Mining
of

Massive
Datasets

Jure Leskovec
Stanford Univ.

Anand Rajaraman
Milliway Labs

Jeffrey D. Ullman
Stanford Univ.

Copyright © 2010, 2011, 2012, 2013, 2014 Anand Rajaraman, Jure Leskovec,
and Jeffrey D. Ullman

ii

Preface

This book evolved from material developed over several years by Anand Raja-
raman and Jeff Ullman for a one-quarter course at Stanford. The course
CS345A, titled “Web Mining,” was designed as an advanced graduate course,
although it has become accessible and interesting to advanced undergraduates.
When Jure Leskovec joined the Stanford faculty, we reorganized the material
considerably. He introduced a new course CS224W on network analysis and
added material to CS345A, which was renumbered CS246. The three authors
also introduced a large-scale data-mining project course, CS341. The book now
contains material taught in all three courses.

What the Book Is About

At the highest level of description, this book is about data mining. However,
it focuses on data mining of very large amounts of data, that is, data so large
it does not fit in main memory. Because of the emphasis on size, many of our
examples are about the Web or data derived from the Web. Further, the book
takes an algorithmic point of view: data mining is about applying algorithms
to data, rather than using data to “train” a machine-learning engine of some
sort. The principal topics covered are:

1. Distributed file systems and map-reduce as a tool for creating parallel
algorithms that succeed on very large amounts of data.

2. Similarity search, including the key techniques of minhashing and locality-
sensitive hashing.

3. Data-stream processing and specialized algorithms for dealing with data
that arrives so fast it must be processed immediately or lost.

4. The technology of search engines, including Google’s PageRank, link-spam
detection, and the hubs-and-authorities approach.

5. Frequent-itemset mining, including association rules, market-baskets, the
A-Priori Algorithm and its improvements.

6. Algorithms for clustering very large, high-dimensional datasets.

iii

iv PREFACE
7. Two key problems for Web applications: managing advertising and rec-
ommendation systems.

8. Algorithms for analyzing and mining the structure of very large graphs,
especially social-network graphs.

9. Techniques for obtaining the important properties of a large dataset by
dimensionality reduction, including singular-value decomposition and la-
tent semantic indexing.

10. Machine-learning algorithms that can be applied to very large data, such
as perceptrons, support-vector machines, and gradient descent.

Prerequisites

To appreciate fully the material in this book, we recommend the following
prerequisites:

1. An introduction to database systems, covering SQL and related program-
ming systems.

2. A sophomore-level course in data structures, algorithms, and discrete
math.

3. A sophomore-level course in software systems, software engineering, and
programming languages.

Exercises

The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Support on the Web

Go tohttp://www.mmds. org for slides, homework assignments, project require-
ments, and exams from courses related to this book.

Gradiance Automated Homework

There are automated exercises based on this book, using the Gradiance root-
question technology, available at www.gradiance.com/services. Students may
enter a public class by creating an account at that site and entering the class
with code 1EDD8A1D. Instructors may use the site by making an account there

PREFACE A\

and then emailing support at gradiance dot com with their login name, the
name of their school, and a request to use the MMDS materials.

Acknowledgements

Cover art is by Scott Ullman.

We would like to thank Foto Afrati, Arun Marathe, and Rok Sosic for critical
readings of a draft of this manuscript.

Errors were also reported by Rajiv Abraham, Ruslan Aduk, Apoorv Agar-
wal, Aris Anagnostopoulos, Yokila Arora, Stefanie Anna Baby, Atilla Soner
Balkir, Arnaud Belletoile, Robin Bennett, Susan Biancani, Richard Boyd, Amitabh
Chaudhary, Leland Chen, Hua Feng, Marcus Gemeinder, Anastasios Gounar-
is, Clark Grubb, Shrey Gupta, Waleed Hameid, Saman Haratizadeh, Julien
Hoachuck, Przemyslaw Horban, Hsiu-Hsuan Huang, Jeff Hwang, Rafi Kamal,
Lachlan Kang, Ed Knorr, Haewoon Kwak, Ellis Lau, Greg Lee, David Z. Liu,
Ethan Lozano, Yunan Luo, Michael Mahoney, Sergio Matos, Justin Meyer,
Bryant Moscon, Brad Penoff, John Phillips, Philips Kokoh Prasetyo, Qi Ge,
Harizo Rajaona, Timon Ruban, Rich Seiter, Hitesh Shetty, Angad Singh, Sandeep
Sripada, Dennis Sidharta, Krzysztof Stencel, Mark Storus, Roshan Sumbaly,
Zack Taylor, Tim Triche Jr., Wang Bin, Weng Zhen-Bin, Robert West, Steven
Euijong Whang, Oscar Wu, Xie Ke, Christopher T.-R. Yeh, Nicolas Zhao, and
Zhou Jingbo, The remaining errors are ours, of course.

March, 2014

vi

PREFACE

Contents

1 Data Mining 1
1.1 What is Data Mining? 1
1.1.1 Statistical Modeling 1
1.1.2 Machine Learning 2
1.1.3 Computational Approaches to Modeling 2
1.1.4 Summarization 3

1.1.5 Feature Extraction 4

1.2 Statistical Limits on Data Mining 4
1.2.1 Total Information Awareness 5

1.2.2 Bonferroni’s Principle 5
1.2.3 An Example of Bonferroni’s Principle 6
1.2.4 Exercises for Section 1.2 7

1.3 Things Useful to Know 7
1.3.1 Importance of Words in Documents 8
1.3.2 Hash Functions 9
1.3.3 Indexes 10
1.3.4 Secondary Storage 11
1.3.5 The Base of Natural Logarithms 12
1.3.6 PowerLaws 13
1.3.7 Exercises for Section 1.3 15

1.4 Outline of the Book 15
1.5 Summary of Chapter 1 17
1.6 References for Chapter 1 18
2 MapReduce and the New Software Stack 21
2.1 Distributed File Systems 22
2.1.1 Physical Organization of Compute Nodes 22
2.1.2 Large-Scale File-System Organization 23

2.2 MapReduce e 24
221 TheMap Tasks 25
2.2.2 Groupingby Key 26
2.2.3 The Reduce Tasks 27
2.2.4 Combiners. 27

vii

viii

CONTENTS

2.2.5 Details of MapReduce Execution 28
2.2.6 Coping With Node Failures 29
2.2.7 Exercises for Section 2.2 30

2.3 Algorithms Using MapReduce 30
2.3.1 Matrix-Vector Multiplication by MapReduce 31
2.3.2 If the Vector v Cannot Fit in Main Memory 31
2.3.3 Relational-Algebra Operations 32
2.3.4 Computing Selections by MapReduce 35
2.3.5 Computing Projections by MapReduce 36
2.3.6 Union, Intersection, and Difference by MapReduce 36
2.3.7 Computing Natural Join by MapReduce 37
2.3.8 Grouping and Aggregation by MapReduce 37
2.3.9 Matrix Multiplication 38
2.3.10 Matrix Multiplication with One MapReduce Step 39
2.3.11 Exercises for Section 2.3 oL 40

2.4 Extensions to MapReduce 41
2.4.1 Workflow Systemso 41
2.4.2 Recursive Extensions to MapReduce 42
24.3 Pregel 45
2.4.4 Exercises for Section 2.4 46

2.5 The Communication Cost Model 46
2.5.1 Communication-Cost for Task Networks 47
2.5.2 Wall-Clock Time 49
2.5.3 Multiway Joinso 49
2.5.4 Exercises for Section 2.5 oL 52

2.6 Complexity Theory for MapReduce 54
2.6.1 Reducer Size and Replication Rate 54
2.6.2 An Example: Similarity Joins L. 55
2.6.3 A Graph Model for MapReduce Problems 57
2.6.4 Mapping Schemas 58
2.6.5 When Not All Inputs Are Present 60
2.6.6 Lower Bounds on Replication Rate 61
2.6.7 Case Study: Matrix Multiplication 62
2.6.8 Exercises for Section 2.6 66

2.7 Summary of Chapter 2 67
2.8 References for Chapter 2 69
Finding Similar Items 73
3.1 Applications of Near-Neighbor Search 73
3.1.1 Jaccard Similarity of Sets 74
3.1.2 Similarity of Documents 74
3.1.3 Collaborative Filtering as a Similar-Sets Problem 75
3.1.4 Exercises for Section 3.1 77

3.2 Shingling of Documents 7

3.2.1 k-Shingles L T

CONTENTS ix

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.2.2 Choosing the Shingle Size 78
3.2.3 Hashing Shingles L. 79
3.2.4 Shingles Built from Words 79
3.2.5 Exercises for Section 3.2 80
Similarity-Preserving Summaries of Sets 80
3.3.1 Matrix Representation of Sets 81
3.3.2 Minhashing oo oo 81
3.3.3 Minhashing and Jaccard Similarity 82
3.3.4 Minhash Signatures 83
3.3.5 Computing Minhash Signatures 83
3.3.6 Exercises for Section 3.3 86
Locality-Sensitive Hashing for Documents 87
3.4.1 LSH for Minhash Signatures 88
3.4.2 Analysis of the Banding Technique 89
3.4.3 Combining the Techniques 91
3.4.4 Exercises for Section 3.4 91
Distance Measures oL 92
3.5.1 Definition of a Distance Measure 92
3.5.2 Euclidean Distances 93
3.5.3 Jaccard Distance oL 94
3.5.4 Cosine Distance. 95
3.5.5 Edit Distance oL 95
3.5.6 Hamming Distance 96
3.5.7 Exercises for Section 3.5 97
The Theory of Locality-Sensitive Functions 99
3.6.1 Locality-Sensitive Functions 99
3.6.2 Locality-Sensitive Families for Jaccard Distance 100
3.6.3 Amplifying a Locality-Sensitive Family 101
3.6.4 Exercises for Section 3.6 L. 103
LSH Families for Other Distance Measures. 104
3.7.1 LSH Families for Hamming Distance 104
3.7.2 Random Hyperplanes and the Cosine Distance 105
3.73 Sketcheso 106
3.7.4 LSH Families for FEuclidean Distance 107
3.7.5 More LSH Families for Euclidean Spaces 108
3.7.6 Exercises for Section 3.7 109
Applications of Locality-Sensitive Hashing 110
3.8.1 Entity Resolution 110
3.8.2 An Entity-Resolution Example 111
3.8.3 Validating Record Matches 112
3.8.4 Matching Fingerprints 113
3.8.5 A LSH Family for Fingerprint Matching 114
3.8.6 Similar News Articles 115
3.8.7 Exercises for Section 3.8 L. 117

Methods for High Degrees of Similarity 118

CONTENTS

3.9.1 Finding Identical Items 118
3.9.2 Representing Sets as Strings 118
3.9.3 Length-Based Filtering 119
394 PrefixIndexingo L. 119
3.9.5 Using Position Information 121
3.9.6 Using Position and Length in Indexes 122
3.9.7 Exercises for Section 3.9 oL 125
3.10 Summary of Chapter 3 L. 126
3.11 References for Chapter 3 128
Mining Data Streams 131
4.1 The Stream Data Model 131
4.1.1 A Data-Stream-Management System 132
4.1.2 Examples of Stream Sources. 133
4.1.3 Stream Querieso 134
4.1.4 TIssues in Stream Processing 135
4.2 Sampling Data in a Stream 136
4.2.1 A Motivating Example 00 136
4.2.2 Obtaining a Representative Sample 137
4.2.3 The General Sampling Problem 137
4.2.4 Varying the Sample Size 138
4.2.5 Exercises for Section 4.2 oL 138
4.3 Filtering Streams oL 139
4.3.1 A Motivating Example 0oL 139
4.3.2 The Bloom Filter, 140
4.3.3 Analysis of Bloom Filtering 140
4.3.4 Exercises for Section 4.3 L. 141
4.4 Counting Distinct Elements in a Stream 142
4.4.1 The Count-Distinct Problem 142
4.4.2 The Flajolet-Martin Algorithm 143
4.4.3 Combining Estimates 144
4.4.4 Space Requirements 144
4.4.5 Exercises for Section 4.4 L. 145
4.5 Estimating Moments L oo 145
4.5.1 Definition of Moments L. 145
4.5.2 The Alon-Matias-Szegedy Algorithm for Second
Moments o 146
4.5.3 Why the Alon-Matias-Szegedy Algorithm Works 147
4.5.4 Higher-Order Moments 148
4.5.5 Dealing With Infinite Streams 148
4.5.6 Exercises for Section 4.5 oL 149
4.6 Counting Ones ina Window 150
4.6.1 The Cost of Exact Counts 151
4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm 151

4.6.3 Storage Requirements for the DGIM Algorithm 153

CONTENTS

4.7

4.8
4.9

5.1

5.2

5.3

5.4

9.5

4.6.4 Query Answering in the DGIM Algorithm
4.6.5 Maintaining the DGIM Conditions
4.6.6 Reducing the Error.
4.6.7 Extensions to the Counting of Ones
4.6.8 Exercises for Section 4.6
Decaying Windows oo
4.7.1 The Problem of Most-Common Elements
4.7.2 Definition of the Decaying Window
4.7.3 Finding the Most Popular Elements
Summary of Chapter 4 L.
References for Chapter 4

Link Analysis

PageRank oo
5.1.1 Early Search Engines and Term Spam
5.1.2 Definition of PageRank
5.1.3 Structure of the Web
514 Avoiding Dead Ends
5.1.5 Spider Traps and Taxation
5.1.6 Using PageRank in a Search Engine
5.1.7 Exercises for Section 5.1
Efficient Computation of PageRank
5.2.1 Representing Transition Matrices
5.2.2 PageRank Iteration Using MapReduce
5.2.3 Use of Combiners to Consolidate the Result Vector
5.2.4 Representing Blocks of the Transition Matrix
5.2.5 Other Efficient Approaches to PageRank Iteration

5.2.6 Exercises for Section 5.200
Topic-Sensitive PageRank
5.3.1 Motivation for Topic-Sensitive Page Rank
5.3.2 Biased Random Walks
5.3.3 Using Topic-Sensitive PageRank
5.3.4 Inferring Topics from Words
5.3.5 Exercises for Section 5.3 oo
Link Spam L
5.4.1 Architecture of a Spam Farm
5.4.2 Analysis of a Spam Farm
5.4.3 Combating Link Spam
54.4 TrustRank oo o
54.5 Spam Mass oo
5.4.6 Exercises for Section 5.4 oL
Hubs and Authorities
5.5.1 The Intuition Behind HITS
5.5.2 Formalizing Hubbiness and Authority
5.5.3 Exercises for Section 5.5

Xi

153
154
155
156
157
157
157
158
159
160
161

xii

CONTENTS
5.6 Summary of Chapter 5. 196
5.7 References for Chapter 5. 200
Frequent Itemsets 201
6.1 The Market-Basket Model 202
6.1.1 Definition of Frequent Itemsets 202
6.1.2 Applications of Frequent Itemsets 204
6.1.3 Association Rules. 205
6.1.4 Finding Association Rules with High Confidence 207
6.1.5 Exercises for Section 6.1 207
6.2 Market Baskets and the A-Priori Algorithm 209
6.2.1 Representation of Market-Basket Data 209
6.2.2 Use of Main Memory for Itemset Counting 210
6.2.3 Monotonicity of Itemsets 212
6.2.4 Tyranny of Counting Pairs 213
6.2.5 The A-Priori Algorithm 213
6.2.6 A-Priori for All Frequent Itemsets 214
6.2.7 Exercises for Section 6.2 217
6.3 Handling Larger Datasets in Main Memory 218
6.3.1 The Algorithm of Park, Chen, and Yu 218
6.3.2 The Multistage Algorithm 220
6.3.3 The Multihash Algorithm 222
6.3.4 Exercises for Section 6.3 oL, 224
6.4 Limited-Pass Algorithms 226
6.4.1 The Simple, Randomized Algorithm 226
6.4.2 Avoiding Errors in Sampling Algorithms 227
6.4.3 The Algorithm of Savasere, Omiecinski, and
Navathe 228
6.4.4 The SON Algorithm and MapReduce 229
6.4.5 Toivonen’s Algorithm 230
6.4.6 Why Toivonen’s Algorithm Works 231
6.4.7 Exercises for Section 6.4 232
6.5 Counting Frequent Items in a Stream 232
6.5.1 Sampling Methods for Streams 233
6.5.2 Frequent Itemsets in Decaying Windows 234
6.5.3 Hybrid Methods, 235
6.5.4 Exercises for Section 6.5 235
6.6 Summary of Chapter 6 236
6.7 References for Chapter 6 238
Clustering 241
7.1 Introduction to Clustering Techniques 241
7.1.1 Points, Spaces, and Distances 241
7.1.2 Clustering Strategies 243

7.1.3 The Curse of Dimensionality 244

CONTENTS xiii

7.1.4 Exercises for Section 7.1 L0 245
7.2 Hierarchical Clustering 245
7.2.1 Hierarchical Clustering in a Euclidean Space 246
7.2.2 Efficiency of Hierarchical Clustering 248
7.2.3 Alternative Rules for Controlling Hierarchical
Clustering 249
7.2.4 Hierarchical Clustering in Non-Euclidean Spaces 252
7.2.5 Exercises for Section 7.2 253
7.3 K-means Algorithms 0. 254
73.1 K-MeansBasics. 255
7.3.2 Initializing Clusters for K-Means 255
7.3.3 Picking the Right Valueofk 256
7.3.4 The Algorithm of Bradley, Fayyad, and Reina 257
7.3.5 Processing Data in the BFR Algorithm 259
7.3.6 Exercises for Section 7.3 oL 262
7.4 The CURE Algorithm 262
7.4.1 [Initializationin CURE 263
7.4.2 Completion of the CURE Algorithm 264
7.4.3 Exercises for Section 7.4 0oL 265
7.5 Clustering in Non-Euclidean Spaces 266
7.5.1 Representing Clusters in the GRGPF Algorithm 266
7.5.2 Initializing the Cluster Tree 267
7.5.3 Adding Points in the GRGPF Algorithm 268
7.5.4 Splitting and Merging Clusters 269
7.5.5 Exercises for Section 7.5 oo 270
7.6 Clustering for Streams and Parallelism 270
7.6.1 The Stream-Computing Model 271
7.6.2 A Stream-Clustering Algorithm 271
7.6.3 Initializing Buckets oL 272
7.6.4 Merging Buckets 0oL 272
7.6.5 Answering Queries 275
7.6.6 Clustering in a Parallel Environment 275
7.6.7 Exercises for Section 7.6o 276
7.7 Summary of Chapter 7 276
7.8 References for Chapter 7. L. 280
8 Advertising on the Web 281
8.1 Issues in On-Line Advertising 281
8.1.1 Advertising Opportunities 281
8.1.2 Direct Placement of Ads 282
8.1.3 Issues for Display Ads 283
8.2 On-Line Algorithms 284
8.2.1 On-Line and Off-Line Algorithms 284
8.2.2 Greedy Algorithms 285

8.2.3 The Competitive Ratio 286

Xiv

CONTENTS

8.2.4 Exercises for Section 8.2 286

8.3 The Matching Problem 287
8.3.1 Matches and Perfect Matches 287
8.3.2 The Greedy Algorithm for Maximal Matching 288
8.3.3 Competitive Ratio for Greedy Matching 289
8.3.4 Exercises for Section 8.3 290

8.4 The Adwords Problem 290
8.4.1 History of Search Advertising 291
8.4.2 Definition of the Adwords Problem 291
8.4.3 The Greedy Approach to the Adwords Problem 292
8.4.4 The Balance Algorithm 293
8.4.5 A Lower Bound on Competitive Ratio for Balance 294
8.4.6 The Balance Algorithm with Many Bidders 296
8.4.7 The Generalized Balance Algorithm 297
8.4.8 Final Observations About the Adwords Problem 298
8.4.9 Exercises for Section 8.4 299

8.5 Adwords Implementation 299
8.5.1 Matching Bids and Search Queries 300
8.5.2 More Complex Matching Problems 300
8.5.3 A Matching Algorithm for Documents and Bids 301

8.6 Summary of Chapter 8 L. 303
8.7 References for Chapter 8 305
Recommendation Systems 307
9.1 A Model for Recommendation Systems 307
9.1.1 The Utility Matrix 308
9.1.2 The Long Tail 309
9.1.3 Applications of Recommendation Systems 309
9.1.4 Populating the Utility Matrix 311

9.2 Content-Based Recommendations 312
9.2.1 Ttem Profiles 312
9.2.2 Discovering Features of Documents 313
9.2.3 Obtaining Item Features From Tags 314
9.2.4 Representing Item Profiles. 315
9.25 User Profiles 316
9.2.6 Recommending Items to Users Based on Content 317
9.2.7 Classification Algorithms 318
9.2.8 Exercises for Section 9.2 L. 320

9.3 Collaborative Filtering 321
9.3.1 Measuring Similarity 322
9.3.2 The Duality of Similarity 324
9.3.3 Clustering Users and Items 325
9.3.4 Exercises for Section 9.3 327

9.4 Dimensionality Reduction 328

9.4.1 UV-Decomposition 328

CONTENTS

9.5
9.6
9.7

9.4.2 Root-Mean-Square Error
9.4.3 Incremental Computation of a UV-Decomposition .
9.4.4 Optimizing an Arbitrary Element
9.4.5 Building a Complete UV-Decomposition Algorithm . . .
9.4.6 Exercises for Section 9.4
The Netflix Challenge
Summary of Chapter 9 L.
References for Chapter 9

10 Mining Social-Network Graphs

10.1

10.2

10.3

10.4

10.5

10.6

Social Networks as Graphs.
10.1.1 What is a Social Network?
10.1.2 Social Networks as Graphs
10.1.3 Varieties of Social Networks
10.1.4 Graphs With Several Node Types
10.1.5 Exercises for Section 10.1
Clustering of Social-Network Graphs
10.2.1 Distance Measures for Social-Network Graphs
10.2.2 Applying Standard Clustering Methods
10.2.3 Betweenness.o
10.2.4 The Girvan-Newman Algorithm
10.2.5 Using Betweenness to Find Communities
10.2.6 Exercises for Section 10.2
Direct Discovery of Communities
10.3.1 Finding Cliques« . oo
10.3.2 Complete Bipartite Graphs
10.3.3 Finding Complete Bipartite Subgraphs
10.3.4 Why Complete Bipartite Graphs Must Exist
10.3.5 Exercises for Section 10.3

