally ordered

For a set of shingles W and parameter s

MIN.(W) =] set of smallest s elements of W, if |W|>s
W, otherwise

The sketch of document A is

M(A) = MINg(n(S(A,W)))

Estimating resemblance

Define r'(A,B) as follows:
(A, B) = IMINg(M(A)UM(B))NM(ANM(B)|

IMINs (M (A)U M (B))

Easy to show that r'(A,B) is a good
estimate of the resemblance r,,(A,B)

E[r'(A,B)] = ry(A,B)

Proof

MIN (7 (S(A, w)) U 7n(S(B,w)))
MINs(m(S(A,w) U S(B,w)))

MINg(M(A) U M(B))

Let a be the smallest element in
m(S(A,w)U S(B,w)). Then

Pr(a € M(A)NM(B)) = Pr(r 1(a) € S(A,w)N S(B,w))
IS(A,w) NS(B,w)]
[S(A,w) US(B,w)|
= rw(A, B)

We can repeat this argument for each element
of MINg(7(S(A,w) U S(B,w))) to prove the re-
sult.

Implementation

[0 By increasing sample size (s) we can make it
very unlikely r'(A,B) is significantly different
from r,(A,B)

B 100-200 shingles is sufficient in practice

[1 Size of each shingle is still large

e.g., each shingle = 7 English words = 40-50 bytes
100 shingles = 4K-5K

[0 Compute a fingerprint f for each shingle (e.g.,
Rabin fingerprint)

40 bits is usually enough to keep estimates
reasonably accurate

Fingerprint also eliminates need for random
permutation

Finding all near-duplicates

Naive implementation makes O(N~2)

sketch comparisons

B Suppose N=100 million

Divide-Compute-Merge (DCM)

B Divide data into batches that fit in
memory

B Operate on individual batch and write
out partial results in sorted order

B Merge partial results

Finding all near-duplicates

-

W

o U

Calculate a sketch for each document

For each document, write out the pairs
<shingle_id, docld>

Sort by shingle_id (DCM)

In a sequential scan, generate triplets of the

form <docldl,docld2,1> for pairs of docs that
share a shingle (DCM)

Sort on <docldl,docld2> (DCM)

Merge the triplets with common docids to
generate triplets of the form
<docld1,docld2,count> (DCM)

Output document pairs whose resemblance
exceeds the threshold

Some optimizations

Step 4 is the most expensive

We can speed it up eliminating very
common shingles

B Common headers, footers, etc.

B Do it as a preprocessing step

Also, eliminate exact duplicates up
front

Mirrors

Replication at a higher level
B Entire collections of documents
B Java APIs, perl manuals,...

Use document comparison as a
building block