10.4.1 What Makes a Good Partition?
10.4.2 Normalized Cuts
10.4.3 Some Matrices That Describe Graphs
10.4.4 Eigenvalues of the Laplacian Matrix
10.4.5 Alternative Partitioning Methods
10.4.6 Exercises for Section 10.4
Finding Overlapping Communities
10.5.1 The Nature of Communities
10.5.2 Maximum-Likelihood Estimation
10.5.3 The Affiliation-Graph Model
10.5.4 Avoiding the Use of Discrete Membership Changes
10.5.5 Exercises for Section 10.5
Simrank
10.6.1 Random Walkers on a Social Graph
10.6.2 Random Walks with Restart

XV

329

. 330

332

. 334

336
337
338
340

xvi CONTENTS
10.6.3 Exercises for Section 10.6 380

10.7 Counting Triangles L oL 380
10.7.1 Why Count Triangles? 380
10.7.2 An Algorithm for Finding Triangles 381
10.7.3 Optimality of the Triangle-Finding Algorithm 382
10.7.4 Finding Triangles Using MapReduce 383
10.7.5 Using Fewer Reduce Tasks. 384
10.7.6 Exercises for Section 10.7 385

10.8 Neighborhood Properties of Graphs. 386
10.8.1 Directed Graphs and Neighborhoods 386
10.8.2 The Diameter of a Graph 388
10.8.3 Tramnsitive Closure and Reachability 389
10.8.4 Transitive Closure Via MapReduce 390
10.8.5 Smart Transitive Closure 392
10.8.6 Tramnsitive Closure by Graph Reduction 393
10.8.7 Approximating the Sizes of Neighborhoods 395
10.8.8 Exercises for Section 10.8 397

10.9 Summary of Chapter 10 398
10.10References for Chapter 10 402
11 Dimensionality Reduction 405
11.1 Eigenvalues and Eigenvectors of Symmetric Matrices 406
11.1.1 Definitions o oL 406
11.1.2 Computing Eigenvalues and Eigenvectors 407
11.1.3 Finding Eigenpairs by Power Iteration 408
11.1.4 The Matrix of Eigenvectors 411
11.1.5 Exercises for Section 11.1 411

11.2 Principal-Component Analysis 412
11.2.1 An Hlustrative Example 413
11.2.2 Using Eigenvectors for Dimensionality Reduction 416
11.2.3 The Matrix of Distances 417
11.2.4 Exercises for Section 11.2 418

11.3 Singular-Value Decomposition 418
11.3.1 Definition of SVD oo 418
11.3.2 Imterpretation of SVD L. 420
11.3.3 Dimensionality Reduction Using SVD 422
11.3.4 Why Zeroing Low Singular Values Works 423
11.3.5 Querying Using Concepts 425
11.3.6 Computing the SVD of a Matrix 426
11.3.7 Exercises for Section 11.3 427

11.4 CUR Decomposition 428
11.4.1 Definition of CUR 429
11.4.2 Choosing Rows and Columns Properly 430
11.4.3 Constructing the Middle Matrix 431

11.4.4 The Complete CUR Decomposition 432

CONTENTS

11.4.5
11.4.6

Eliminating Duplicate Rows and Columns
Exercises for Section 11.4

11.5 Summary of Chapter 11
11.6 References for Chapter 11

12 Large-Scale Machine Learning
12.1 The Machine-Learning Model

12.2

12.3

12.4

12.5
12.6
12.7

12.1.1
12.1.2
12.1.3
12.14
12.1.5

Training Sets oL
Some Mlustrative Examples
Approaches to Machine Learning
Machine-Learning Architecture
Exercises for Section 12.1

Perceptrons oo

12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9

Training a Perceptron with Zero Threshold
Convergence of Perceptrons
The Winnow Algorithm
Allowing the Threshold to Vary
Multiclass Perceptrons
Transforming the Training Set
Problems With Perceptrons
Parallel Implementation of Perceptrons
Exercises for Section 12.2

Support-Vector Machines

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7

The Mechanicsof an SVM
Normalizing the Hyperplane
Finding Optimal Approximate Separators
SVM Solutions by Gradient Descent
Stochastic Gradient Descent
Parallel Implementation of SVM
Exercises for Section 12.3

Learning from Nearest Neighbors

12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.4.6
12.4.7

The Framework for Nearest-Neighbor Calculations
Learning with One Nearest Neighbor
Learning One-Dimensional Functions
Kernel Regression
Dealing with High-Dimensional Euclidean Data
Dealing with Non-Euclidean Distances
Exercises for Section 12.4 L.

Comparison of Learning Methods
Summary of Chapter 12
References for Chapter 12

xvii

433
434
434
436

xviii CONTENTS

Chapter 1

Data Mining

In this intoductory chapter we begin with the essence of data mining and a dis-
cussion of how data mining is treated by the various disciplines that contribute
to this field. We cover “Bonferroni’s Principle,” which is really a warning about
overusing the ability to mine data. This chapter is also the place where we
summarize a few useful ideas that are not data mining but are useful in un-
derstanding some important data-mining concepts. These include the TF.IDF
measure of word importance, behavior of hash functions and indexes, and iden-
tities involving e, the base of natural logarithms. Finally, we give an outline of
the topics covered in the balance of the book.

1.1 What is Data Mining?

The most commonly accepted definition of “data mining” is the discovery of
“models” for data. A “model,” however, can be one of several things. We
mention below the most important directions in modeling.

1.1.1 Statistical Modeling

Statisticians were the first to use the term “data mining.” Originally, “data
mining” or “data dredging” was a derogatory term referring to attempts to
extract information that was not supported by the data. Section 1.2 illustrates
the sort of errors one can make by trying to extract what really isn’t in the data.
Today, “data mining” has taken on a positive meaning. Now, statisticians view
data mining as the construction of a statistical model, that is, an underlying
distribution from which the visible data is drawn.

Example 1.1: Suppose our data is a set of numbers. This data is much
simpler than data that would be data-mined, but it will serve as an example. A
statistician might decide that the data comes from a Gaussian distribution and
use a formula to compute the most likely parameters of this Gaussian. The mean

2 CHAPTER 1. DATA MINING

and standard deviation of this Gaussian distribution completely characterize the
distribution and would become the model of the data. O

1.1.2 Machine Learning

There are some who regard data mining as synonymous with machine learning.
There is no question that some data mining appropriately uses algorithms from
machine learning. Machine-learning practitioners use the data as a training set,
to train an algorithm of one of the many types used by machine-learning prac-
titioners, such as Bayes nets, support-vector machines, decision trees, hidden
Markov models, and many others.

There are situations where using data in this way makes sense. The typical
case where machine learning is a good approach is when we have little idea of
what we are looking for in the data. For example, it is rather unclear what
it is about movies that makes certain movie-goers like or dislike it. Thus,
in answering the “Netflix challenge” to devise an algorithm that predicts the
ratings of movies by users, based on a sample of their responses, machine-
learning algorithms have proved quite successful. We shall discuss a simple
form of this type of algorithm in Section 9.4.

On the other hand, machine learning has not proved successful in situations
where we can describe the goals of the mining more directly. An interesting
case in point is the attempt by WhizBang! Labs! to use machine learning to
locate people’s resumes on the Web. It was not able to do better than algorithms
designed by hand to look for some of the obvious words and phrases that appear
in the typical resume. Since everyone who has looked at or written a resume has
a pretty good idea of what resumes contain, there was no mystery about what
makes a Web page a resume. Thus, there was no advantage to machine-learning
over the direct design of an algorithm to discover resumes.

1.1.3 Computational Approaches to Modeling

More recently, computer scientists have looked at data mining as an algorithmic
problem. In this case, the model of the data is simply the answer to a complex
query about it. For instance, given the set of numbers of Example 1.1, we might
compute their average and standard deviation. Note that these values might
not be the parameters of the Gaussian that best fits the data, although they
will almost certainly be very close if the size of the data is large.

There are many different approaches to modeling data. We have already
mentioned the possibility of constructing a statistical process whereby the data
could have been generated. Most other approaches to modeling can be described
as either

1. Summarizing the data succinctly and approximately, or

I This startup attempted to use machine learning to mine large-scale data, and hired many
of the top machine-learning people to do so. Unfortunately, it was not able to survive.

1.1. WHAT IS DATA MINING? 3

2. Extracting the most prominent features of the data and ignoring the rest.

We shall explore these two approaches in the following sections.

1.1.4 Summarization

One of the most interesting forms of summarization is the PageRank idea, which
made Google successful and which we shall cover in Chapter 5. In this form
of Web mining, the entire complex structure of the Web is summarized by a
single number for each page. This number, the “PageRank” of the page, is
(oversimplifying somewhat) the probability that a random walker on the graph
would be at that page at any given time. The remarkable property this ranking
has is that it reflects very well the “importance” of the page — the degree to
which typical searchers would like that page returned as an answer to their
search query.

Another important form of summary — clustering — will be covered in Chap-
ter 7. Here, data is viewed as points in a multidimensional space. Points
that are “close” in this space are assigned to the same cluster. The clusters
themselves are summarized, perhaps by giving the centroid of the cluster and
the average distance from the centroid of points in the cluster. These cluster
summaries become the summary of the entire data set.

Example 1.2: A famous instance of clustering to solve a problem took place
long ago in London, and it was done entirely without computers.? The physician
John Snow, dealing with a Cholera outbreak plotted the cases on a map of the
city. A small illustration suggesting the process is shown in Fig. 1.1.

Oo
0
@ &
o S ©
00" 00 0508 oo o
O O O O @© oo ©
o)
© 80) \ O
0 o5 O

ol |4 @) @)

S| |o AN, o 0
OO 0Cp O 0 Op OO0 00
oOO 00O Oo% 00 O

o B\ Yo

@)) oC

o O o) O

O O

Figure 1.1: Plotting cholera cases on a map of London

2See http://en.wikipedia.org/wiki/1854_Broad.Street_cholera outbreak.

4 CHAPTER 1. DATA MINING

The cases clustered around some of the intersections of roads. These inter-
sections were the locations of wells that had become contaminated; people who
lived nearest these wells got sick, while people who lived nearer to wells that
had not been contaminated did not get sick. Without the ability to cluster the
data, the cause of Cholera would not have been discovered. 0O

1.1.5 Feature Extraction

The typical feature-based model looks for the most extreme examples of a phe-
nomenon and represents the data by these examples. If you are familiar with
Bayes nets, a branch of machine learning and a topic we do not cover in this
book, you know how a complex relationship between objects is represented by
finding the strongest statistical dependencies among these objects and using
only those in representing all statistical connections. Some of the important
kinds of feature extraction from large-scale data that we shall study are:

1. Frequent Itemsets. This model makes sense for data that consists of “bas-
kets” of small sets of items, as in the market-basket problem that we shall
discuss in Chapter 6. We look for small sets of items that appear together
in many baskets, and these “frequent itemsets” are the characterization of
the data that we seek. The original application of this sort of mining was
true market baskets: the sets of items, such as hamburger and ketchup,
that people tend to buy together when checking out at the cash register
of a store or super market.

2. Similar Items. Often, your data looks like a collection of sets, and the
objective is to find pairs of sets that have a relatively large fraction of
their elements in common. An example is treating customers at an on-
line store like Amazon as the set of items they have bought. In order
for Amazon to recommend something else they might like, Amazon can
look for “similar” customers and recommend something many of these
customers have bought. This process is called “collaborative filtering.”
If customers were single-minded, that is, they bought only one kind of
thing, then clustering customers might work. However, since customers
tend to have interests in many different things, it is more useful to find,
for each customer, a small number of other customers who are similar
in their tastes, and represent the data by these connections. We discuss
similarity in Chapter 3.

1.2 Statistical Limits on Data Mining

A common sort of data-mining problem involves discovering unusual events
hidden within massive amounts of data. This section is a discussion of the
problem, including “Bonferroni’s Principle,” a warning against overzealous use
of data mining.

1.2. STATISTICAL LIMITS ON DATA MINING 5

1.2.1 Total Information Awareness

Following the terrorist attack of Sept. 11, 2001, it was noticed that there were
four people enrolled in different flight schools, learning how to pilot commercial
aircraft, although they were not affiliated with any airline. It was conjectured
that the information needed to predict and foil the attack was available in
data, but that there was then no way to examine the data and detect suspi-
cious events. The response was a program called TIA, or Total Information
Awareness, which was intended to mine all the data it could find, including
credit-card receipts, hotel records, travel data, and many other kinds of infor-
mation in order to track terrorist activity. TIA naturally caused great concern
among privacy advocates, and the project was eventually killed by Congress.
It is not the purpose of this book to discuss the difficult issue of the privacy-
security tradeoff. However, the prospect of TIA or a system like it does raise
many technical questions about its feasibility.

The concern raised by many is that if you look at so much data, and you try
to find within it activities that look like terrorist behavior, are you not going to
find many innocent activities — or even illicit activities that are not terrorism —
that will result in visits from the police and maybe worse than just a visit? The
answer is that it all depends on how narrowly you define the activities that you
look for. Statisticians have seen this problem in many guises and have a theory,
which we introduce in the next section.

1.2.2 Bonferroni’s Principle

Suppose you have a certain amount of data, and you look for events of a cer-
tain type within that data. You can expect events of this type to occur, even if
the data is completely random, and the number of occurrences of these events
will grow as the size of the data grows. These occurrences are “bogus,” in the
sense that they have no cause other than that random data will always have
some number of unusual features that look significant but aren’t. A theorem
of statistics, known as the Bonferroni correction gives a statistically sound way
to avoid most of these bogus positive responses to a search through the data.
Without going into the statistical details, we offer an informal version, Bon-
ferroni’s principle, that helps us avoid treating random occurrences as if they
were real. Calculate the expected number of occurrences of the events you are
looking for, on the assumption that data is random. If this number is signifi-
cantly larger than the number of real instances you hope to find, then you must
expect almost anything you find to be bogus, i.e., a statistical artifact rather
than evidence of what you are looking for. This observation is the informal
statement of Bonferroni’s principle.

In a situation like searching for terrorists, where we expect that there are
few terrorists operating at any one time, Bonferroni’s principle says that we
may only detect terrorists by looking for events that are so rare that they are
unlikely to occur in random data. We shall give an extended example in the

6 CHAPTER 1. DATA MINING

next section.

1.2.3 An Example of Bonferroni’s Principle

Suppose there are believed to be some “evil-doers” out there, and we want
to detect them. Suppose further that we have reason to believe that periodi-
cally, evil-doers gather at a hotel to plot their evil. Let us make the following
assumptions about the size of the problem:

1. There are one billion people who might be evil-doers.
2. Everyone goes to a hotel one day in 100.

3. A hotel holds 100 people. Hence, there are 100,000 hotels — enough to
hold the 1% of a billion people who visit a hotel on any given day.

4. We shall examine hotel records for 1000 days.

To find evil-doers in this data, we shall look for people who, on two different
days, were both at the same hotel. Suppose, however, that there really are no
evil-doers. That is, everyone behaves at random, deciding with probability 0.01
to visit a hotel on any given day, and if so, choosing one of the 10° hotels at
random. Would we find any pairs of people who appear to be evil-doers?

We can do a simple approximate calculation as follows. The probability of
any two people both deciding to visit a hotel on any given day is .0001. The
chance that they will visit the same hotel is this probability divided by 10°,
the number of hotels. Thus, the chance that they will visit the same hotel on
one given day is 107?. The chance that they will visit the same hotel on two
different given days is the square of this number, 1078, Note that the hotels
can be different on the two days.

Now, we must consider how many events will indicate evil-doing. An “event”
in this sense is a pair of people and a pair of days, such that the two people
were at the same hotel on each of the two days. To simplify the arithmetic, note
that for large n, (g) is about n?/2. We shall use this approximation in what

follows. Thus, the number of pairs of people is (139) =5 x 10'7. The number
of pairs of days is (10200) = 5 x 10°. The expected number of events that look
like evil-doing is the product of the number of pairs of people, the number of
pairs of days, and the probability that any one pair of people and pair of days
is an instance of the behavior we are looking for. That number is

5x 107 x 5 x 10° x 107! = 250, 000

That is, there will be a quarter of a million pairs of people who look like evil-
doers, even though they are not.

Now, suppose there really are 10 pairs of evil-doers out there. The police
will need to investigate a quarter of a million other pairs in order to find the real
evil-doers. In addition to the intrusion on the lives of half a million innocent

o=

1.3. THINGS USEFUL TO KNOW 7

people, the work involved is sufficiently great that this approach to finding
evil-doers is probably not feasible.

1.2.4 Exercises for Section 1.2

Exercise 1.2.1: Using the information from Section 1.2.3, what would be the
number of suspected pairs if the following changes were made to the data (and
all other numbers remained as they were in that section)?

(a) The number of days of observation was raised to 2000.

(b) The number of people observed was raised to 2 billion (and there were
therefore 200,000 hotels).

(c) We only reported a pair as suspect if they were at the same hotel at the
same time on three different days.

Exercise 1.2.2: Suppose we have information about the supermarket pur-
chases of 100 million people. Each person goes to the supermarket 100 times
in a year and buys 10 of the 1000 items that the supermarket sells. We believe
that a pair of terrorists will buy exactly the same set of 10 items (perhaps the
ingredients for a bomb?) at some time during the year. If we search for pairs of
people who have bought the same set of items, would we expect that any such
people found were truly terrorists??

1.3 Things Useful to Know

In this section, we offer brief introductions to subjects that you may or may
not have seen in your study of other courses. Each will be useful in the study
of data mining. They include:

1. The TF.IDF measure of word importance.

2. Hash functions and their use.

3. Secondary storage (disk) and its effect on running time of algorithms.
4. The base e of natural logarithms and identities involving that constant.

5. Power laws.

3That is, assume our hypothesis that terrorists will surely buy a set of 10 items in common
at some time during the year. We don’t want to address the matter of whether or not terrorists
would necessarily do so.

8 CHAPTER 1. DATA MINING

1.3.1 Importance of Words in Documents

In several applications of data mining, we shall be faced with the problem of
categorizing documents (sequences of words) by their topic. Typically, topics
are identified by finding the special words that characterize documents about
that topic. For instance, articles about baseball would tend to have many
occurrences of words like “ball,” “bat,” “pitch,”, “run,” and so on. Once we
have classified documents to determine they are about baseball, it is not hard
to notice that words such as these appear unusually frequently. However, until
we have made the classification, it is not possible to identify these words as
characteristic.

Thus, classification often starts by looking at documents, and finding the
significant words in those documents. Our first guess might be that the words
appearing most frequently in a document are the most significant. However,
that intuition is exactly opposite of the truth. The most frequent words will
most surely be the common words such as “the” or “and,” which help build
ideas but do not carry any significance themselves. In fact, the several hundred
most common words in English (called stop words) are often removed from
documents before any attempt to classify them.

In fact, the indicators of the topic are relatively rare words. However, not
all rare words are equally useful as indicators. There are certain words, for
example “notwithstanding” or “albeit,” that appear rarely in a collection of
documents, yet do not tell us anything useful. On the other hand, a word like
“chukker” is probably equally rare, but tips us off that the document is about
the sport of polo. The difference between rare words that tell us something and
those that do not has to do with the concentration of the useful words in just a
few documents. That is, the presence of a word like “albeit” in a document does
not make it terribly more likely that it will appear multiple times. However,
if an article mentions “chukker” once, it is likely to tell us what happened in
the “first chukker,” then the “second chukker,” and so on. That is, the word is
likely to be repeated if it appears at all.

The formal measure of how concentrated into relatively few documents are
the occurrences of a given word is called TF.IDF (Term Frequency times In-
verse Document Frequency). It is normally computed as follows. Suppose we
have a collection of N documents. Define f;; to be the frequency (number of
occurrences) of term (word) ¢ in document j. Then, define the term frequency
TFij to be:

Jij

TF,;,; = ———
7 maxy frj

That is, the term frequency of term 7 in document j is f;; normalized by dividing
it by the maximum number of occurrences of any term (perhaps excluding stop
words) in the same document. Thus, the most frequent term in document j
gets a TF of 1, and other terms get fractions as their term frequency for this
document.

The IDF for a term is defined as follows. Suppose term ¢ appears in n;

1.3. THINGS USEFUL TO KNOW 9

of the N documents in the collection. Then IDF; = logy(N/n;). The TF.IDF
score for term ¢ in document j is then defined to be TF;; x IDF;. The terms
with the highest TF.IDF score are often the terms that best characterize the
topic of the document.

Example 1.3: Suppose our repository consists of 220 = 1,048,576 documents.
Suppose word w appears in 2'9 = 1024 of these documents. Then IDF,, =
log,(220/219) = log 2(219) = 10. Consider a document j in which w appears 20
times, and that is the maximum number of times in which any word appears
(perhaps after eliminating stop words). Then TF,,; = 1, and the TF.IDF score
for w in document j is 10.

Suppose that in document k, word w appears once, while the maximum
number of occurrences of any word in this document is 20. Then TF,; = 1/20,
and the TF.IDF score for w in document k is 1/2. O

1.3.2 Hash Functions

The reader has probably heard of hash tables, and perhaps used them in Java
classes or similar packages. The hash functions that make hash tables feasible
are also essential components in a number of data-mining algorithms, where
the hash table takes an unfamiliar form. We shall review the basics here.

First, a hash function h takes a hash-key value as an argument and produces
a bucket number as a result. The bucket number is an integer, normally in the
range 0 to B — 1, where B is the number of buckets. Hash-keys can be of any
type. There is an intuitive property of hash functions that they “randomize”
hash-keys. To be precise, if hash-keys are drawn randomly from a reasonable
population of possible hash-keys, then h will send approximately equal numbers
of hash-keys to each of the B buckets. It would be impossible to do so if, for
example, the population of possible hash-keys were smaller than B. Such a
population would not be “reasonable.” However, there can be more subtle rea-
sons why a hash function fails to achieve an approximately uniform distribution
into buckets.

Example 1.4: Suppose hash-keys are positive integers. A common and simple
hash function is to pick h(z) = x mod B, that is, the remainder when x is
divided by B. That choice works fine if our population of hash-keys is all
positive integers. 1/Bth of the integers will be assigned to each of the buckets.
However, suppose our population is the even integers, and B = 10. Then only
buckets 0, 2, 4, 6, and 8 can be the value of h(x), and the hash function is
distinctly nonrandom in its behavior. On the other hand, if we picked B = 11,
then we would find that 1/11th of the even integers get sent to each of the 11
buckets, so the hash function would work very well. O

The generalization of Example 1.4 is that when hash-keys are integers, chos-
ing B so it has any common factor with all (or even most of) the possible hash-
keys will result in nonrandom distribution into buckets. Thus, it is normally

10 CHAPTER 1. DATA MINING

preferred that we choose B to be a prime. That choice reduces the chance of
nonrandom behavior, although we still have to consider the possibility that all
hash-keys have B as a factor. Of course there are many other types of hash
functions not based on modular arithmetic. We shall not try to summarize
the options here, but some sources of information will be mentioned in the
bibliographic notes.

What if hash-keys are not integers? In a sense, all data types have values
that are composed of bits, and sequences of bits can always be interpreted as in-
tegers. However, there are some simple rules that enable us to convert common
types to integers. For example, if hash-keys are strings, convert each character
to its ASCII or Unicode equivalent, which can be interpreted as a small inte-
ger. Sum the integers before dividing by B. As long as B is smaller than the
typical sum of character codes for the population of strings, the distribution
into buckets will be relatively uniform. If B is larger, then we can partition the
characters of a string into groups of several characters each. Treat the concate-
nation of the codes for the characters of a group as a single integer. Sum the
integers associated with all the groups of a string, and divide by B as before.
For instance, if B is around a billion, or 23°, then grouping characters four at
a time will give us 32-bit integers. The sum of several of these will distribute
fairly evenly into a billion buckets.

For more complex data types, we can extend the idea used for converting
strings to integers, recursively.

e For a type that is a record, each of whose components has its own type,
recursively convert the value of each component to an integer, using the
algorithm appropriate for the type of that component. Sum the integers
for the components, and convert the integer sum to buckets by dividing
by B.

e For a type that is an array, set, or bag of elements of some one type,
convert the values of the elements’ type to integers, sum the integers, and
divide by B.

1.3.3 Indexes

An index is a data structure that makes it efficient to retrieve objects given the
value of one or more elements of those objects. The most common situation
is one where the objects are records, and the index is on one of the fields
of that record. Given a value v for that field, the index lets us retrieve all
the records with value v in that field. For example, we could have a file of
(name, address, phone) triples, and an index on the phone field. Given a phone
number, the index allows us to find quickly the record or records with that
phone number.

There are many ways to implement indexes, and we shall not attempt to
survey the matter here. The bibliographic notes give suggestions for further
reading. However, a hash table is one simple way to build an index. The field

1.3. THINGS USEFUL TO KNOW 11

or fields on which the index is based form the hash-key for a hash function.
Records have the hash function applied to value of the hash-key, and the record
itself is placed in the bucket whose number is determined by the hash function.
The bucket could be a list of records in main-memory, or a disk block, for
example.

Then, given a hash-key value, we can hash it, find the bucket, and need to
search only that bucket to find the records with that value for the hash-key. If
we choose the number of buckets B to be comparable to the number of records
in the file, then there will be relatively few records in any bucket, and the search
of a bucket takes little time.

0 Sally Jone§ Maple St 800—555—1?1?—»

h (800-555-1212)

e e T e LU

Records with h(phone) = 17

B-1

Array of
bucket
headers

Figure 1.2: A hash table used as an index; phone numbers are hashed to buckets,
and the entire record is placed in the bucket whose number is the hash value of
the phone

Example 1.5: Figure 1.2 suggests what a main-memory index of records with
name, address, and phone fields might look like. Here, the index is on the phone
field, and buckets are linked lists. We show the phone 800-555-1212 hashed to
bucket number 17. There is an array of bucket headers, whose ith element is
the head of a linked list for the bucket numbered i. We show expanded one of
the elements of the linked list. It contains a record with name, address, and
phone fields. This record is in fact one with the phone number 800-555-1212.
Other records in that bucket may or may not have this phone number. We only
know that whatever phone number they have is a phone that hashes to 17. O

1.3.4 Secondary Storage

It is important, when dealing with large-scale data, that we have a good un-
derstanding of the difference in time taken to perform computations when the
data is initially on disk, as opposed to the time needed if the data is initially in

12 CHAPTER 1. DATA MINING

main memory. The physical characteristics of disks is another subject on which
we could say much, but shall say only a little and leave the interested reader to
follow the bibliographic notes.

Disks are organized into blocks, which are the minimum units that the oper-
ating system uses to move data between main memory and disk. For example,
the Windows operating system uses blocks of 64K bytes (i.e., 216 = 65,536 bytes
to be exact). It takes approximately ten milliseconds to access (move the disk
head to the track of the block and wait for the block to rotate under the head)
and read a disk block. That delay is at least five orders of magnitude (a factor
of 10°) slower than the time taken to read a word from main memory, so if all
we want to do is access a few bytes, there is an overwhelming benefit to having
data in main memory. In fact, if we want to do something simple to every byte
of a disk block, e.g., treat the block as a bucket of a hash table and search for
a particular value of the hash-key among all the records in that bucket, then
the time taken to move the block from disk to main memory will be far larger
than the time taken to do the computation.

By organizing our data so that related data is on a single cylinder (the
collection of blocks reachable at a fixed radius from the center of the disk, and
therefore accessible without moving the disk head), we can read all the blocks
on the cylinder into main memory in considerably less than 10 milliseconds
per block. You can assume that a disk cannot transfer data to main memory
at more than a hundred million bytes per second, no matter how that data is
organized. That is not a problem when your dataset is a megabyte. But a
dataset of a hundred gigabytes or a terabyte presents problems just accessing
it, let alone doing anything useful with it.

1.3.5 The Base of Natural Logarithms

The constant e = 2.7182818--- has a number of useful special properties. In
particular, e is the limit of (1 + 1)” as x goes to infinity. The values of this
expression for x = 1,2, 3,4 are approximately 2,2.25,2.37,2.44, so you should
find it easy to believe that the limit of this series is around 2.72.

Some algebra lets us obtain approximations to many seemingly complex
expressions. Consider (14 a)?, where a is small. We can rewrite the expression
as (1+a)1/®(@®) Then substitute a = 1/z and 1/a = z, so we have (1+1)=(@®),

which is
1.2 ab
(0+2)

Since a is assumed small, z is large, so the subexpression (1 + %)x will be close
to the limiting value of e. We can thus approximate (1 + a)® as e.

Similar identities hold when a is negative. That is, the limit as x goes to
infinity of (1 — 1) is 1/e. It follows that the approximation (1 + a)? = e
holds even when a is a small negative number. Put another way, (1 — a)® is

approximately e~%® when a is small and b is large.

1.3. THINGS USEFUL TO KNOW 13

Some other useful approximations follow from the Taylor expansion of e”.
That is, e* = Y2 a?/il, or e = 14+ 2z +2?/2+ 23/6 + 2*/24 + ---. When
x is large, the above series converges slowly, although it does converge because
n! grows faster than ™ for any constant x. However, when x is small, either
positive or negative, the series converges rapidly, and only a few terms are
necessary to get a good approximation.

Example 1.6: Let z = 1/2. Then

ol by Ly
2t i
28 48 384

or approximately e!/? = 1.64844.
Let x = —1. Then

6*1—1_1+1_1+i_i+i_i+
B 2 6 24 120 720 5040

or approximately e”! = 0.36786. O

1.3.6 Power Laws

There are many phenomena that relate two variables by a power law, that is, a
linear relationship between the logarithms of the variables. Figure 1.3 suggests
such a relationship. If x is the horizontal axis and y is the vertical axis, then
the relationship is log,y vy = 6 — 2log(.

10,000,000
1,000,000
100,000
10,000
1000 —

100 -

10 —

1

T T T T
1 10 100 1000 10,000

Figure 1.3: A power law with a slope of —2

14 CHAPTER 1. DATA MINING

The Matthew Effect

Often, the existence of power laws with values of the exponent higher than
1 are explained by the Matthew effect. In the biblical Book of Matthew,
there is a verse about “the rich get richer.” Many phenomena exhibit this
behavior, where getting a high value of some property causes that very
property to increase. For example, if a Web page has many links in, then
people are more likely to find the page and may choose to link to it from
one of their pages as well. As another example, if a book is selling well
on Amazon, then it is likely to be advertised when customers go to the
Amazon site. Some of these people will choose to buy the book as well,
thus increasing the sales of this book.

Example 1.7: We might examine book sales at Amazon.com, and let x rep-
resent the rank of books by sales. Then y is the number of sales of the xth
best-selling book over some period. The implication of the graph of Fig. 1.3
would be that the best-selling book sold 1,000,000 copies, the 10th best-selling
book sold 10,000 copies, the 100th best-selling book sold 100 copies, and so on
for all ranks between these numbers and beyond. The implication that above
rank 1000 the sales are a fraction of a book is too extreme, and we would in
fact expect the line to flatten out for ranks much higher than 1000. O

The general form of a power law relating x and y is logy = b+alogx. If we
raise the base of the logarithm (which doesn’t actually matter), say e, to the
values on both sides of this equation, we get y = ebe®1°8® = bz, Since e is
just “some constant,” let us replace it by constant c. Thus, a power law can be

written as y = cx® for some constants a and c.

Example 1.8: In Fig. 1.3 we see that when z = 1, y = 10% and when = =
1000, y = 1. Making the first substitution, we see 10° = c. The second
substitution gives us 1 = ¢(1000)%. Since we now know ¢ = 10°, the second
equation gives us 1 = 105(1000)%, from which we see a = —2. That is, the law
expressed by Fig. 1.3 is y = 105272, or y = 10/22. O

We shall meet in this book many ways that power laws govern phenomena.
Here are some examples:

1. Node Degrees in the Web Graph: Order all pages by the number of in-
links to that page. Let x be the position of a page in this ordering, and
let y be the number of in-links to the zth page. Then y as a function of z
looks very much like Fig. 1.3. The exponent a is slightly larger than the
—2 shown there; it has been found closer to 2.1.

o=

1.4. OUTLINE OF THE BOOK 15

2. Sales of Products: Order products, say books at Amazon.com, by their
sales over the past year. Let y be the number of sales of the xth most pop-
ular book. Again, the function y(x) will look something like Fig. 1.3. we
shall discuss the consequences of this distribution of sales in Section 9.1.2,
where we take up the matter of the “long tail.”

3. Sizes of Web Sites: Count the number of pages at Web sites, and order
sites by the number of their pages. Let y be the number of pages at the
xth site. Again, the function y(z) follows a power law.

4. Zipf’s Law: This power law originally referred to the frequency of words
in a collection of documents. If you order words by frequency, and let y
be the number of times the xth word in the order appears, then you get
a power law, although with a much shallower slope than that of Fig. 1.3.
Zipf’s observation was that y = cz~'/2. Interestingly, a number of other
kinds of data follow this particular power law. For example, if we order
states in the US by population and let y be the population of the xth
most populous state, then x and y obey Zipf’s law approximately.

1.3.7 Exercises for Section 1.3

Exercise 1.3.1: Suppose there is a repository of ten million documents. What
(to the nearest integer) is the IDF for a word that appears in (a) 40 documents
(b) 10,000 documents?

Exercise 1.3.2: Suppose there is a repository of ten million documents, and
word w appears in 320 of them. In a particular document d, the maximum
number of occurrences of a word is 15. Approximately what is the TF.IDF
score for w if that word appears (a) once (b) five times?

Exercise 1.3.3: Suppose hash-keys are drawn from the population of all non-
negative integers that are multiples of some constant ¢, and hash function h(z)
is x mod 15. For what values of ¢ will A be a suitable hash function, i.e., a
large random choice of hash-keys will be divided roughly equally into buckets?

Exercise 1.3.4: In terms of e, give approximations to
(a) (1.01)°% (b) (1.05)19% (¢) (0.9)%°
Exercise 1.3.5: Use the Taylor expansion of e* to compute, to three decimal

places: (a) e'/10 (b) e~ /10 (¢) €.

1.4 Outline of the Book

This section gives brief summaries of the remaining chapters of the book.
Chapter 2 is not about data mining per se. Rather, it introduces us to the
MapReduce methodology for exploiting parallelism in computing clouds (racks

16 CHAPTER 1. DATA MINING

of interconnected processors). There is reason to believe that cloud computing,
and MapReduce in particular, will become the normal way to compute when
analysis of very large amounts of data is involved. A pervasive issue in later
chapters will be the exploitation of the MapReduce methodology to implement
the algorithms we cover.

Chapter 3 is about finding similar items. Our starting point is that items
can be represented by sets of elements, and similar sets are those that have a
large fraction of their elements in common. The key techniques of minhashing
and locality-sensitive hashing are explained. These techniques have numerous
applications and often give surprisingly efficient solutions to problems that ap-
pear impossible for massive data sets.

In Chapter 4, we consider data in the form of a stream. The difference
between a stream and a database is that the data in a stream is lost if you do
not do something about it immediately. Important examples of streams are the
streams of search queries at a search engine or clicks at a popular Web site. In
this chapter, we see several of the surprising applications of hashing that make
management of stream data feasible.

Chapter 5 is devoted to a single application: the computation of PageRank.
This computation is the idea that made Google stand out from other search
engines, and it is still an essential part of how search engines know what pages
the user is likely to want to see. Extensions of PageRank are also essential in the
fight against spam (euphemistically called “search engine optimization”), and
we shall examine the latest extensions of the idea for the purpose of combating
spam.

Then, Chapter 6 introduces the market-basket model of data, and its canon-
ical problems of association rules and finding frequent itemsets. In the market-
basket model, data consists of a large collection of baskets, each of which con-
tains a small set of items. We give a sequence of algorithms capable of finding
all frequent pairs of items, that is pairs of items that appear together in many
baskets. Another sequence of algorithms are useful for finding most of the
frequent itemsets larger than pairs, with high efficiency.

Chapter 7 examines the problem of clustering. We assume a set of items
with a distance measure defining how close or far one item is from another.
The goal is to examine a large amount of data and partition it into subsets
(clusters), each cluster consisting of items that are all close to one another, yet
far from items in the other clusters.

Chapter 8 is devoted to on-line advertising and the computational problems
it engenders. We introduce the notion of an on-line algorithm — one where a
good response must be given immediately, rather than waiting until we have
seen the entire dataset. The idea of competitive ratio is another important
concept covered in this chapter; it is the ratio of the guaranteed performance of
an on-line algorithm compared with the performance of the optimal algorithm
that is allowed to see all the data before making any decisions. These ideas are
used to give good algorithms that match bids by advertisers for the right to
display their ad in response to a query against the search queries arriving at a

1.5. SUMMARY OF CHAPTER 1 17

search engine.

Chapter 9 is devoted to recommendation systems. Many Web applications
involve advising users on what they might like. The Netflix challenge is one
example, where it is desired to predict what movies a user would like, or Ama-
zon’s problem of pitching a product to a customer based on information about
what they might be interested in buying. There are two basic approaches to
recommendation. We can characterize items by features, e.g., the stars of a
movie, and recommend items with the same features as those the user is known
to like. Or, we can look at other users with preferences similar to that of the
user in question, and see what they liked (a technique known as collaborative
filtering).

In Chapter 10, we study social networks and algorithms for their analysis.
The canonical example of a social network is the graph of Facebook friends,
where the nodes are people, and edges connect two people if they are friends.
Directed graphs, such as followers on Twitter, can also be viewed as social
networks. A common example of a problem to be addressed is identifying
“communities,” that is, small sets of nodes with an unusually large number of
edges among them. Other questions about social networks are general questions
about graphs, such as computing the transitive closure or diameter of a graph,
but are made more difficult by the size of typical networks.

Chapter 11 looks at dimensionality reduction. We are given a very large
matrix, typically sparse. Think of the matrix as representing a relationship
between two kinds of entities, e.g., ratings of movies by viewers. Intuitively,
there are a small number of concepts, many fewer concepts than there are
movies or viewers, that explain why certain viewers like certain movies. We
offer several algorithms that simplify matrices by decomposing them into a
product of matrices that are much smaller in one of the two dimensions. One
matrix relates entities of one kind to the small number of concepts and another
relates the concepts to the other kind of entity. If done correctly, the product
of the smaller matrices will be very close to the original matrix.

Finally, Chapter 12 discusses algorithms for machine learning from very
large datasets. Techniques covered include perceptrons, support-vector ma-
chines, finding models by gradient descent, nearest-neighbor models, and deci-
sion trees.

1.5 Summary of Chapter 1

4 Data Mining: This term refers to the process of extracting useful models
of data. Sometimes, a model can be a summary of the data, or it can be
the set of most extreme features of the data.

4 Bonferroni’s Principle: If we are willing to view as an interesting fea-
ture of data something of which many instances can be expected to exist
in random data, then we cannot rely on such features being significant.

18 CHAPTER 1. DATA MINING

This observation limits our ability to mine data for features that are not
sufficiently rare in practice.

4 TF.IDF: The measure called TF.IDF lets us identify words in a collection
of documents that are useful for determining the topic of each document.
A word has high TF.IDF score in a document if it appears in relatively few
documents, but appears in this one, and when it appears in a document
it tends to appear many times.

4 Hash Functions: A hash function maps hash-keys of some data type to
integer bucket numbers. A good hash function distributes the possible
hash-key values approximately evenly among buckets. Any data type can
be the domain of a hash function.

4 Indezxes: An index is a data structure that allows us to store and retrieve
data records efficiently, given the value in one or more of the fields of the
record. Hashing is one way to build an index.

4+ Storage on Disk: When data must be stored on disk (secondary memory),
it takes very much more time to access a desired data item than if the same
data were stored in main memory. When data is large, it is important
that algorithms strive to keep needed data in main memory.

4 Power Laws: Many phenomena obey a law that can be expressed as
y = cx? for some power a, often around —2. Such phenomena include the
sales of the xth most popular book, or the number of in-links to the xth
most popular page.

1.6 References for Chapter 1

[7] is a clear introduction to the basics of data mining. [2] covers data mining
principally from the point of view of machine learning and statistics.

For construction of hash functions and hash tables, see [4]. Details of the
TF.IDF measure and other matters regarding document processing can be
found in [5]. See [3] for more on managing indexes, hash tables, and data
on disk.

Power laws pertaining to the Web were explored by [1]. The Matthew effect
was first observed in [6].

1. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, and J. Weiner, “Graph structure in the web,” Com-
puter Networks 33:1-6, pp. 309-320, 2000.

2. M.M. Gaber, Scientific Data Mining and Knowledge Discovery — Prin-
ciples and Foundations, Springer, New York, 2010.

1.6.

REFERENCES FOR CHAPTER 1 19

. H. Garcia-Molina, J.D. Ullman, and J. Widom, Database Systems: The

Complete Book Second Edition, Prentice-Hall, Upper Saddle River, NJ,
20009.

. D.E. Knuth, The Art of Computer Programming Vol. 3 (Sorting and

Searching), Second Edition, Addison-Wesley, Upper Saddle River, NJ,
1998.

. C.P. Manning, P. Raghavan, and H. Schiitze, Introduction to Information

Retrieval, Cambridge Univ. Press, 2008.

. R.K. Merton, “The Matthew effect in science,” Science 159:3810, pp. 56—

63, Jan. 5, 1968.

. P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,

Addison-Wesley, Upper Saddle River, NJ, 2005.

20

CHAPTER 1. DATA MINING

Chapter 2

MapReduce and the New
Software Stack

Modern data-mining applications, often called “big-data” analysis, require us
to manage immense amounts of data quickly. In many of these applications, the
data is extremely regular, and there is ample opportunity to exploit parallelism.
Important examples are:

1. The ranking of Web pages by importance, which involves an iterated
matrix-vector multiplication where the dimension is many billions.

2. Searches in “friends” networks at social-networking sites, which involve
graphs with hundreds of millions of nodes and many billions of edges.

To deal with applications such as these, a new software stack has evolved. These
programming systems are designed to get their parallelism not from a “super-
computer,” but from “computing clusters” — large collections of commodity
hardware, including conventional processors (“compute nodes”) connected by
Ethernet cables or inexpensive switches. The software stack begins with a new
form of file system, called a “distributed file system,” which features much larger
units than the disk blocks in a conventional operating system. Distributed file
systems also provide replication of data or redundancy to protect against the
frequent media failures that occur when data is distributed over thousands of
low-cost compute nodes.

On top of these file systems, many different higher-level programming sys-
tems have been developed. Central to the new software stack is a programming
system called MapReduce. Implementations of MapReduce enable many of the
most common calculations on large-scale data to be performed on computing
clusters efficiently and in a way that is tolerant of hardware failures during the
computation.

MapReduce systems are evolving and extending rapidly. Today, it is com-
mon for MapReduce programs to be created from still higher-level programming

21

22 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

systems, often an implementation of SQL. Further, MapReduce turns out to be
a useful, but simple, case of more general and powerful ideas. We include
in this chapter a discussion of generalizations of MapReduce, first to systems
that support acyclic workflows and then to systems that implement recursive
algorithms.

Our last topic for this chapter is the design of good MapReduce algorithms,
a subject that often differs significantly from the matter of designing good
parallel algorithms to be run on a supercomputer. When designing MapReduce
algorithms, we often find that the greatest cost is in the communication. We
thus investigate communication cost and what it tells us about the most efficient
MapReduce algorithms. For several common applications of MapReduce we are
able to give families of algorithms that optimally trade the communication cost
against the degree of parallelism.

2.1 Distributed File Systems

Most computing is done on a single processor, with its main memory, cache, and
local disk (a compute node). In the past, applications that called for parallel
processing, such as large scientific calculations, were done on special-purpose
parallel computers with many processors and specialized hardware. However,
the prevalence of large-scale Web services has caused more and more computing
to be done on installations with thousands of compute nodes operating more
or less independently. In these installations, the compute nodes are commodity
hardware, which greatly reduces the cost compared with special-purpose parallel
machines.

These new computing facilities have given rise to a new generation of pro-
gramming systems. These systems take advantage of the power of parallelism
and at the same time avoid the reliability problems that arise when the comput-
ing hardware consists of thousands of independent components, any of which
could fail at any time. In this section, we discuss both the characteristics of
these computing installations and the specialized file systems that have been
developed to take advantage of them.

2.1.1 Physical Organization of Compute Nodes

The new parallel-computing architecture, sometimes called cluster computing,
is organized as follows. Compute nodes are stored on racks, perhaps 8-64
on a rack. The nodes on a single rack are connected by a network, typically
gigabit Ethernet. There can be many racks of compute nodes, and racks are
connected by another level of network or a switch. The bandwidth of inter-rack
communication is somewhat greater than the intrarack Ethernet, but given the
number of pairs of nodes that might need to communicate between racks, this
bandwidth may be essential. Figure 2.1 suggests the architecture of a large-
scale computing system. However, there may be many more racks and many
more compute nodes per rack.

2.1. DISTRIBUTED FILE SYSTEMS 23

Switch

Racks of compute nodes

Figure 2.1: Compute nodes are organized into racks, and racks are intercon-
nected by a switch

It is a fact of life that components fail, and the more components, such as
compute nodes and interconnection networks, a system has, the more frequently
something in the system will not be working at any given time. For systems
such as Fig. 2.1, the principal failure modes are the loss of a single node (e.g.,
the disk at that node crashes) and the loss of an entire rack (e.g., the network
connecting its nodes to each other and to the outside world fails).

Some important calculations take minutes or even hours on thousands of
compute nodes. If we had to abort and restart the computation every time
one component failed, then the computation might never complete successfully.
The solution to this problem takes two forms:

1. Files must be stored redundantly. If we did not duplicate the file at several
compute nodes, then if one node failed, all its files would be unavailable
until the node is replaced. If we did not back up the files at all, and the
disk crashes, the files would be lost forever. We discuss file management
in Section 2.1.2.

2. Computations must be divided into tasks, such that if any one task fails
to execute to completion, it can be restarted without affecting other tasks.
This strategy is followed by the MapReduce programming system that we
introduce in Section 2.2.

2.1.2 Large-Scale File-System Organization

To exploit cluster computing, files must look and behave somewhat differently
from the conventional file systems found on single computers. This new file
system, often called a distributed file system or DFS (although this term has
had other meanings in the past), is typically used as follows.

24 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

DFS Implementations

There are several distributed file systems of the type we have described
that are used in practice. Among these:

1. The Google File System (GFS), the original of the class.

2. Hadoop Distributed File System (HDFS), an open-source DFS used
with Hadoop, an implementation of MapReduce (see Section 2.2)
and distributed by the Apache Software Foundation.

3. CloudStore, an open-source DFS originally developed by Kosmix.

e Files can be enormous, possibly a terabyte in size. If you have only small
files, there is no point using a DFS for them.

e Files are rarely updated. Rather, they are read as data for some calcula-
tion, and possibly additional data is appended to files from time to time.
For example, an airline reservation system would not be suitable for a
DFS, even if the data were very large, because the data is changed so
frequently.

Files are divided into chunks, which are typically 64 megabytes in size.
Chunks are replicated, perhaps three times, at three different compute nodes.
Moreover, the nodes holding copies of one chunk should be located on different
racks, so we don’t lose all copies due to a rack failure. Normally, both the chunk
size and the degree of replication can be decided by the user.

To find the chunks of a file, there is another small file called the master node
or name node for that file. The master node is itself replicated, and a directory
for the file system as a whole knows where to find its copies. The directory itself
can be replicated, and all participants using the DFS know where the directory
copies are.

2.2 MapReduce

MapReduce is a style of computing that has been implemented in several sys-
tems, including Google’s internal implementation (simply called MapReduce)
and the popular open-source implementation Hadoop which can be obtained,
along with the HDFS file system from the Apache Foundation. You can use
an implementation of MapReduce to manage many large-scale computations
in a way that is tolerant of hardware faults. All you need to write are two
functions, called Map and Reduce, while the system manages the parallel exe-
cution, coordination of tasks that execute Map or Reduce, and also deals with

2.2. MAPREDUCE 25

the possibility that one of these tasks will fail to execute. In brief, a MapReduce
computation executes as follows:

1. Some number of Map tasks each are given one or more chunks from a
distributed file system. These Map tasks turn the chunk into a sequence
of key-value pairs. The way key-value pairs are produced from the input
data is determined by the code written by the user for the Map function.

2. The key-value pairs from each Map task are collected by a master con-
troller and sorted by key. The keys are divided among all the Reduce
tasks, so all key-value pairs with the same key wind up at the same Re-
duce task.

3. The Reduce tasks work on one key at a time, and combine all the val-
ues associated with that key in some way. The manner of combination
of values is determined by the code written by the user for the Reduce
function.

Figure 2.2 suggests this computation.

Keys with all
Key-value their values
pairs (K [v,w,..])
Input — (k,v)

chunks \

Combinec
output

/|

Map Group
tasks by keys

Reduce
tasks

Figure 2.2: Schematic of a MapReduce computation

2.2.1 The Map Tasks

We view input files for a Map task as consisting of elements, which can be
any type: a tuple or a document, for example. A chunk is a collection of
elements, and no element is stored across two chunks. Technically, all inputs

26 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

to Map tasks and outputs from Reduce tasks are of the key-value-pair form,
but normally the keys of input elements are not relevant and we shall tend to
ignore them. Insisting on this form for inputs and outputs is motivated by the
desire to allow composition of several MapReduce processes.

The Map function takes an input element as its argument and produces
zero or more key-value pairs. The types of keys and values are each arbitrary.
Further, keys are not “keys” in the usual sense; they do not have to be unique.
Rather a Map task can produce several key-value pairs with the same key, even
from the same element.

Example 2.1: We shall illustrate a MapReduce computation with what has
become the standard example application: counting the number of occurrences
for each word in a collection of documents. In this example, the input file is a
repository of documents, and each document is an element. The Map function
for this example uses keys that are of type String (the words) and values that
are integers. The Map task reads a document and breaks it into its sequence
of words w1, ws,...,w,. It then emits a sequence of key-value pairs where the
value is always 1. That is, the output of the Map task for this document is the
sequence of key-value pairs:

(w1,1), (we,1),..., (wn,1)

Note that a single Map task will typically process many documents — all
the documents in one or more chunks. Thus, its output will be more than the
sequence for the one document suggested above. Note also that if a word w
appears m times among all the documents assigned to that process, then there
will be m key-value pairs (w, 1) among its output. An option, which we discuss
in Section 2.2.4, is to combine these m pairs into a single pair (w, m), but we
can only do that because, as we shall see, the Reduce tasks apply an associative
and commutative operation, addition, to the values. O

2.2.2 Grouping by Key

As soon as the Map tasks have all completed successfully, the key-value pairs are
grouped by key, and the values associated with each key are formed into a list of
values. The grouping is performed by the system, regardless of what the Map
and Reduce tasks do. The master controller process knows how many Reduce
tasks there will be, say r such tasks. The user typically tells the MapReduce
system what r should be. Then the master controller picks a hash function that
applies to keys and produces a bucket number from 0 to r — 1. Each key that
is output by a Map task is hashed and its key-value pair is put in one of r local
files. Each file is destined for one of the Reduce tasks.!

1Optionally, users can specify their own hash function or other method for assigning keys
to Reduce tasks. However, whatever algorithm is used, each key is assigned to one and only
one Reduce task.

2.2. MAPREDUCE 27

To perform the grouping by key and distribution to the Reduce tasks, the
master controller merges the files from each Map task that are destined for
a particular Reduce task and feeds the merged file to that process as a se-
quence of key-list-of-value pairs. That is, for each key k, the input to the
Reduce task that handles key k is a pair of the form (k, [v1,ve, ..., v,]), where
(k,v1), (k,v2),...,(k,v,) are all the key-value pairs with key k coming from
all the Map tasks.

2.2.3 The Reduce Tasks

The Reduce function’s argument is a pair consisting of a key and its list of
associated values. The output of the Reduce function is a sequence of zero or
more key-value pairs. These key-value pairs can be of a type different from
those sent from Map tasks to Reduce tasks, but often they are the same type.
We shall refer to the application of the Reduce function to a single key and its
associated list of values as a reducer.

A Reduce task receives one or more keys and their associated value lists.
That is, a Reduce task executes one or more reducers. The outputs from all the
Reduce tasks are merged into a single file. Reducers may be partitioned among
a smaller number of Reduce tasks is by hashing the keys and associating each
Reduce task with one of the buckets of the hash function.

Example 2.2: Let us continue with the word-count example of Example 2.1.
The Reduce function simply adds up all the values. The output of a reducer
consists of the word and the sum. Thus, the output of all the Reduce tasks is a
sequence of (w,m) pairs, where w is a word that appears at least once among
all the input documents and m is the total number of occurrences of w among
all those documents. O

2.2.4 Combiners

Sometimes, a Reduce function is associative and commutative. That is, the
values to be combined can be combined in any order, with the same result.
The addition performed in Example 2.2 is an example of an associative and
commutative operation. It doesn’t matter how we group a list of numbers
V1,02, ..., Un; the sum will be the same.

When the Reduce function is associative and commutative, we can push
some of what the reducers do to the Map tasks. For example, instead of the
Map tasks in Example 2.1 producing many pairs (w, 1), (w,1),..., we could
apply the Reduce function within the Map task, before the output of the Map
tasks is subject to grouping and aggregation. These key-value pairs would thus
be replaced by one pair with key w and value equal to the sum of all the 1’s in
all those pairs. That is, the pairs with key w generated by a single Map task
would be replaced by a pair (w,m), where m is the number of times that w
appears among the documents handled by this Map task. Note that it is still
necessary to do grouping and aggregation and to pass the result to the Reduce

28 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

Reducers, Reduce Tasks, Compute Nodes, and Skew

If we want maximum parallelism, then we could use one Reduce task
to execute each reducer, i.e., a single key and its associated value list.
Further, we could execute each Reduce task at a different compute node,
so they would all execute in parallel. This plan is not usually the best. One
problem is that there is overhead associated with each task we create, so
we might want to keep the number of Reduce tasks lower than the number
of different keys. Moreover, often there are far more keys than there are
compute nodes available, so we would get no benefit from a huge number
of Reduce tasks.

Second, there is often significant variation in the lengths of the value
lists for different keys, so different reducers take different amounts of time.
If we make each reducer a separate Reduce task, then the tasks themselves
will exhibit skew — a significant difference in the amount of time each
takes. We can reduce the impact of skew by using fewer Reduce tasks
than there are reducers. If keys are sent randomly to Reduce tasks, we
can expect that there will be some averaging of the total time required by
the different Reduce tasks. We can further reduce the skew by using more
Reduce tasks than there are compute nodes. In that way, long Reduce
tasks might occupy a compute node fully, while several shorter Reduce
tasks might run sequentially at a single compute node.

tasks, since there will typically be one key-value pair with key w coming from
each of the Map tasks.

2.2.5 Details of MapReduce Execution

Let us now consider in more detail how a program using MapReduce is executed.
Figure 2.3 offers an outline of how processes, tasks, and files interact. Taking
advantage of a library provided by a MapReduce system such as Hadoop, the
user program forks a Master controller process and some number of Worker
processes at different compute nodes. Normally, a Worker handles either Map
tasks (a Map worker) or Reduce tasks (a Reduce worker), but not both.

The Master has many responsibilities. One is to create some number of
Map tasks and some number of Reduce tasks, these numbers being selected
by the user program. These tasks will be assigned to Worker processes by the
Master. It is reasonable to create one Map task for every chunk of the input
file(s), but we may wish to create fewer Reduce tasks. The reason for limiting
the number of Reduce tasks is that it is necessary for each Map task to create
an intermediate file for each Reduce task, and if there are too many Reduce
tasks the number of intermediate files explodes.

The Master keeps track of the status of each Map and Reduce task (idle,

2.2. MAPREDUCE 29

User
Program
7 \

’
\

‘ R
/ ifork '\

’ - Gs&gn assign~. N\
S ap Reduce™~_ \

(worker)
Input \.—, /

Data Output

Intermediate File
Files

Figure 2.3: Overview of the execution of a MapReduce program

executing at a particular Worker, or completed). A Worker process reports to
the Master when it finishes a task, and a new task is scheduled by the Master
for that Worker process.

Each Map task is assigned one or more chunks of the input file(s) and
executes on it the code written by the user. The Map task creates a file for
each Reduce task on the local disk of the Worker that executes the Map task.
The Master is informed of the location and sizes of each of these files, and the
Reduce task for which each is destined. When a Reduce task is assigned by the
Master to a Worker process, that task is given all the files that form its input.
The Reduce task executes code written by the user and writes its output to a
file that is part of the surrounding distributed file system.

2.2.6 Coping With Node Failures

The worst thing that can happen is that the compute node at which the Master
is executing fails. In this case, the entire MapReduce job must be restarted.
But only this one node can bring the entire process down; other failures will be
managed by the Master, and the MapReduce job will complete eventually.
Suppose the compute node at which a Map worker resides fails. This fail-
ure will be detected by the Master, because it periodically pings the Worker
processes. All the Map tasks that were assigned to this Worker will have to
be redone, even if they had completed. The reason for redoing completed Map

30 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

tasks is that their output destined for the Reduce tasks resides at that compute
node, and is now unavailable to the Reduce tasks. The Master sets the status
of each of these Map tasks to idle and will schedule them on a Worker when
one becomes available. The Master must also inform each Reduce task that the
location of its input from that Map task has changed.

Dealing with a failure at the node of a Reduce worker is simpler. The Master
simply sets the status of its currently executing Reduce tasks to idle. These
will be rescheduled on another reduce worker later.

2.2.7 Exercises for Section 2.2

Exercise 2.2.1: Suppose we execute the word-count MapReduce program de-
scribed in this section on a large repository such as a copy of the Web. We shall
use 100 Map tasks and some number of Reduce tasks.

(a) Suppose we do not use a combiner at the Map tasks. Do you expect there
to be significant skew in the times taken by the various reducers to process
their value list? Why or why not?

(b) If we combine the reducers into a small number of Reduce tasks, say 10
tasks, at random, do you expect the skew to be significant? What if we
instead combine the reducers into 10,000 Reduce tasks?

! (¢) Suppose we do use a combiner at the 100 Map tasks. Do you expect skew
to be significant? Why or why not?

2.3 Algorithms Using MapReduce

MapReduce is not a solution to every problem, not even every problem that
profitably can use many compute nodes operating in parallel. As we mentioned
in Section 2.1.2, the entire distributed-file-system milieu makes sense only when
files are very large and are rarely updated in place. Thus, we would not expect
to use either a DFS or an implementation of MapReduce for managing on-
line retail sales, even though a large on-line retailer such as Amazon.com uses
thousands of compute nodes when processing requests over the Web. The reason
is that the principal operations on Amazon data involve responding to searches
for products, recording sales, and so on, processes that involve relatively little
calculation and that change the database.? On the other hand, Amazon might
use MapReduce to perform certain analytic queries on large amounts of data,
such as finding for each user those users whose buying patterns were most
similar.

The original purpose for which the Google implementation of MapReduce
was created was to execute very large matrix-vector multiplications as are

2Remember that even looking at a product you don’t buy causes Amazon to remember
that you looked at it.

2.3. ALGORITHMS USING MAPREDUCE 31

needed in the calculation of PageRank (See Chapter 5). We shall see that
matrix-vector and matrix-matrix calculations fit nicely into the MapReduce
style of computing. Another important class of operations that can use MapRe-
duce effectively are the relational-algebra operations. We shall examine the
MapReduce execution of these operations as well.

2.3.1 Matrix-Vector Multiplication by MapReduce

Suppose we have an n X n matrix M, whose element in row ¢ and column j will
be denoted m;;. Suppose we also have a vector v of length n, whose jth element
is v;. Then the matrix-vector product is the vector x of length n, whose ith

element z; is given by
n
Xr; = E mijvj
Jj=1

If n = 100, we do not want to use a DF'S or MapReduce for this calculation.
But this sort of calculation is at the heart of the ranking of Web pages that
goes on at search engines, and there, n is in the tens of billions.®> Let us first
assume that n is large, but not so large that vector v cannot fit in main memory
and thus be available to every Map task.

The matrix M and the vector v each will be stored in a file of the DFS. We
assume that the row-column coordinates of each matrix element will be discov-
erable, either from its position in the file, or because it is stored with explicit
coordinates, as a triple (4, j, m;;). We also assume the position of element v; in
the vector v will be discoverable in the analogous way.

The Map Function: The Map function is written to apply to one element of
M. However, if v is not already read into main memory at the compute node
executing a Map task, then v is first read, in its entirety, and subsequently will
be available to all applications of the Map function performed at this Map task.
Each Map task will operate on a chunk of the matrix M. From each matrix
element m;; it produces the key-value pair (i,m;;v;). Thus, all terms of the
sum that make up the component z; of the matrix-vector product will get the
same key, 1.

The Reduce Function: The Reduce function simply sums all the values as-
sociated with a given key i. The result will be a pair (i, ;).

2.3.2 1If the Vector v Cannot Fit in Main Memory

However, it is possible that the vector v is so large that it will not fit in its
entirety in main memory. It is not required that v fit in main memory at a
compute node, but if it does not then there will be a very large number of

3The matrix is sparse, with on the average of 10 to 15 nonzero elements per row, since the
matrix represents the links in the Web, with m;; nonzero if and only if there is a link from
page j to page i. Note that there is no way we could store a dense matrix whose side was
100, since it would have 1020 elements.

32 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

disk accesses as we move pieces of the vector into main memory to multiply
components by elements of the matrix. Thus, as an alternative, we can divide
the matrix into vertical stripes of equal width and divide the vector into an equal
number of horizontal stripes, of the same height. Our goal is to use enough
stripes so that the portion of the vector in one stripe can fit conveniently into
main memory at a compute node. Figure 2.4 suggests what the partition looks
like if the matrix and vector are each divided into five stripes.

Matrix M Vector v

Figure 2.4: Division of a matrix and vector into five stripes

The ith stripe of the matrix multiplies only components from the ith stripe
of the vector. Thus, we can divide the matrix into one file for each stripe, and
do the same for the vector. Each Map task is assigned a chunk from one of
the stripes of the matrix and gets the entire corresponding stripe of the vector.
The Map and Reduce tasks can then act exactly as was described above for the
case where Map tasks get the entire vector.

We shall take up matrix-vector multiplication using MapReduce again in
Section 5.2. There, because of the particular application (PageRank calcula-
tion), we have an additional constraint that the result vector should be part-
itioned in the same way as the input vector, so the output may become the
input for another iteration of the matrix-vector multiplication. We shall see
there that the best strategy involves partitioning the matrix M into square
blocks, rather than stripes.

2.3.3 Relational-Algebra Operations

There are a number of operations on large-scale data that are used in database
queries. Many traditional database applications involve retrieval of small am-
ounts of data, even though the database itself may be large. For example, a
query may ask for the bank balance of one particular account. Such queries are
not useful applications of MapReduce.

However, there are many operations on data that can be described easily in
terms of the common database-query primitives, even if the queries themselves

2.3. ALGORITHMS USING MAPREDUCE 33

are not executed within a database management system. Thus, a good starting
point for exploring applications of MapReduce is by considering the standard
operations on relations. We assume you are familiar with database systems,
the query language SQL, and the relational model, but to review, a relation is
a table with column headers called attributes. Rows of the relation are called
tuples. The set of attributes of a relation is called its schema. We often write
an expression like R(Aq, Aa, ..., A,) to say that the relation name is R and its
attributes are Ay, Ao, ..., A,.

From | To

urll | url2
urll | url3
url2 | url3
url2 | url4d

Figure 2.5: Relation Links consists of the set of pairs of URL’s, such that the
first has one or more links to the second

Example 2.3: In Fig. 2.5 we see part of the relation Links that describes the
structure of the Web. There are two attributes, From and To. A row, or tuple,
of the relation is a pair of URL’s, such that there is at least one link from
the first URL to the second. For instance, the first row of Fig. 2.5 is the pair
(urll,url2) that says the Web page urll has a link to page url2. While we
have shown only four tuples, the real relation of the Web, or the portion of it
that would be stored by a typical search engine, has billions of tuples. O

A relation, however large, can be stored as a file in a distributed file system.
The elements of this file are the tuples of the relation.

There are several standard operations on relations, often referred to as re-
lational algebra, that are used to implement queries. The queries themselves
usually are written in SQL. The relational-algebra operations we shall discuss
are:

1. Selection: Apply a condition C to each tuple in the relation and produce
as output only those tuples that satisfy C'. The result of this selection is
denoted o¢(R).

2. Projection: For some subset S of the attributes of the relation, produce
from each tuple only the components for the attributes in S. The result
of this projection is denoted 7s(R).

3. Union, Intersection, and Difference: These well-known set operations
apply to the sets of tuples in two relations that have the same schema.
There are also bag (multiset) versions of the operations in SQL, with

34

. Grouping and Aggregation:

CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

somewhat unintuitive definitions, but we shall not go into the bag versions
of these operations here.

. Natural Join: Given two relations, compare each pair of tuples, one from

each relation. If the tuples agree on all the attributes that are common
to the two schemas, then produce a tuple that has components for each
of the attributes in either schema and agrees with the two tuples on each
attribute. If the tuples disagree on one or more shared attributes, then
produce nothing from this pair of tuples. The natural join of relations R
and S is denoted R <1.S. While we shall discuss executing only the nat-
ural join with MapReduce, all equijoins (joins where the tuple-agreement
condition involves equality of attributes from the two relations that do not
necessarily have the same name) can be executed in the same manner. We
shall give an illustration in Example 2.4.

4 Given a relation R, partition its tuples

according to their values in one set of attributes G, called the grouping
attributes. Then, for each group, aggregate the values in certain other at-
tributes. The normally permitted aggregations are SUM, COUNT, AVG,
MIN, and MAX, with the obvious meanings. Note that MIN and MAX
require that the aggregated attributes have a type that can be compared,
e.g., numbers or strings, while SUM and AVG require that the type allow
arithmetic operations. We denote a grouping-and-aggregation operation
on a relation R by vx(R), where X is a list of elements that are either

(a) A grouping attribute, or

(b) An expression 6(A), where 6 is one of the five aggregation opera-
tions such as SUM, and A is an attribute not among the grouping
attributes.

The result of this operation is one tuple for each group. That tuple has
a component for each of the grouping attributes, with the value common
to tuples of that group. It also has a component for each aggregation,
with the aggregated value for that group. We shall see an illustration in
Example 2.5.

Example 2.4: Let us try to find the paths of length two in the Web, using
the relation Links of Fig. 2.5. That is, we want to find the triples of URL’s
(u,v,w) such that there is a link from w to v and a link from v to w. We
essentially want to take the natural join of Links with itself, but we first need
to imagine that it is two relations, with different schemas, so we can describe the
desired connection as a natural join. Thus, imagine that there are two copies
of Links, namely L1(U1,U2) and L2(U2,U3). Now, if we compute L1 > L2,

4Some descriptions of relational algebra do not include these operations, and indeed they

were not part of the original definition of this algebra. However, these operations are so
important in SQL, that modern treatments of relational algebra include them.

2.3. ALGORITHMS USING MAPREDUCE 35

we shall have exactly what we want. That is, for each tuple ¢1 of L1 (i.e.,
each tuple of Links) and each tuple t2 of L2 (another tuple of Links, possibly
even the same tuple), see if their U2 components are the same. Note that
these components are the second component of t1 and the first component of
t2. If these two components agree, then produce a tuple for the result, with
schema (U1,U2,U3). This tuple consists of the first component of ¢1, the
second component of ¢1 (which must equal the first component of ¢2), and the
second component of ¢2.

We may not want the entire path of length two, but only want the pairs
(u, w) of URL’s such that there is at least one path from u to w of length two. If
so, we can project out the middle components by computing my1,v3(L1 > L2).
O

Example 2.5: Imagine that a social-networking site has a relation
Friends(User, Friend)

This relation has tuples that are pairs (a, b) such that b is a friend of a. The site
might want to develop statistics about the number of friends members have.
Their first step would be to compute a count of the number of friends of each
user. This operation can be done by grouping and aggregation, specifically

YUser, COUNT (Friend) (Friends)

This operation groups all the tuples by the value in their first component, so
there is one group for each user. Then, for each group the count of the number
of friends of that user is made. The result will be one tuple for each group, and
a typical tuple would look like (Sally, 300), if user “Sally” has 300 friends. O

2.3.4 Computing Selections by MapReduce

Selections really do not need the full power of MapReduce. They can be done
most conveniently in the map portion alone, although they could also be done
in the reduce portion alone. Here is a MapReduce implementation of selection
oc(R).

The Map Function: For each tuple ¢ in R, test if it satisfies C'. If so, produce
the key-value pair (t,t). That is, both the key and value are ¢.

The Reduce Function: The Reduce function is the identity. It simply passes
each key-value pair to the output.

Note that the output is not exactly a relation, because it has key-value pairs.
However, a relation can be obtained by using only the value components (or
only the key components) of the output.

36 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

2.3.5 Computing Projections by MapReduce

Projection is performed similarly to selection, because projection may cause
the same tuple to appear several times, the Reduce function must eliminate
duplicates. We may compute wg(R) as follows.

The Map Function: For each tuple ¢ in R, construct a tuple ¢’ by eliminating
from ¢ those components whose attributes are not in S. Output the key-value
pair (¢/,t').

The Reduce Function: For each key t' produced by any of the Map tasks,
there will be one or more key-value pairs (¢/,¢'). The Reduce function turns
', [t',t,...,t']) into (¢',t'), so it produces exactly one pair (¢',t") for this key
t.

Observe that the Reduce operation is duplicate elimination. This operation
is associative and commutative, so a combiner associated with each Map task
can eliminate whatever duplicates are produced locally. However, the Reduce
tasks are still needed to eliminate two identical tuples coming from different
Map tasks.

2.3.6 Union, Intersection, and Difference by MapReduce

First, consider the union of two relations. Suppose relations R and S have the
same schema. Map tasks will be assigned chunks from either R or S; it doesn’t
matter which. The Map tasks don’t really do anything except pass their input
tuples as key-value pairs to the Reduce tasks. The latter need only eliminate
duplicates as for projection.

The Map Function: Turn each input tuple ¢ into a key-value pair (t,t).

The Reduce Function: Associated with each key ¢ there will be either one or
two values. Produce output (¢,t) in either case.

To compute the intersection, we can use the same Map function. However,
the Reduce function must produce a tuple only if both relations have the tuple.
If the key t has a list of two values [t,t] associated with it, then the Reduce
task for ¢ should produce (¢,t). However, if the value-list associated with key
t is just [t], then one of R and S is missing ¢, so we don’t want to produce a
tuple for the intersection.

The Map Function: Turn each tuple t into a key-value pair (¢,1).

The Reduce Function: If key ¢ has value list [¢,¢], then produce (¢,t). Oth-
erwise, produce nothing.

The Difference R — S requires a bit more thought. The only way a tuple
t can appear in the output is if it is in R but not in S. The Map function
can pass tuples from R and S through, but must inform the Reduce function
whether the tuple came from R or S. We shall thus use the relation as the
value associated with the key ¢. Here is a specification for the two functions.

2.3. ALGORITHMS USING MAPREDUCE 37

The Map Function: For a tuple ¢ in R, produce key-value pair (¢, R), and
for a tuple t in S, produce key-value pair (¢,.5). Note that the intent is that
the value is the name of R or S (or better, a single bit indicating whether the
relation is R or S), not the entire relation.

The Reduce Function: For each key t, if the associated value list is [R], then
produce (¢,t). Otherwise, produce nothing.

2.3.7 Computing Natural Join by MapReduce

The idea behind implementing natural join via MapReduce can be seen if we
look at the specific case of joining R(A, B) with S(B,C). We must find tuples
that agree on their B components, that is the second component from tuples
of R and the first component of tuples of S. We shall use the B-value of tuples
from either relation as the key. The value will be the other component and the
name of the relation, so the Reduce function can know where each tuple came
from.

The Map Function: For each tuple (a,b) of R, produce the key-value pair
(b, (R, a)). For each tuple (b, ¢) of S, produce the key-value pair (b, (S, c))

The Reduce Function: Each key value b will be associated with a list of pairs
that are either of the form (R, a) or (S, ¢). Construct all pairs consisting of one
with first component R and the other with first component S, say (R, a) and
(S,¢). The output from this key and value list is a sequence of key-value pairs.
The key is irrelevant. Each value is one of the triples (a, b, ¢) such that (R,a)
and (S, ¢) are on the input list of values.

The same algorithm works if the relations have more than two attributes.
You can think of A as representing all those attributes in the schema of R but
not S. B represents the attributes in both schemas, and C represents attributes
only in the schema of S. The key for a tuple of R or S is the list of values in all
the attributes that are in the schemas of both R and S. The value for a tuple
of R is the name R together with the values of all the attributes belonging to
R but not to S, and the value for a tuple of S is the name S together with the
values of the attributes belonging to S but not R.

The Reduce function looks at all the key-value pairs with a given key and
combines those values from R with those values of S in all possible ways. From
each pairing, the tuple produced has the values from R, the key values, and the
values from S.

2.3.8 Grouping and Aggregation by MapReduce

As with the join, we shall discuss the minimal example of grouping and aggrega-
tion, where there is one grouping attribute and one aggregation. Let R(A, B, C)
be a relation to which we apply the operator v4,¢(5)(R). Map will perform the
grouping, while Reduce does the aggregation.

The Map Function: For each tuple (a,b,c) produce the key-value pair (a, b).

38 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

The Reduce Function: Each key a represents a group. Apply the aggregation
operator 6 to the list [by,ba,...,b,] of B-values associated with key a. The
output is the pair (a,z), where z is the result of applying 6 to the list. For
example, if § is SUM, then x = by + by + - -+ + b, and if 0 is MAX, then z is
the largest of by, ba, ..., by,.

If there are several grouping attributes, then the key is the list of the values
of a tuple for all these attributes. If there is more than one aggregation, then
the Reduce function applies each of them to the list of values associated with
a given key and produces a tuple consisting of the key, including components
for all grouping attributes if there is more than one, followed by the results of
each of the aggregations.

2.3.9 Matrix Multiplication

If M is a matrix with element m;; in row ¢ and column j, and N is a matrix
with element n;; in row j and column k, then the product P = M N is the
matrix P with element p;; in row ¢ and column k, where

Dirx = g MmNk
J

It is required that the number of columns of M equals the number of rows of
N, so the sum over j makes sense.

We can think of a matrix as a relation with three attributes: the row number,
the column number, and the value in that row and column. Thus, we could view
matrix M as a relation M (I, J,V), with tuples (¢, j, m;;), and we could view
matrix N as a relation N (J, K, W), with tuples (j, k, n,x). Aslarge matrices are
often sparse (mostly 0’s), and since we can omit the tuples for matrix elements
that are 0, this relational representation is often a very good one for a large
matrix. However, it is possible that i, j, and k are implicit in the position of a
matrix element in the file that represents it, rather than written explicitly with
the element itself. In that case, the Map function will have to be designed to
construct the I, J, and K components of tuples from the position of the data.

The product M N is almost a natural join followed by grouping and ag-
gregation. That is, the natural join of M(I,J, V) and N(J, K,W), having
only attribute J in common, would produce tuples (i, j, k, v, w) from each tuple
(i,4,v) in M and tuple (4, k,w) in N. This five-component tuple represents the
pair of matrix elements (m;;,n,;). What we want instead is the product of
these elements, that is, the four-component tuple (4, j, k,v X w), because that
represents the product m;;n;;. Once we have this relation as the result of one
MapReduce operation, we can perform grouping and aggregation, with I and
K as the grouping attributes and the sum of V' x W as the aggregation. That
is, we can implement matrix multiplication as the cascade of two MapReduce
operations, as follows. First:

The Map Function: For each matrix element m;;, produce the key value pair
(j, (M, 1, mij)). Likewise, for each matrix element n;;, produce the key value

2.3. ALGORITHMS USING MAPREDUCE 39

pair (j, (N, k,njk)). Note that M and N in the values are not the matrices
themselves. Rather they are names of the matrices or (as we mentioned for the
similar Map function used for natural join) better, a bit indicating whether the
element comes from M or N.

The Reduce Function: For each key j, examine its list of associated values.
For each value that comes from M, say (M, i, m;;), and each value that comes
from N, say (N, k,n;;), produce a key-value pair with key equal to (¢, %) and
value equal to the product of these elements, m;;n .

Now, we perform a grouping and aggregation by another MapReduce operation.

The Map Function: This function is just the identity. That is, for every input
element with key (¢, k) and value v, produce exactly this key-value pair.

The Reduce Function: For each key (i, k), produce the sum of the list of
values associated with this key. The result is a pair ((z, k:),v), where v is the
value of the element in row ¢ and column k of the matrix P = M N.

2.3.10 Matrix Multiplication with One MapReduce Step

There often is more than one way to use MapReduce to solve a problem. You
may wish to use only a single MapReduce pass to perform matrix multiplication
P = MN. 5 It is possible to do so if we put more work into the two functions.
Start by using the Map function to create the sets of matrix elements that are
needed to compute each element of the answer P. Notice that an element of
M or N contributes to many elements of the result, so one input element will
be turned into many key-value pairs. The keys will be pairs (i, k), where i is a
row of M and k is a column of N. Here is a synopsis of the Map and Reduce
functions.

The Map Function: For each element m;; of M, produce all the key-value
pairs ((i,k), (M,j,mij)) for k = 1,2,..., up to the number of columns of
N. Similarly, for each element nj, of N, produce all the key-value pairs
((i,kz), (N,j,njk)) for : = 1,2,..., up to the number of rows of M. As be-
fore, M and N are really bits to tell which of the two matrices a value comes
from.

The Reduce Function: Each key (i, k) will have an associated list with all
the values (M, j,m;;) and (N, j,n;i), for all possible values of j. The Reduce
function needs to connect the two values on the list that have the same value of
7, for each j. An easy way to do this step is to sort by j the values that begin
with M and sort by j the values that begin with N, in separate lists. The jth
values on each list must have their third components, m;; and n;, extracted
and multiplied. Then, these products are summed and the result is paired with
(i, k) in the output of the Reduce function.

5However, we show in Section 2.6.7 that two passes of MapReduce are usually better than
one for matrix multiplication.

o=

o=

40 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

You may notice that if a row of the matrix M or a column of the matrix N
is so large that it will not fit in main memory, then the Reduce tasks will be
forced to use an external sort to order the values associated with a given key
(i, k). However, in that case, the matrices themselves are so large, perhaps 102°
elements, that it is unlikely we would attempt this calculation if the matrices
were dense. If they are sparse, then we would expect many fewer values to be
associated with any one key, and it would be feasible to do the sum of products
in main memory.

2.3.11 Exercises for Section 2.3
Exercise 2.3.1: Design MapReduce algorithms to take a very large file of
integers and produce as output:
(
(

a) The largest integer.

)

b) The average of all the integers.

(¢) The same set of integers, but with each integer appearing only once.
)

(d) The count of the number of distinct integers in the input.

Exercise 2.3.2: Our formulation of matrix-vector multiplication assumed that
the matrix M was square. Generalize the algorithm to the case where M is an
r-by-c matrix for some number of rows r and columns c.

Exercise 2.3.3: In the form of relational algebra implemented in SQL, rela-
tions are not sets, but bags; that is, tuples are allowed to appear more than
once. There are extended definitions of union, intersection, and difference for
bags, which we shall define below. Write MapReduce algorithms for computing
the following operations on bags R and S:

(a) Bag Union, defined to be the bag of tuples in which tuple ¢ appears the
sum of the numbers of times it appears in R and S.

(b) Bag Intersection, defined to be the bag of tuples in which tuple ¢ appears
the minimum of the numbers of times it appears in R and S.

(c) Bag Difference, defined to be the bag of tuples in which the number of
times a tuple t appears is equal to the number of times it appears in R
minus the number of times it appears in S. A tuple that appears more
times in S than in R does not appear in the difference.

Exercise 2.3.4: Selection can also be performed on bags. Give a MapReduce
implementation that produces the proper number of copies of each tuple ¢ that
passes the selection condition. That is, produce key-value pairs from which the
correct result of the selection can be obtained easily from the values.

2.4. EXTENSIONS TO MAPREDUCE 41

Exercise 2.3.5: The relational-algebra operation R(A, B) < p<c S(C,D)
produces all tuples (a, b, ¢, d) such that tuple (a, b) is in relation R, tuple (¢, d) is
in S, and b < ¢. Give a MapReduce implementation of this operation, assuming
R and S are sets.

2.4 Extensions to MapReduce

MapReduce has proved so influential that it has spawned a number of extensions
and modifications. These systems typically share a number of characteristics
with MapReduce systems:

1. They are built on a distributed file system.

2. They manage very large numbers of tasks that are instantiations of a
small number of user-written functions.

3. They incorporate a method for dealing with most of the failures that
occur during the execution of a large job, without having to restart that
job from the beginning.

In this section, we shall mention some of the interesting directions being ex-
plored. References to the details of the systems mentioned can be found in the
bibliographic notes for this chapter.

2.4.1 Workflow Systems

Two experimental systems called Clustera from the University of Wisconsin and
Hyracks from the University of California at Irvine extend MapReduce from the
simple two-step workflow (the Map function feeds the Reduce function) to any
collection of functions, with an acyclic graph representing workflow among the
functions. That is, there is an acyclic flow graph whose arcs a — b represent
the fact that function a’s output is input to function b. A suggestion of what a
workflow might look like is in Fig. 2.6. There, five functions, f through j, pass
data from left to right in specific ways, so the flow of data is acyclic and no task
needs to provide data out before its input is available. For instance, function h
takes its input from a preexisting file of the distributed file system. Each of h’s
output elements is passed to at least one of the functions 7 and j.

In analogy to Map and Reduce functions, each function of a workflow can
be executed by many tasks, each of which is assigned a portion of the input to
the function. A master controller is responsible for dividing the work among
the tasks that implement a function, usually by hashing the input elements to
decide on the proper task to receive an element. Thus, like Map tasks, each task
implementing a function f has an output file of data destined for each of the
tasks that implement the successor function(s) of f. These files are delivered
by the Master at the appropriate time — after the task has completed its work.

42 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

e

Figure 2.6: An example of a workflow that is more complex than Map feeding
Reduce

The functions of a workflow, and therefore the tasks, share with MapReduce
tasks the important property that they only deliver output after they complete.
As a result, if a task fails, it has not delivered output to any of its successors
in the flow graph. A master controller can therefore restart the failed task at
another compute node, without worrying that the output of the restarted task
will duplicate output that previously was passed to some other task.

Many applications of workflow systems such as Clustera or Hyracks are
cascades of MapReduce jobs. An example would be the join of three relations,
where one MapReduce job joins the first two relations, and a second MapReduce
job joins the third relation with the result of joining the first two relations. Both
jobs would use an algorithm like that of Section 2.3.7.

There is an advantage to implementing such cascades as a single workflow.
For example, the flow of data among tasks, and its replication, can be managed
by the master controller, without need to store the temporary file that is out-
put of one MapReduce job in the distributed file system. By locating tasks at
compute nodes that have a copy of their input, we can avoid much of the com-
munication that would be necessary if we stored the result of one MapReduce
job and then initiated a second MapReduce job (although Hadoop and other
MapReduce systems also try to locate Map tasks where a copy of their input is
already present).

2.4.2 Recursive Extensions to MapReduce

Many large-scale computations are really recursions. An important example is
PageRank, which is the subject of Chapter 5. That computation is, in sim-
ple terms, the computation of the fixedpoint of a matrix-vector multiplication.
It is computed under MapReduce systems by the iterated application of the
matrix-vector multiplication algorithm described in Section 2.3.1, or by a more
complex strategy that we shall introduce in Section 5.2. The iteration typi-
cally continues for an unknown number of steps, each step being a MapReduce
job, until the results of two consecutive iterations are sufficiently close that we
believe convergence has occurred.

The reason recursions are normally implemented by iterated MapReduce

2.4. EXTENSIONS TO MAPREDUCE 43

jobs is that a true recursive task does not have the property necessary for
independent restart of failed tasks. It is impossible for a collection of mutually
recursive tasks, each of which has an output that is input to at least some of
the other tasks, to produce output only at the end of the task. If they all
followed that policy, no task would ever receive any input, and nothing could
be accomplished. As a result, some mechanism other than simple restart of
failed tasks must be implemented in a system that handles recursive workflows
(flow graphs that are not acyclic). We shall start by studying an example of a
recursion implemented as a workflow, and then discuss approaches to dealing
with task failures.

Example 2.6: Suppose we have a directed graph whose arcs are represented
by the relation E(X,Y’), meaning that there is an arc from node X to node Y.
We wish to compute the paths relation P(X,Y’), meaning that there is a path
of length 1 or more from node X to node Y. That is, P is the transitive closure
of E. A simple recursive algorithm to do so is:

1. Start with P(X,Y) = E(X,Y).
2. While changes to the relation P occur, add to P all tuples in
TX,Y (P(X, Z)=1 P(Z, Y))

That is, find pairs of nodes X and Y such that for some node Z there is
known to be a path from X to Z and also a path from Z to Y.

Figure 2.7 suggests how we could organize recursive tasks to perform this
computation. There are two kinds of tasks: Join tasks and Dup-elim tasks.
There are n Join tasks, for some n, and each corresponds to a bucket of a hash
function h. A path tuple P(a,b), when it is discovered, becomes input to two
Join tasks: those numbered h(a) and h(b). The job of the ith Join task, when
it receives input tuple P(a,b), is to find certain other tuples seen previously
(and stored locally by that task).

1. Store P(a,b) locally.
2. If h(a) = ¢ then look for tuples P(x,a) and produce output tuple P(z, b).
3. If h(b) = i then look for tuples P(b,y) and produce output tuple P(a,y).

Note that in rare cases, we have h(a) = h(b), so both (2) and (3) are executed.
But generally, only one of these needs to be executed for a given tuple.

There are also m Dup-elim tasks, and each corresponds to a bucket of a hash
function g that takes two arguments. If P(c,d) is an output of some Join task,
then it is sent to Dup-elim task j = g(c¢,d). On receiving this tuple, the jth
Dup-elim task checks that it had not received it before, since its job is duplicate
elimination. If previously received, the tuple is ignored. But if this tuple is new,
it is stored locally and sent to two Join tasks, those numbered h(c) and h(d).

44 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

Join Dup-elim
task task
0 0
Join Dup-elim To join task h(c)
task task
1 1
P(c,d) if Dup-elim
g(c.d) =] task

P(c,d) if never
seen before

P(a,b) if Join / J

h(@=ior — | task
h(b) =i

To join task h(d)

Figure 2.7: Implementation of transitive closure by a collection of recursive
tasks

Every Join task has m output files — one for each Dup-elim task — and every
Dup-elim task has n output files — one for each Join task. These files may be
distributed according to any of several strategies. Initially, the F(a,b) tuples
representing the arcs of the graph are distributed to the Dup-elim tasks, with
E(a,b) being sent as P(a,b) to Dup-elim task g(a,b). The Master can wait until
each Join task has processed its entire input for a round. Then, all output files
are distributed to the Dup-elim tasks, which create their own output. That
output is distributed to the Join tasks and becomes their input for the next
round. Alternatively, each task can wait until it has produced enough output
to justify transmitting its output files to their destination, even if the task has
not consumed all its input. O

In Example 2.6 it is not essential to have two kinds of tasks. Rather, Join
tasks could eliminate duplicates as they are received, since they must store
their previously received inputs anyway. However, this arrangement has an
advantage when we must recover from a task failure. If each task stores all
the output files it has ever created, and we place Join tasks on different racks
from the Dup-elim tasks, then we can deal with any single compute node or

2.4. EXTENSIONS TO MAPREDUCE 45

Pregel and Giraph

Like MapReduce, Pregel was developed originally at Google. Also like
MapReduce, there is an Apache, open-source equivalent, called Giraph.

single rack failure. That is, a Join task needing to be restarted can get all the
previously generated inputs that it needs from the Dup-elim tasks, and vice
versa.

In the particular case of computing transitive closure, it is not necessary to
prevent a restarted task from generating outputs that the original task gener-
ated previously. In the computation of the transitive closure, the rediscovery of
a path does not influence the eventual answer. However, many computations
cannot tolerate a situation where both the original and restarted versions of a
task pass the same output to another task. For example, if the final step of the
computation were an aggregation, say a count of the number of nodes reached
by each node in the graph, then we would get the wrong answer if we counted
a path twice. In such a case, the master controller can record what files each
task generated and passed to other tasks. It can then restart a failed task and
ignore those files when the restarted version produces them a second time.

2.4.3 Pregel

Another approach to managing failures when implementing recursive algorithms
on a computing cluster is represented by the Pregel system. This system views
its data as a graph. Each node of the graph corresponds roughly to a task
(although in practice many nodes of a large graph would be bundled into a
single task, as in the Join tasks of Example 2.6). Each graph node generates
output messages that are destined for other nodes of the graph, and each graph
node processes the inputs it receives from other nodes.

Example 2.7: Suppose our data is a collection of weighted arcs of a graph,
and we want to find, for each node of the graph, the length of the shortest
path to each of the other nodes. Initially, each graph node a stores the set of
pairs (b, w) such that there is an arc from a to b of weight w. These facts are
initially sent to all other nodes, as triples (a,b,w).> When the node a receives
a triple (¢, d, w), it looks up its current distance to ¢; that is, it finds the pair
(¢, v) stored locally, if there is one. It also finds the pair (d,w) if there is one.
If w+ v < u, then the pair (d,u) is replaced by (d,w + v), and if there was
no pair (d,u), then the pair (d,w + v) is stored at the node a. Also, the other
nodes are sent the message (a,d,w + v) in either of these two cases. O

6This algorithm uses much too much communication, but it will serve as a simple example
of the Pregel computation model.

o—

o—

46 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

Computations in Pregel are organized into supersteps. In one superstep, all
the messages that were received by any of the nodes at the previous superstep
(or initially, if it is the first superstep) are processed, and then all the messages
generated by those nodes are sent to their destination.

In case of a compute-node failure, there is no attempt to restart the failed
tasks at that compute node. Rather, Pregel checkpoints its entire computation
after some of the supersteps. A checkpoint consists of making a copy of the
entire state of each task, so it can be restarted from that point if necessary.
If any compute node fails, the entire job is restarted from the most recent
checkpoint.

Although this recovery strategy causes many tasks that have not failed to
redo their work, it is satisfactory in many situations. Recall that the reason
MapReduce systems support restart of only the failed tasks is that we want
assurance that the expected time to complete the entire job in the face of fail-
ures is not too much greater than the time to run the job with no failures.
Any failure-management system will have that property as long as the time
to recover from a failure is much less than the average time between failures.
Thus, it is only necessary that Pregel checkpoints its computation after a num-
ber of supersteps such that the probability of a failure during that number of
supersteps is low.

2.4.4 Exercises for Section 2.4

Exercise 2.4.1: Suppose a job consists of n tasks, each of which takes time ¢
seconds. Thus, if there are no failures, the sum over all compute nodes of the
time taken to execute tasks at that node is nt. Suppose also that the probability
of a task failing is p per job per second, and when a task fails, the overhead of
management of the restart is such that it adds 10¢ seconds to the total execution
time of the job. What is the total expected execution time of the job?

Exercise 2.4.2: Suppose a Pregel job has a probability p of a failure during
any superstep. Suppose also that the execution time (summed over all compute
nodes) of taking a checkpoint is ¢ times the time it takes to execute a superstep.
To minimize the expected execution time of the job, how many supersteps
should elapse between checkpoints?

2.5 The Communication Cost Model

In this section we shall introduce a model for measuring the quality of algorithms
implemented on a computing cluster of the type so far discussed in this chapter.
We assume the computation is described by an acyclic workflow, as discussed
in Section 2.4.1. For many applications, the bottleneck is moving data among
tasks, such as transporting the outputs of Map tasks to their proper Reduce
tasks. As an example, we explore the computation of multiway joins as single

2.5. THE COMMUNICATION COST MODEL 47

MapReduce jobs, and we see that in some situations, this approach is more
efficient than the straightforward cascade of 2-way joins.

2.5.1 Communication-Cost for Task Networks

Imagine that an algorithm is implemented by an acyclic network of tasks. These
tasks could be Map tasks feeding Reduce tasks, as in a standard MapReduce
algorithm, or they could be several MapReduce jobs cascaded, or a more general
workflow structure, such as a collection of tasks each of which implements the
workflow of Fig. 2.6.” The communication cost of a task is the size of the input
to the task. This size can be measured in bytes. However, since we shall be
using relational database operations as examples, we shall often use the number
of tuples as a measure of size.

The communication cost of an algorithm is the sum of the communication
cost of all the tasks implementing that algorithm. We shall focus on the commu-
nication cost as the way to measure the efficiency of an algorithm. In particular,
we do not consider the amount of time it takes each task to execute when es-
timating the running time of an algorithm. While there are exceptions, where
execution time of tasks dominates, these exceptions are rare in practice. We
can explain and justify the importance of communication cost as follows.

e The algorithm executed by each task tends to be very simple, often linear
in the size of its input.

e The typical interconnect speed for a computing cluster is one gigabit per
second. That may seem like a lot, but it is slow compared with the speed
at which a processor executes instructions. Moreover, in many cluster
architectures, there is competition for the interconnect when several com-
pute nodes need to communicate at the same time. As a result, the
compute node can do a lot of work on a received input element in the
time it takes to deliver that element.

e Even if a task executes at a compute node that has a copy of the chunk(s)
on which the task operates, that chunk normally will be stored on disk,
and the time taken to move the data into main memory may exceed the
time needed to operate on the data once it is available in memory.

Assuming that communication cost is the dominant cost, we might still ask
why we count only input size, and not output size. The answer to this question
involves two points:

1. If the output of one task 7 is input to another task, then the size of 7’s
output will be accounted for when measuring the input size for the receiv-
ing task. Thus, there is no reason to count the size of any output except
for those tasks whose output forms the result of the entire algorithm.

"Recall that this figure represented functions, not tasks. As a network of tasks, there
would be, for example, many tasks implementing function f, each of which feeds data to each
of the tasks for function g and each of the tasks for function 4.

48 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

2. But in practice, the algorithm output is rarely large compared with the
input or the intermediate data produced by the algorithm. The reason
is that massive outputs cannot be used unless they are summarized or
aggregated in some way. For example, although we talked in Example 2.6
of computing the entire transitive closure of a graph, in practice we would
want something much simpler, such as the count of the number of nodes
reachable from each node, or the set of nodes reachable from a single
node.

Example 2.8: Let us evaluate the communication cost for the join algorithm
from Section 2.3.7. Suppose we are joining R(A, B) <1 S(B, (), and the sizes
of relations R and S are r and s, respectively. Each chunk of the files holding
R and S is fed to one Map task, so the sum of the communication costs for all
the Map tasks is » + s. Note that in a typical execution, the Map tasks will
each be executed at a compute node holding a copy of the chunk to which it
applies. Thus, no internode communication is needed for the Map tasks, but
they still must read their data from disk. Since all the Map tasks do is make a
simple transformation of each input tuple into a key-value pair, we expect that
the computation cost will be small compared with the communication cost,
regardless of whether the input is local to the task or must be transported to
its compute node.

The sum of the outputs of the Map tasks is roughly as large as their in-
puts. Each output key-value pair is sent to exactly one Reduce task, and it is
unlikely that this Reduce task will execute at the same compute node. There-
fore, communication from Map tasks to Reduce tasks is likely to be across the
interconnect of the cluster, rather than memory-to-disk. This communication
is O(r + s), so the communication cost of the join algorithm is O(r + s).

The Reduce tasks execute the reducer (application of the Reduce function
to a key and its associated value list) for one or more values of attribute B.
Each reducer takes the inputs it receives and divides them between tuples that
came from R and those that came from S. Each tuple from R pairs with each
tuple from S to produce one output. The output size for the join can be either
larger or smaller than r + s, depending on how likely it is that a given R-tuple
joins with a given S-tuple. For example, if there are many different B-values,
we would expect the output to be small, while if there are few B-values, a large
output is likely.

If the output is large, then the computation cost of generating all the outputs
from a reducer could be much larger than O(r+s). However, we shall rely on our
supposition that if the output of the join is large, then there is probably some
aggregation being done to reduce the size of the output. It will be necessary to
communicate the result of the join to another collection of tasks that perform
this aggregation, and thus the communication cost will be at least proportional
to the computation needed to produce the output of the join. O

2.5. THE COMMUNICATION COST MODEL 49

2.5.2 Wall-Clock Time

While communication cost often influences our choice of algorithm to use in
a cluster-computing environment, we must also be aware of the importance of
wall-clock time, the time it takes a parallel algorithm to finish. Using careless
reasoning, one could minimize total communication cost by assigning all the
work to one task, and thereby minimize total communication. However, the
wall-clock time of such an algorithm would be quite high. The algorithms we
suggest, or have suggested so far, have the property that the work is divided
fairly among the tasks. Therefore, the wall-clock time would be approximately
as small as it could be, given the number of compute nodes available.

2.5.3 Multiway Joins

To see how analyzing the communication cost can help us choose an algorithm
in the cluster-computing environment, we shall examine carefully the case of a
multiway join. There is a general theory in which we:

1. Select certain attributes of the relations involved in the natural join of
three or more relations to have their values hashed, each to some number
of buckets.

2. Select the number of buckets for each of these attributes, subject to the
constraint that the product of the numbers of buckets for each attribute
is k, the number of reducers that will be used.

3. Identify each of the k reducers with a vector of bucket numbers. These
vectors have one component for each of the attributes selected at step (1).

4. Send tuples of each relation to all those reducers where it might find tuples
to join with. That is, the given tuple ¢ will have values for some of the
attributes selected at step (1), so we can apply the hash function(s) to
those values to determine certain components of the vector that identifies
the reducers. Other components of the vector are unknown, so ¢ must
be sent to reducers for all vectors having any value in these unknown
components.

Some examples of this general technique appear in the exercises.

Here, we shall look only at the join R(A,B) > S(B,C) < T(C,D) as
an example. Suppose that the relations R, S, and T have sizes r, s, and t,
respectively, and for simplicity, suppose p is the probability that

1. An R-tuple and and S-tuple agree on B, and also the probability that
2. An S-tuple and a T-tuple agree on C.

If we join R and S first, using the MapReduce algorithm of Section 2.3.7,
then the communication cost is O(r + s), and the size of the intermediate join

50 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

R < S is prs. When we join this result with 7', the communication of this
second MapReduce job is O(t + prs). Thus, the entire communication cost of
the algorithm consisting of two 2-way joins is O(r + s+t + prs). If we instead
join S and T first, and then join R with the result, we get another algorithm
whose communication cost is O(r 4+ s + ¢ + pst).

A third way to take this join is to use a single MapReduce job that joins
the three relations at once. Suppose that we plan to use k reducers for this
job. Pick numbers b and c¢ representing the number of buckets into which we
shall hash B- and C-values, respectively. Let h be a hash function that sends
B-values into b buckets, and let g be another hash function that sends C-values
into ¢ buckets. We require that bc = k; that is, each reducer corresponds to
a pair of buckets, one for the B-value and one for the C-value. The reducer
corresponding to bucket pair (4, j) is responsible for joining the tuples R(u,v),
S(v,w), and T (w, z) whenever h(v) =i and g(w) = j.

As a result, the Map tasks that send tuples of R, S, and T' to the reducers
that need them must send R- and T-tuples to more than one reducer. For an
S-tuple S(v, w), we know the B- and C-values, so we can send this tuple only to
the reducer for (h(v), g(w)). However, consider an R-tuple R(u,v). We know
it only needs to go to reducers that correspond to (h(v), y), for some y. But
we don’t know y; the value of C' could be anything as far as we know. Thus,
we must send R(u,v) to ¢ reducers, since y could be any of the ¢ buckets for
C-values. Similarly, we must send the T-tuple T'(w, z) to each of the reducers
(z, g(w)) for any z. There are b such reducers.

g(T.C)=1
9(C) = h(S.B) =2 and g(S.C) = 1
0o |1 2 3
0 -
1 .
h(B) = y
2| 4441 4
h(R.B) = 2

Figure 2.8: Sixteen reducers together perform a 3-way join

Example 2.9: Suppose that b = ¢ = 4, so £ = 16. The sixteen reducers can
be thought of as arranged in a rectangle, as suggested by Fig. 2.8. There, we
see a hypothetical S-tuple S(v,w) for which h(v) = 2 and g(w) = 1. This
tuple is sent by its Map task only to the reducer for key (2,1). We also see

2.5. THE COMMUNICATION COST MODEL 51

Computation Cost of the 3-Way Join

Each of the reducers must join of parts of the three relations, and it is
reasonable to ask whether this join can be taken in time that is linear
in the size of the input to that Reduce task. While more complex joins
might not be computable in linear time, the join of our running example
can be executed at each Reduce process efficiently. First, create an index
on R.B, to organize the R-tuples received. Likewise, create an index on
T.C for the T-tuples. Then, consider each received S-tuple, S(v,w). Use
the index on R.B to find all R-tuples with R.B = v and use the index on
T.C to find all T-tuples with T.C = w.

an R-tuple R(u,v). Since h(v) = 2, this tuple is sent to all reducers (2, y), for
y = 1,2,3,4. Finally, we see a T-tuple T'(w, x). Since g(w) = 1, this tuple is
sent to all reducers (z,1) for z = 1,2, 3,4. Notice that these three tuples join,
and they meet at exactly one reducer, the reducer for key (2,1). O

Now, suppose that the sizes of R, S, and T are different; recall we use r,
s, and t, respectively, for those sizes. If we hash B-values to b buckets and
C-values to ¢ buckets, where bc = k, then the total communication cost for
moving the tuples to the proper reducers is the sum of:

1. s to move each tuple S(v,w) once to the reducer (h(v),g(w)).

2. cr to move each tuple R(u,v) to the ¢ reducers (h(v),y) for each of the c
possible values of y.

3. bt to move each tuple T'(w, z) to the b reducers (z,g(w)) for each of the
b possible values of z.

There is also a cost 7 + s + ¢t to make each tuple of each relation be input to
one of the Map tasks. This cost is fixed, independent of b, ¢, and k.

We must select b and ¢, subject to the constraint bc = k, to minimize
s + cr + bt. We shall use the technique of Lagrangean multipliers to find the
place where the function s + cr + bt — A(bc — k) has its derivatives with respect
to b and ¢ equal to 0. That is, we must solve the equations r — Ab = 0 and
t — Ac = 0. Since 7 = Ab and t = Ac¢, we may multiply corresponding sides of
these equations to get 7t = A\2be. Since be = k, we get vt = A2k, or A = \/rt/k.
Thus, the minimum communication cost is obtained when ¢ = ¢t/\ = \/kt/r,
and b=r/\ = \/kr/t.

If we substitute these values into the formula s + cr + bt, we get s + 2v/krt.
That is the communication cost for the Reduce tasks, to which we must add
the cost s 4+ r + t for the communication cost of the Map tasks. The total

52 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

communication cost is thus r 4+ 2s 4+t 4+ 2v/krt. In most circumstances, we can
neglect r + ¢, because it will be less than 2v/krt, usually by a factor of O(vVk).

Example 2.10: Let us see under what circumstances the 3-way join has lower
communication cost than the cascade of two 2-way joins. To make matters
simple, let us assume that R, S, and T are all the same relation R, which
represents the “friends” relation in a social network like Facebook. There are
roughly a billion subscribers on Facebook, with an average of 300 friends each, so
relation R has r = 3 x 10! tuples. Suppose we want to compute R <1 R < R,
perhaps as part of a calculation to find the number of friends of friends of
friends each subscriber has, or perhaps just the person with the largest number
of friends of friends of friends.® The cost of the 3-way join of R with itself is
47 + 2rV/k; 3r represents the cost of the Map tasks, and r + 2vVkr? is the cost
of the Reduce tasks. Since we assume 7 = 3 x 10!, this cost is 1,2 x 102 46 x
101 V.

Now consider the communication cost of joining R with itself, and then
joining the result with R again. The Map and Reduce tasks for the first join each
have a cost of 27, so the first join only has communication cost 4r = 1.2 x 10'2,
But the size of R <1 R is large. We cannot say exactly how large, since friends
tend to fall into cliques, and therefore a person with 300 friends will have many
fewer than the maximum possible number of friends of friends, which is 90,000.
Let us estimate conservatively that the size of R <1 R is not 300r, but only
307, or 9 x 102, The communication cost for the second join of (R > R) 1 R
is thus 1.8 x 10'3 4+ 6 x 10''. The total cost of the two joins is therefore
1.2 x 1012 4+ 1.8 x 10'3 + 6 x 10 = 1.98 x 10'3.

We must ask whether the cost of the 3-way join, which is

1.2 x 10" + 6 x 10"k

is less than 1.98 x 10'3. That is so, provided 6 x 10vk < 1.86 x 103, or
Vk < 31. That is, the 3-way join will be preferable provided we use no more
than 312 = 961 reducers. O

2.5.4 Exercises for Section 2.5

Exercise 2.5.1: What is the communication cost of each of the following
algorithms, as a function of the size of the relations, matrices, or vectors to
which they are applied?

(a) The matrix-vector multiplication algorithm of Section 2.3.2.
(b) The union algorithm of Section 2.3.6.

(c¢) The aggregation algorithm of Section 2.3.8.

8This person, or more generally, people with large extended circles of friends, are good
people to use to start a marketing campaign by giving them free samples.

2.5. THE COMMUNICATION COST MODEL 53

Star Joins

A common structure for data mining of commercial data is the star join.
For example, a chain store like Walmart keeps a fact table whose tu-
ples each represent a single sale. This relation looks like F'(A4y, As,...),
where each attribute A; is a key representing one of the important com-
ponents of the sale, such as the purchaser, the item purchased, the store
branch, or the date. For each key attribute there is a dimension table
giving information about the participant. For instance, the dimension ta-
ble D(A1, Bi1, Bi2,...) might represent purchasers. A; is the purchaser
ID, the key for this relation. The Bj;’s might give the purchaser’s name,
address, phone, and so on. Typically, the fact table is much larger than
the dimension tables. For instance, there might be a fact table of a billion
tuples and ten dimension tables of a million tuples each.

Analysts mine this data by asking analytic queries that typically join
the fact table with several of the dimension tables (a “star join”) and then
aggregate the result into a useful form. For instance, an analyst might ask
“give me a table of sales of pants, broken down by region and color, for
each month of 2012.” Under the communication-cost model of this section,
joining the fact table and dimension tables by a multiway join is almost
certain to be more efficient than joining the relations in pairs. In fact, it
may make sense to store the fact table over however many compute nodes
are available, and replicate the dimension tables permanently in exactly
the same way as we would replicate them should we take the join of the
fact table and all the dimension tables. In this special case, only the
key attributes (the A’s above) are hashed to buckets, and the number of
buckets for each key attribute is proportional to the size of its dimension
table.

(d) The matrix-multiplication algorithm of Section 2.3.10.

! Exercise 2.5.2: Suppose relations R, S, and T have sizes r, s, and ¢, respec-
tively, and we want to take the 3-way join R(A,B) 1 S(B,C) = T(A,C),
using k reducers. We shall hash values of attributes A, B, and C to a, b, and ¢
buckets, respectively, where abc = k. Each reducer is associated with a vector
of buckets, one for each of the three hash functions. Find, as a function of r, s,
t, and k, the values of a, b, and ¢ that minimize the communication cost of the
algorithm.

o=

Exercise 2.5.3: Suppose we take a star join of a fact table (A1, Aa, ..., Ap)
with dimension tables D;(A;, B;) for ¢ = 1,2,...,m. Let there be k reducers,
each associated with a vector of buckets, one for each of the key attributes
Ay, As, ..., Ay, Suppose the number of buckets into which we hash A; is a;.

54 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

Naturally, aias - - - a,, = k. Finally, suppose each dimension table D; has size
d;, and the size of the fact table is much larger than any of these sizes. Find
the values of the a;’s that minimize the cost of taking the star join as one
MapReduce operation.

2.6 Complexity Theory for MapReduce

Now, we shall explore the design of MapReduce algorithms in more detail. Sec-
tion 2.5 introduced the idea that communication between the Map and Reduce
tasks often accounts for the largest fraction of the time spent by these tasks.
Here, we shall look at how the communication cost relates to other desiderata
for MapReduce algorithms, in particular our desire to shrink the wall-clock time
and to execute each reducer in main memory. Recall that a “reducer” is the
execution of the Reduce function on a single key and its associated value list.
The point of the exploration in this section is that for many problems there is a
spectrum of MapReduce algorithms requiring different amounts of communica-
tion. Moreover, the less communication an algorithm uses, the worse it may be
in other respects, including wall-clock time and the amount of main memory it
requires.

2.6.1 Reducer Size and Replication Rate

Let us now introduce the two parameters that characterize families of MapRe-
duce algorithms. The first is the reducer size, which we denote by ¢. This
parameter is the upper bound on the number of values that are allowed to ap-
pear in the list associated with a single key. Reducer size can be selected with
at least two goals in mind.

1. By making the reducer size small, we can force there to be many reducers,
i.e., many different keys according to which the problem input is divided
by the Map tasks. If we also create many Reduce tasks — even one for
each reducer — then there will be a high degree of parallelism, and we can
look forward to a low wall-clock time.

2. We can choose a reducer size sufficiently small that we are certain the
computation associated with a single reducer can be executed entirely in
the main memory of the compute node where its Reduce task is located.
Regardless of the computation done by the reducers, the running time
will be greatly reduced if we can avoid having to move data repeatedly
between main memory and disk.

The second parameter is the replication rate, denoted r. We define r to
be the number of key-value pairs produced by all the Map tasks on all the
inputs, divided by the number of inputs. That is, the replication rate is the
average communication from Map tasks to Reduce tasks (measured by counting
key-value pairs) per input.

2.6. COMPLEXITY THEORY FOR MAPREDUCE 95

Example 2.11: Let us consider the one-pass matrix-multiplication algorithm
of Section 2.3.10. Suppose that all the matrices involved are n x n matrices.
Then the replication rate r is equal to n. That fact is easy to see, since for
each element m;;, there are n key-value pairs produced; these have all keys of
the form (i, k), for 1 < k < n. Likewise, for each element of the other matrix,
say nji, we produce n key-value pairs, each having one of the keys (i, k), for
1 < i < n. In this case, not only is n the average number of key-value pairs
produced for an input element, but each input produces exactly this number of
pairs.

We also see that ¢, the required reducer size, is 2n. That is, for each key
(i, k), there are n key-value pairs representing elements m;; of the first matrix
and another n key-value pairs derived from the elements n;; of the second
matrix. While this pair of values represents only one particular algorithm for
one-pass matrix multiplication, we shall see that it is part of a spectrum of
algorithms, and in fact represents an extreme point, where ¢ is as small as can
be, and 7 is at its maximum. More generally, there is a tradeoff between r and
g, that can be expressed as gr > 2n?. O

2.6.2 An Example: Similarity Joins

To see the tradeoff between r and ¢ in a realistic situation, we shall examine a
problem known as similarity join. In this problem, we are given a large set of
elements X and a similarity measure s(z,y) that tells how similar two elements
x and y of set X are. In Chapter 3 we shall learn about the most important
notions of similarity and also learn some tricks that let us find similar pairs
quickly. But here, we shall consider only the raw form of the problem, where
we have to look at each pair of elements of X and determine their similarity by
applying the function s. We assume that s is symmetric, so s(x,y) = s(y,x),
but we assume nothing else about s. The output of the algorithm is those pairs
whose similarity exceeds a given threshold ¢.

For example, let us suppose we have a collection of one million images, each
of size one megabyte. Thus, the dataset has size one terabyte. We shall not
try to describe the similarity function s, but it might, say, involve giving higher
values when images have roughly the same distribution of colors or when images
have corresponding regions with the same distribution of colors. The goal would
be to discover pairs of images that show the same type of object or scene. This
problem is extremely hard, but classifying by color distribution is generally of
some help toward that goal.

Let us look at how we might do the computation using MapReduce to exploit
the natural parallelism found in this problem. The input is key-value pairs
(i, P;), where ¢ is an ID for the picture and P; is the picture itself. We want
to compare each pair of pictures, so let us use one key for each set of two ID’s
{i,7}. There are approximately 5 x 10! pairs of two ID’s. We want each
key {i,7} to be associated with the two values P; and P;, so the input to the
corresponding reducer will be ({,5}, [P;, Pj]). Then, the Reduce function can

56 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

simply apply the similarity function s to the two pictures on its value list, that
is, compute s(P;, P;), and decide whether the similarity of the two pictures is
above threshold. The pair would be output if so.

Alas, this algorithm will fail completely. The reducer size is small, since no
list has more than two values, or a total of 2MB of input. Although we don’t
know exactly how the similarity function s operates, we can reasonably expect
that it will not require more than the available main memory. However, the
replication rate is 999,999, since for each picture we generate that number of
key-value pairs, one for each of the other pictures in the dataset. The total
number of bytes communicated from Map tasks to Reduce tasks is 1,000,000
(for the pictures) times 999,999 (for the replication), times 1,000,000 (for the
size of each picture). That’s 10'® bytes, or one exabyte. To communicate this
amount of data over gigabit Ethernet would take 10'° seconds, or about 300
years.?

Fortunately, this algorithm is only the extreme point in a spectrum of possi-
ble algorithms. We can characterize these algorithms by grouping pictures into
g groups, each of 10°/g pictures.

The Map Function: Take an input element (i, P;) and generate g — 1 key-
value pairs. For each, the key is one of the sets {u, v}, where u is the group to
which picture 7 belongs, and v is one of the other groups. The associated value
is the pair (i, P;).

The Reduce Function: Consider the key {u,v}. The associated value list
will have the 2 x 10%/g elements (j, P;), where j belongs to either group u or
group v. The Reduce function takes each (i, P;) and (j, P;) on this list, where
i and j belong to different groups, and applies the similarity function s(F;, P;).
In addition, we need to compare the pictures that belong to the same group,
but we don’t want to do the same comparison at each of the g — 1 reducers
whose key contains a given group number. There are many ways to handle this
problem, but one way is as follows. Compare the members of group w at the
reducer {u,u + 1}, where the “+1” is taken in the end-around sense. That is,
if u =g (i.e., u is the last group), then w+ 1 is group 1. Otherwise, v+ 1 is the
group whose number is one greater than u.

We can compute the replication rate and reducer size as a function of the
number of groups g. Each input element is turned into g — 1 key-value pairs.
That is, the replication rate is g — 1, or approximately r = g, since we suppose
that the number of groups is still fairly large. The reducer size is 2x 10%/g, since
that is the number of values on the list for each reducer. Each value is about a
megabyte, so the number of bytes needed to store the input is 2 x 10'2/g.

Example 2.12: If g is 1000, then the input consumes about 2GB. That’s
enough to hold everything in a typical main memory. Moreover, the total

91n a typical cluster, there are many switches connecting subsets of the compute nodes, so
all the data does not need to go across a single gigabit switch. However, the total available
communication is still small enough that it is not feasible to implement this algorithm for the
scale of data we have hypothesized.

2.6. COMPLEXITY THEORY FOR MAPREDUCE o7

number of bytes communicated is now 10% x 999 x 106, or about 10'® bytes.
While that is still a huge amount of data to communicate, it is 1000 times
less than that of the obvious algorithm. Moreover, there are still about half a
million reducers. Since we are unlikely to have available that many compute
nodes, we can divide all the reducers into a smaller number of Reduce tasks
and still keep all the compute nodes busy; i.e., we can get as much parallelism
as our computing cluster offers us. O

The computation cost for algorithms in this family is independent of the
number of groups g, as long as the input to each reducer fits in main memory.
The reason is that the bulk of the computation is the application of function s
to the pairs of pictures. No matter what value g has, s is applied to each pair
once and only once. Thus, although the work of algorithms in the family may
be divided among reducers in widely different ways, all members of the family
do the same computation.

2.6.3 A Graph Model for MapReduce Problems

In this section, we begin the study of a technique that will enable us to prove
lower bounds on the replication rate, as a function of reducer size for a number
of problems. Our first step is to introduce a graph model of problems. For each
problem solvable by a MapReduce algorithm there is:

1. A set of inputs.
2. A set of outputs.

3. A many-many relationship between the inputs and outputs, which de-
scribes which inputs are necessary to produce which outputs.

Example 2.13: Figure 2.9 shows the graph for the similarity-join problem
discussed in Section 2.6.2, if there were four pictures rather than a million. The
inputs are the pictures, and the outputs are the six possible pairs of pictures.
Each output is related to the two inputs that are members of its pair. O

Example 2.14: Matrix multiplication presents a more complex graph. If we
multiply n x n matrices M and N to get matrix P, then there are 2n? inputs,
m;; and nj, and there are n? outputs p;r. Each output p; is related to 2n
inputs: m;1, Mo, ..., M4y and Ny, Nog, - - ., Nuk. Moreover, each input is related
to n outputs. For example, m;; is related to p;1, ps2, - . ., Pin. Figure 2.10 shows
the input-output relationship for matrix multiplication for the simple case of
2 X 2 matrices, specifically

']

l

el -l

58 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

{P1,P2}
Py

{P1,P3}
P>

{P1,Ps}
P3 {P2,P3}

{P2,Ps}
Py

{P3,Ps}

Figure 2.9: Input-output relationship for a similarity join

In the problems of Examples 2.13 and 2.14, the inputs and outputs were
clearly all present. However, there are other problems where the inputs and/or
outputs may not all be present in any instance of the problem. An example
of such a problem is the natural join of R(A,B) and S(B,C) discussed in
Section 2.3.7. We assume the attributes A, B, and C each have a finite domain,
so there are only a finite number of possible inputs and outputs. The inputs are
all possible R-tuples, those consisting of a value from the domain of A paired
with a value from the domain of B, and all possible S-tuples — pairs from the
domains of B and C. The outputs are all possible triples, with components from
the domains of A, B, and C in that order. The output (a,b,c) is connected to
two inputs, namely R(a,b) and S(b,).

But in an instance of the join computation, only some of the possible inputs
will be present, and therefore only some of the possible outputs will be produced.
That fact does not influence the graph for the problem. We still need to know
how every possible output relates to inputs, whether or not that output is
produced in a given instance.

2.6.4 Mapping Schemas

Now that we see how to represent problems addressable by MapReduce as
graphs, we can define the requirements for a MapReduce algorithm to solve
a given problem. FEach such algorithm must have a mapping schema, which
expresses how outputs are produced by the various reducers used by the algo-
rithm. That is, a mapping schema for a given problem with a given reducer
size ¢ is an assignment of inputs to one or more reducers, such that:

1. No reducer is assigned more than ¢ inputs.

2.6. COMPLEXITY THEORY FOR MAPREDUCE 99

Figure 2.10: Input-output relationship for matrix multiplication

2. For every output of the problem, there is at least one reducer that is
assigned all the inputs that are related to that output. We say this reducer
covers the output.

It can be argued that the existence of a mapping schema for any reducer size
is what distinguishes problems that can be solved by a single MapReduce job
from those that cannot.

Example 2.15: Let us reconsider the “grouping” strategy we discussed in
connection with the similarity join in Section 2.6.2. To generalize the problem,
suppose the input is p pictures, which we place in g equal-sized groups of p/g
inputs each. The number of outputs is (’2’), or approximately p?/2 outputs. A
reducer will get the inputs from two groups — that is 2p/g inputs — so the reducer
size we need is ¢ = 2p/g. Each picture is sent to the reducers corresponding to
the pairs consisting of its group and any of the g — 1 other groups. Thus, the
replication rate is g — 1, or approximately g. If we replace g by the replication
rate r in ¢ = 2p/g, we conclude that » = 2p/q. That is, the replication rate
is inversely proportional to the reducer size. That relationship is common; the
smaller the reducer size, the larger the replication rate, and therefore the higher
the communication.

This family of algorithms is described by a family of mapping schemas, one
for each possible ¢. In the mapping schema for ¢ = 2p/g, there are (‘27), or
approximately g2/2 reducers. Each reducer corresponds to a pair of groups,
and an input P is assigned to all the reducers whose pair includes the group of
P. Thus, no reducer is assigned more than 2p/g inputs; in fact each reducer
is assigned exactly that number. Moreover, every output is covered by some
reducer. Specifically, if the output is a pair from two different groups v and v,
then this output is covered by the reducer for the pair of groups {u,v}. If the

60 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

output corresponds to inputs from only one group u, then the output is covered
by several reducers — those corresponding to the set of groups {u,v} for any
v # u. Note that the algorithm we described has only one of these reducers
computing the output, but any of them could compute it. O

The fact that an output depends on a certain input means that when that
input is processed at the Map task, there will be at least one key-value pair
generated to be used when computing that output. The value might not be
exactly the input (as was the case in Example 2.15), but it is derived from
that input. What is important is that for every related input and output there
is a unique key-value pair that must be communicated. Note that there is
technically never a need for more than one key-value pair for a given input and
output, because the input could be transmitted to the reducer as itself, and
whatever transformations on the input were applied by the Map function could
instead be applied by the Reduce function at the reducer for that output.

2.6.5 When Not All Inputs Are Present

Example 2.15 describes a problem where we know every possible input is pre-
sent, because we can define the input set to be those pictures that actually
exist in the dataset. However, as discussed at the end of Section 2.6.3, there
are problems like computing the join, where the graph of inputs and outputs
describes inputs that might exist, and outputs that are only made when at least
one of the inputs exists in the dataset. In fact, for the join, both inputs related
to an output must exist if we are to make that output.

An algorithm for a problem where outputs can be missing still needs a
mapping schema. The justification is that all inputs, or any subset of them,
might be present, so an algorithm without a mapping schema would not be
able to produce every possible output if all the inputs related to that output
happened to be present, and yet no reducer covered that output.

The only way the absence of some inputs makes a difference is that we
may wish to rethink the desired value of the reducer size ¢ when we select an
algorithm from the family of possible algorithms. Especially, if the value of ¢
we select is that number such that we can be sure the input will just fit in main
memory, then we may wish to increase ¢ to take into account that some fraction
of the inputs are not really there.

Example 2.16: Suppose that we know we can execute the Reduce function
in main memory on a key and its associated list of ¢ values. However, we also
know that only 5% of the possible inputs are really present in the data set.
Then a mapping schema for reducer size ¢ will really send about ¢/20 of the
inputs that exist to each reducer. Put another way, we could use the algorithm
for reducer size 20g and expect that an average of ¢ inputs will actually appear
on the list for each reducer. We can thus choose 20q as the reducer size, or since
there will be some randomness in the number of inputs actually appearing at

2.6. COMPLEXITY THEORY FOR MAPREDUCE 61

each reducer, we might wish to pick a slightly smaller value of reducer size, such
as 18¢. O

2.6.6 Lower Bounds on Replication Rate

The family of similarity-join algorithms described in Example 2.15 lets us trade
off communication against the reducer size, and through reducer size to trade
communication against parallelism or against the ability to execute the Reduce
function in main memory. How do we know we are getting the best possible
tradeoff? We can only know we have the minimum possible communication if
we can prove a matching lower bound. Using existence of a mapping schema as
the starting point, we can often prove such a lower bound. Here is an outline
of the technique.

1. Prove an upper bound on how many outputs a reducer with ¢ inputs can
cover. Call this bound g(q). This step can be difficult, but for examples
like similarity join, it is actually quite simple.

2. Determine the total number of outputs produced by the problem.

3. Suppose that there are k reducers, and the ith reducer has ¢; < g inputs.
Observe that Zle g(g;) must be no less than the number of outputs
computed in step (2).

4. Manipulate the inequality from (3) to get a lower bound on Zi-c:l G-
Often, the trick used at this step is to replace some factors of g; by their
upper bound ¢, but leave a single factor of ¢; in the term for 3.

5. Since Zle q; is the total communication from Map tasks to Reduce tasks,
divide the lower bound from (4) on this quantity by the number of inputs.
The result is a lower bound on the replication rate.

Example 2.17: This sequence of steps may seem mysterious, but let us con-
sider the similarity join as an example that we hope will make things clear.
Recall that in Example 2.15 we gave an upper bound on the replication rate
r of r < 2p/q, where p was the number of inputs and ¢ was the reducer size.
We shall show a lower bound on r that is half that amount, which implies that,
although improvements to the algorithm might be possible, any reduction in
communication for a given reducer size will be by a factor of 2 at most.

For step (1), observe that if a reducer gets ¢ inputs, it cannot cover more
than (g), or approximately ¢?/2 outputs. For step (2), we know there are a
total of (127), or approximately p?/2 outputs that each must be covered. The
inequality constructed at step (3) is thus

k
> @ /2=p)2
1=1

62 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

or, multiplying both sides by 2,

>_a = (2.1)

Now, we must do the manipulation of step (4). Following the hint, we note
that there are two factors of ¢; in each term on the left of Equation (2.1), so
we replace one factor by ¢ and leave the other as ¢;. Since ¢ > ¢;, we can only
increase the left side by doing so, and thus the inequality continues to hold:

k
¢y ¢ >p
1=1

or, dividing by ¢:

k
Z%’ > p*/q (2.2)

The final step, which is step (5), is to divide both sides of Equation 2.2 by
p, the number of inputs. As a result, the left side, which is (Zle q:)/p is equal
to the replication rate, and the right side becomes p/q. That is, we have proved
the lower bound on 7:

r>p/q

As claimed, this shows that the family of algorithms from Example 2.15 all have
a replication rate that is at most twice the lowest possible replication rate. O

2.6.7 Case Study: Matrix Multiplication

In this section we shall apply the lower-bound technique to one-pass matrix-
multiplication algorithms. We saw one such algorithm in Section 2.3.10, but
that is only an extreme case of a family of possible algorithms. In particular,
for that algorithm, a reducer corresponds to a single element of the output
matrix. Just as we grouped inputs in the similarity-join problem to reduce the
communication at the expense of a larger reducer size, we can group rows and
columns of the two input matrices into bands. Each pair consisting of a band of
rows of the first matrix and a band of columns of the second matrix is used by
one reducer to produce a square of elements of the output matrix. An example
is suggested by Fig. 2.11.

In more detail, suppose we want to compute M N = P, and all three matrices
are n X n. Group the rows of M into g bands of n/g rows each, and group the
columns of N into g bands of n/g columns each. This grouping is as suggested
by Fig. 2.11. Keys correspond to two groups (bands), one from M and one
from N.

The Map Function: For each element of M, the Map function generates g
key-value pairs. The value in each case is the element itself, together with its

2.6. COMPLEXITY THEORY FOR MAPREDUCE 63

Figure 2.11: Dividing matrices into bands to reduce communication

row and column number so it can be identified by the Reduce function. The
key is the group to which the element belongs, paired with any of the groups
of the matrix N. Similarly, for each element of N, the Map function generates
g key-value pairs. The key is the group of that element paired with any of the
groups of M, and the value is the element itself plus its row and column.

The Reduce Function: The reducer corresponding to the key (4, j), where ¢
is a group of M and j is a group of N, gets a value list consisting of all the
elements in the ith band of M and the jth band of N. It thus has all the
values it needs to compute the elements of P whose row is one of those rows
comprising the ith band of M and whose column is one of those comprising the
jth band of N. For instance, Fig. 2.11 suggests the third group of M and the
fourth group of N, combining to compute a square of P at the reducer (3,4).

Each reducer gets n(n/g) elements from each of the two matrices, so ¢ =
2n?/g. The replication rate is g, since each element of each matrix is sent to
g reducers. That is, r = g. Combining r = g with ¢ = 2n?/g we can conclude
that r = 2n2?/q. That is, just as for similarity join, the replication rate varies
inversely with the reducer size.

It turns out that this upper bound on replication rate is also a lower bound.
That is, we cannot do better than the family of algorithms we described above
in a single round of MapReduce. Interestingly, we shall see that we can get a
lower total communication for the same reducer size, if we use two passes of
MapReduce as we discussed in Section 2.3.9. We shall not give the complete
proof of the lower bound, but will suggest the important elements.

For step (1) we need to get an upper bound on how many outputs a reducer
of size ¢ can cover. First, notice that if a reducer gets some of the elements in
a row of M, but not all of them, then the elements of that row are useless; the
reducer cannot produce any output in that row of P. Similarly, if a reducer
receives some but not all of a column of NV, these inputs are also useless. Thus,
we may assume that the best mapping schema will send to each reducer some
number of full rows of M and some number of full columns of N. This reducer

64 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

is then capable of producing output element p;; if and only if it has received
the entire ith row of M and the entire kth column of N. The remainder of the
argument for step (1) is to prove that the largest number of outputs are covered
when the reducer receives the same number of rows as columns. We leave this
part as an exercise.

However, assuming a reducer receives k rows of M and k columns of N,
then ¢ = 2nk, and k? outputs are covered. That is, g(q), the maximum number
of outputs covered by a reducer that receives g inputs, is ¢ /4n>.

For step (2), we know the number of outputs is n?. In step (3) we observe
that if there are k reducers, with the ith reducer receiving ¢; < g inputs, then

k
> ai/4n* > n’
=1
or

k
>z ant
1=1

From this inequality, you can derive
r>2n?/q

We leave the algebraic manipulation, which is similar to that in Example 2.17,
as an exercise.

Now, let us consider the generalization of the two-pass matrix-multiplication
algorithm that we described in Section 2.3.9. First, notice that we could have
designed the first pass to use one reducer for each triple (i, 7, k). This reducer
would get only the two elements m;; and n;;. We can generalize this idea to
use reducers that get larger sets of elements from each matrix; these sets of
elements form squares within their respective matrices. The idea is suggested
by Fig. 2.12. We may divide the rows and columns of both input matrices M
and N into g groups of n/g rows or columns each. The intersections of the
groups partition each matrix into g2 squares of n?/g? elements each.

The square of M corresponding to set of rows I and set of columns J com-
bines with the square of N corresponding to set of rows J and set of columns
K. These two squares compute some of the terms that are needed to produce
the square of the output matrix P that has set of rows I and set of columns K.
However, these two squares do not compute the full value of these elements of
P; rather they produce a contribution to the sum. Other pairs of squares, one
from M and one from N, contribute to the same square of P. These contribu-
tions are suggested in Fig. 2.12. There, we see how all the squares of M with
a fixed value for set of rows I pair with all the squares of N that have a fixed
value for the set of columns K by letting the set J vary.

So in the first pass, we compute the products of the square (I, J) of M with
the square (J, K) of N, for all I, J, and K. Then, in the second pass, for each

2.6. COMPLEXITY THEORY FOR MAPREDUCE 65

.
P

Figure 2.12: Partitioning matrices into squares for a two-pass MapReduce al-
gorithm

I and K we sum the products over all possible sets J. In more detail, the first
MapReduce job does the following.

The Map Function: The keys are triples of sets of rows and/or column num-
bers (I, J, K). Suppose the element m;; belongs to group of rows I and group
of columns J. Then from m;; we generate g key-value pairs with value equal to
m;;, together with its row and column numbers, 7 and j, to identify the matrix
element. There is one key-value pair for each key (I, J, K), where K can be any
of the g groups of columns of N. Similarly, from element n;; of N, if j belongs
to group J and k to group K, the Map function generates g key-value pairs
with value consisting of njx, j, and k, and with keys (I, J, K) for any group I.
The Reduce Function: The reducer corresponding to (I, J, K) receives as
input all the elements m;; where ¢ is in I and j is in J, and it also receives all
the elements n;j, where j is in J and £ is in K. It computes

Tigk = Z mMi;Njk
jin J
forall 7in I and k in K.

Notice that the replication rate for the first MapReduce job is g, and the to-
tal communication is therefore 2gn?. Also notice that each reducer gets 2n?/g>
inputs, so ¢ = 2n?/¢?. Equivalently, g = n/2/q. Thus, the total communica-
tion 2gn? can be written in terms of ¢ as 2v/2n%/,/7.

66 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

The second MapReduce job is simple; it sums up the x;5;’s over all sets J.

The Map Function: We assume that the Map tasks execute at whatever
compute nodes executed the Reduce tasks of the previous job. Thus, no com-
munication is needed between the jobs. The Map function takes as input one
element x;j;, which we assume the previous reducers have left labeled with i
and k so we know to what element of matrix P this term contributes. One
key-value pair is generated. The key is (i, k) and the value is z; .

The Reduce Function: The Reduce function simply sums the values associ-
ated with key (4, k) to compute the output element Pj.

The communication between the Map and Reduce tasks of the second job is
gn?, since there are n possible values of i, n possible values of k, and g possible
values of the set J, and each z; i is communicated only once. If we recall from
our analysis of the first MapReduce job that g = nﬁ , we can write the
communication for the second job as n?g = v/2n? /+/@. This amount is exactly
half the communication for the first job, so the total communication for the
two-pass algorithm is 3v/2n?/ \/q. Although we shall not examine this point
here, it turns out that we can do slightly better if we divide the matrices M
and N not into squares but into rectangles that are twice as long on one side
as on the other. In that case, we get the slightly smaller constant 4 in place
of 3v/2 = 4.24, and we get a two-pass algorithm with communication equal to
4n?/.\/q.

Now, recall that the communication cost we computed for the one-pass
algorithm is 4n*/q. We may as well assume ¢ is less than n?, or else we can
just use a serial algorithm at one compute node and not use MapReduce at all.
Thus, n3/ V/q is smaller than n*/q, and if ¢ is close to its minimum possible
value of 2n,'% then the two-pass algorithm beats the one-pass algorithm by a
factor of O(y/n) in communication. Moreover, we can expect the difference
in communication to be the significant cost difference. Both algorithms do
the same O(n3) arithmetic operations. The two-pass method naturally has
more overhead managing tasks than does the one-job method. On the other
hand, the second pass of the two-pass algorithm applies a Reduce function
that is associative and commutative. Thus, it might be possible to save some
communication cost by using a combiner on that pass.

2.6.8 Exercises for Section 2.6
Exercise 2.6.1: Describe the graphs that model the following problems.
(a) The multiplication of an n X n matrix by a vector of length n.

(b) The natural join of R(A, B) and S(B,C), where A, B, and C have do-

mains of sizes a, b, and ¢, respectively.

101f g is less than 2n, then a reducer cannot get even one row and one column, and therefore
cannot compute any outputs at all.

2.7. SUMMARY OF CHAPTER 2 67

¢) The grouping and aggregation on the relation R(A, B), where A is the
g g gereg
grouping attribute and B is aggregated by the MAX operation. Assume
A and B have domains of size a and b, respectively.

! Exercise 2.6.2: Provide the details of the proof that a one-pass matrix-
multiplication algorithm requires replication rate at least r > 2n?/q, including:

(a) The proof that, for a fixed reducer size, the maximum number of outputs
are covered by a reducer when that reducer receives an equal number of
rows of M and columns of N.

(b) The algebraic manipulation needed, starting with Zle q? > 4nt.

!! Exercise 2.6.3: Suppose our inputs are bit strings of length b, and the outputs
correspond to pairs of strings at Hamming distance 1.1

(a) Prove that a reducer of size ¢ can cover at most (¢/2)log, ¢ outputs.
(b) Use part (a) to show the lower bound on replication rate: r > b/ log, q.

(c) Show that there are algorithms with replication rate as given by part (b)
for the cases ¢ = 2, ¢ = 2°, and ¢ = 2¥/2.

2.7 Summary of Chapter 2

4 Cluster Computing: A common architecture for very large-scale applica-
tions is a cluster of compute nodes (processor chip, main memory, and
disk). Compute nodes are mounted in racks, and the nodes on a rack are
connected, typically by gigabit Ethernet. Racks are also connected by a
high-speed network or switch.

4 Distributed File Systems: An architecture for very large-scale file sys-
tems has developed recently. Files are composed of chunks of about 64
megabytes, and each chunk is replicated several times, on different com-
pute nodes or racks.

4 MapReduce: This programming system allows one to exploit parallelism
inherent in cluster computing, and manages the hardware failures that
can occur during a long computation on many nodes. Many Map tasks
and many Reduce tasks are managed by a Master process. Tasks on a
failed compute node are rerun by the Master.

4 The Map Function: This function is written by the user. It takes a
collection of input objects and turns each into zero or more key-value
pairs. Keys are not necessarily unique.

1 Bit strings have Hamming distance 1 if they differ in exactly one bit position. You may
look ahead to Section 3.5.6 for the general definition.

68

CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

4 The Reduce Function: A MapReduce programming system sorts all the

key-value pairs produced by all the Map tasks, forms all the values asso-
ciated with a given key into a list and distributes key-list pairs to Reduce
tasks. Each Reduce task combines the elements on each list, by applying
the function written by the user. The results produced by all the Reduce
tasks form the output of the MapReduce process.

Reducers: 1t is often convenient to refer to the application of the Reduce
function to a single key and its associated value list as a “reducer.”

Hadoop: This programming system is an open-source implementation of a
distributed file system (HDFS, the Hadoop Distributed File System) and
MapReduce (Hadoop itself). It is available through the Apache Founda-
tion.

Managing Compute-Node Failures: MapReduce systems support restart
of tasks that fail because their compute node, or the rack containing
that node, fail. Because Map and Reduce tasks deliver their output only
after they finish, it is possible to restart a failed task without concern for
possible repetition of the effects of that task. It is necessary to restart the
entire job only if the node at which the Master executes fails.

Applications of MapReduce: While not all parallel algorithms are suitable
for implementation in the MapReduce framework, there are simple im-
plementations of matrix-vector and matrix-matrix multiplication. Also,
the principal operators of relational algebra are easily implemented in
MapReduce.

Workflow Systems: MapReduce has been generalized to systems that sup-
port any acyclic collection of functions, each of which can be instantiated
by any number of tasks, each responsible for executing that function on
a portion of the data.

Recursive Workflows: When implementing a recursive collection of func-
tions, it is not always possible to preserve the ability to restart any failed
task, because recursive tasks may have produced output that was con-
sumed by another task before the failure. A number of schemes for check-
pointing parts of the computation to allow restart of single tasks, or restart
all tasks from a recent point, have been proposed.

Communication-Cost: Many applications of MapReduce or similar sys-
tems do very simple things for each task. Then, the dominant cost is
usually the cost of transporting data from where it is created to where
it is used. In these cases, efficiency of a MapReduce algorithm can be
estimated by calculating the sum of the sizes of the inputs to all the
tasks.

2.8. REFERENCES FOR CHAPTER 2 69

4+ Multiway Joins: It is sometimes more efficient to replicate tuples of the
relations involved in a join and have the join of three or more relations
computed as a single MapReduce job. The technique of Lagrangean mul-
tipliers can be used to optimize the degree of replication for each of the
participating relations.

4 Star Joins: Analytic queries often involve a very large fact table joined
with smaller dimension tables. These joins can always be done efficiently
by the multiway-join technique. An alternative is to distribute the fact
table and replicate the dimension tables permanently, using the same
strategy as would be used if we were taking the multiway join of the fact
table and every dimension table.

4 Replication Rate and Reducer Size: It is often convenient to measure
communication by the replication rate, which is the communication per
input. Also, the reducer size is the maximum number of inputs associated
with any reducer. For many problems, it is possible to derive a lower
bound on replication rate as a function of the reducer size.

4 Representing Problems as Graphs: It is possible to represent many prob-
lems that are amenable to MapReduce computation by a graph in which
nodes represent inputs and outputs. An output is connected to all the
inputs that are needed to compute that output.

4 Mapping Schemas: Given the graph of a problem, and given a reducer size,
a mapping schema is an assignment of the inputs to one or more reducers
so that no reducer is assigned more inputs than the reducer size permits,
and yet for every output there is some reducer that gets all the inputs
needed to compute that output. The requirement that there be a mapping
schema for any MapReduce algorithm is a good expression of what makes
MapReduce algorithms different from general parallel computations.

4+ Matriz Multiplication by MapReduce: There is a family of one-pass Map-
Reduce algorithms that performs multiplication of n X n matrices with
the minimum possible replication rate r = 2n?/q, where ¢ is the reducer
size. On the other hand, a two-pass MapReduce algorithm for the same
problem with the same reducer size can use up to a factor of n less com-
munication.

2.8 References for Chapter 2

GFS, the Google File System, was described in [10]. The paper on Google’s
MapReduce is [8]. Information about Hadoop and HDFS can be found at [11].
More detail on relations and relational algebra can be found in [16].

Clustera is covered in [9]. Hyracks (previously called Hyrax) is from [4].
The Dryad system [13] has similar capabilities, but requires user creation of

70 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

parallel tasks. That responsibility was automated through the introduction of
DryadLINQ [17]. For a discussion of cluster implementation of recursion, see
[1]. Pregel is from [14].

A different approach to recursion was taken in HaLoop [5]. There, recursion
is seen as an iteration, with the output of one round being input to the next
round. Efficiency is obtained by managing the location of the intermediate data
and the tasks that implement each round.

There are a number of other systems built on a distributed file system and/or
MapReduce, which have not been covered here, but may be worth knowing
about. [6] describes BigTable, a Google implementation of an object store of
very large size. A somewhat different direction was taken at Yahoo! with Pnuts
[7]. The latter supports a limited form of transaction processing, for example.

PIG [15] is an implementation of relational algebra on top of Hadoop. Sim-
ilarly, Hive [12] implements a restricted form of SQL on top of Hadoop.

The communication-cost model for MapReduce algorithms and the optimal
implementations of multiway joins is from [3]. The material on replication rate,
reducer size, and their relationship is from [2]. Solutions to Exercises 2.6.2 and
2.6.3 can be found there.

1. F.N. Afrati, V. Borkar, M. Carey, A. Polyzotis, and J.D. Ullman, “Clus-
ter computing, recursion, and Datalog,” to appear in Proc. Datalog 2.0
Workshop, Elsevier, 2011.

2. F.N. Afrati, A. Das Sarma, S. Salihoglu, and J.D. Ullman, “Upper and
lower bounds on the cost of a MapReduce computation.” to appear in
Proc. Intl. Conf. on Very Large Databases, 2013. Also available as CoRR,
abs/1206.4377.

3. F.N. Afrati and J.D. Ullman, “Optimizing joins in a MapReduce environ-
ment,” Proc. Thirteenth Intl. Conf. on Extending Database Technology,
2010.

4. V. Borkar and M. Carey, “Hyrax: demonstrating a new foundation for
data-parallel computation,”

http://asterix.ics.uci.edu/pub/hyraxdemo.pdf

Univ. of California, Irvine, 2010.

5. Y. Bu, B. Howe, M. Balazinska, and M. Ernst, “HalLoop: efficient iter-
ative data processing on large clusters,” Proc. Intl. Conf. on Very Large
Databases, 2010.

6. F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R.E. Gruber, “Bigtable: a distributed storage
system for structured data,” ACM Transactions on Computer Systems
26:2, pp. 1-26, 2008.

2.8.

10.

11.
12.
13.

14.

15.

16.

17.

REFERENCES FOR CHAPTER 2 71

. B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-

non, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts: Ya-
hoo!’s hosted data serving platform,” PVLDB 1:2, pp. 1277-1288, 2008.

. J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Comm. ACM 51:1, pp. 107113, 2008.

. D.J. DeWitt, E. Paulson, E. Robinson, J.F. Naughton, J. Royalty, S.

Shankar, and A. Krioukov, “Clustera: an integrated computation and
data management system,” PVLDB 1:1, pp. 28-41, 2008.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
19th ACM Symposium on Operating Systems Principles, 2003.

hadoop.apache.org, Apache Foundation.
hadoop.apache.org/hive, Apache Foundation.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad: dis-
tributed data-parallel programs from sequential building blocks,” Proceed-
ings of the 2nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems, pp. 59-72, ACM, 2007.

G. Malewicz, M.N. Austern, A.J.C. Sik, J.C. Denhert, H. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
Proc. ACM SIGMOD Conference, 2010.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” Proc. ACM SIGMOD Con-
ference, pp. 1099-1110, 2008.

J.D. Ullman and J. Widom, A First Course in Database Systems, Third
Edition, Prentice-Hall, Upper Saddle River, NJ, 2008.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, I. Erlingsson, P.K. Gunda, and
J. Currey, “DryadLINQ: a system for general-purpose distributed data-
parallel computing using a high-level language,” OSDI, pp. 1-14, USENIX
Association, 2008.

72 CHAPTER 2. MAPREDUCE AND THE NEW SOFTWARE STACK

Chapter 3

Finding Similar Items

A fundamental data-mining problem is to examine data for “similar” items. We
shall take up applications in Section 3.1, but an example would be looking at a
collection of Web pages and finding near-duplicate pages. These pages could be
plagiarisms, for example, or they could be mirrors that have almost the same
content but differ in information about the host and about other mirrors.

We begin by phrasing the problem of similarity as one of finding sets with
a relatively large intersection. We show how the problem of finding textually
similar documents can be turned into such a set problem by the technique known
as “shingling.” Then, we introduce a technique called “minhashing,” which
compresses large sets in such a way that we can still deduce the similarity of
the underlying sets from their compressed versions. Other techniques that work
when the required degree of similarity is very high are covered in Section 3.9.

Another important problem that arises when we search for similar items of
any kind is that there may be far too many pairs of items to test each pair for
their degree of similarity, even if computing the similarity of any one pair can be
made very easy. That concern motivates a technique called “locality-sensitive
hashing,” for focusing our search on pairs that are most likely to be similar.

Finally, we explore notions of “similarity” that are not expressible as inter-
section of sets. This study leads us to consider the theory of distance measures
in arbitrary spaces. It also motivates a general framework for locality-sensitive
hashing that applies for other definitions of “similarity.”

3.1 Applications of Near-Neighbor Search

We shall focus initially on a particular notion of “similarity”: the similarity of
sets by looking at the relative size of their intersection. This notion of similarity
is called “Jaccard similarity,” and will be introduced in Section 3.1.1. We then
examine some of the uses of finding similar sets. These include finding textually
similar documents and collaborative filtering by finding similar customers and
similar products. In order to turn the problem of textual similarity of documents

73

74 CHAPTER 3. FINDING SIMILAR ITEMS

into one of set intersection, we use a technique called “shingling,” which is
introduced in Section 3.2.

3.1.1 Jaccard Similarity of Sets

The Jaccard similarity of sets S and T is |S N T|/|S U T, that is, the ratio
of the size of the intersection of S and T to the size of their union. We shall
denote the Jaccard similarity of S and T by SIM(S, T).

Example 3.1: In Fig. 3.1 we see two sets S and T'. There are three elements
in their intersection and a total of eight elements that appear in .S or T" or both.
Thus, SIM(S,T) =3/8. O

T

Figure 3.1: Two sets with Jaccard similarity 3/8

3.1.2 Similarity of Documents

An important class of problems that Jaccard similarity addresses well is that
of finding textually similar documents in a large corpus such as the Web or a
collection of news articles. We should understand that the aspect of similarity
we are looking at here is character-level similarity, not “similar meaning,” which
requires us to examine the words in the documents and their uses. That problem
is also interesting but is addressed by other techniques, which we hinted at in
Section 1.3.1. However, textual similarity also has important uses. Many of
these involve finding duplicates or near duplicates. First, let us observe that
testing whether two documents are exact duplicates is easy; just compare the
two documents character-by-character, and if they ever differ then they are not
the same. However, in many applications, the documents are not identical, yet
they share large portions of their text. Here are some examples:

3.1. APPLICATIONS OF NEAR-NEIGHBOR SEARCH (0]

Plagiarism

Finding plagiarized documents tests our ability to find textual similarity. The
plagiarizer may extract only some parts of a document for his own. He may alter
a few words and may alter the order in which sentences of the original appear.
Yet the resulting document may still contain 50% or more of the original. No
simple process of comparing documents character by character will detect a
sophisticated plagiarism.

Mirror Pages

It is common for important or popular Web sites to be duplicated at a number
of hosts, in order to share the load. The pages of these mirror sites will be
quite similar, but are rarely identical. For instance, they might each contain
information associated with their particular host, and they might each have
links to the other mirror sites but not to themselves. A related phenomenon
is the appropriation of pages from one class to another. These pages might
include class notes, assignments, and lecture slides. Similar pages might change
the name of the course, year, and make small changes from year to year. It
is important to be able to detect similar pages of these kinds, because search
engines produce better results if they avoid showing two pages that are nearly
identical within the first page of results.

Articles from the Same Source

It is common for one reporter to write a news article that gets distributed,
say through the Associated Press, to many newspapers, which then publish
the article on their Web sites. Each newspaper changes the article somewhat.
They may cut out paragraphs, or even add material of their own. They most
likely will surround the article by their own logo, ads, and links to other articles
at their site. However, the core of each newspaper’s page will be the original
article. News aggregators, such as Google News, try to find all versions of such
an article, in order to show only one, and that task requires finding when two
Web pages are textually similar, although not identical.!

3.1.3 Collaborative Filtering as a Similar-Sets Problem

Another class of applications where similarity of sets is very important is called
collaborative filtering, a process whereby we recommend to users items that were
liked by other users who have exhibited similar tastes. We shall investigate
collaborative filtering in detail in Section 9.3, but for the moment let us see
some common examples.

INews aggregation also involves finding articles that are about the same topic, even though
not textually similar. This problem too can yield to a similarity search, but it requires
techniques other than Jaccard similarity of sets.

76 CHAPTER 3. FINDING SIMILAR ITEMS

On-Line Purchases

Amazon.com has millions of customers and sells millions of items. Its database
records which items have been bought by which customers. We can say two cus-
tomers are similar if their sets of purchased items have a high Jaccard similarity.
Likewise, two items that have sets of purchasers with high Jaccard similarity
will be deemed similar. Note that, while we might expect mirror sites to have
Jaccard similarity above 90%, it is unlikely that any two customers have Jac-
card similarity that high (unless they have purchased only one item). Even a
Jaccard similarity like 20% might be unusual enough to identify customers with
similar tastes. The same observation holds for items; Jaccard similarities need
not be very high to be significant.

Collaborative filtering requires several tools, in addition to finding similar
customers or items, as we discuss in Chapter 9. For example, two Amazon
customers who like science-fiction might each buy many science-fiction books,
but only a few of these will be in common. However, by combining similarity-
finding with clustering (Chapter 7), we might be able to discover that science-
fiction books are mutually similar and put them in one group. Then, we can
get a more powerful notion of customer-similarity by asking whether they made
purchases within many of the same groups.

Movie Ratings

Netflix records which movies each of its customers rented, and also the ratings
assigned to those movies by the customers. We can see movies as similar if they
were rented or rated highly by many of the same customers, and see customers
as similar if they rented or rated highly many of the same movies. The same
observations that we made for Amazon above apply in this situation: similarities
need not be high to be significant, and clustering movies by genre will make
things easier.

When our data consists of ratings rather than binary decisions (bought/did
not buy or liked/disliked), we cannot rely simply on sets as representations of
customers or items. Some options are:

1. Ignore low-rated customer/movie pairs; that is, treat these events as if
the customer never watched the movie.

2. When comparing customers, imagine two set elements for each movie,
“liked” and “hated.” If a customer rated a movie highly, put the “liked”
for that movie in the customer’s set. If they gave a low rating to a movie,
put “hated” for that movie in their set. Then, we can look for high Jaccard
similarity among these sets. We can do a similar trick when comparing
movies.

3. If ratings are 1-to-5-stars, put a movie in a customer’s set n times if
they rated the movie n-stars. Then, use Jaccard similarity for bags when
measuring the similarity of customers. The Jaccard similarity for bags

o—

3.2. SHINGLING OF DOCUMENTS T

B and C is defined by counting an element n times in the intersection if
n is the minimum of the number of times the element appears in B and
C. In the union, we count the element the sum of the number of times it
appears in B and in C.?

Example 3.2: The bag-similarity of bags {a,a,a,b} and {a,a,b,b,c} is 1/3.
The intersection counts a twice and b once, so its size is 3. The size of the
union of two bags is always the sum of the sizes of the two bags, or 9 in this
case. Since the highest possible Jaccard similarity for bags is 1/2, the score
of 1/3 indicates the two bags are quite similar, as should be apparent from an
examination of their contents. O

3.1.4 Exercises for Section 3.1

Exercise 3.1.1: Compute the Jaccard similarities of each pair of the following
three sets: {1,2,3,4}, {2,3,5,7}, and {2,4,6}.

Exercise 3.1.2: Compute the Jaccard bag similarity of each pair of the fol-
lowing three bags: {1,1,1,2}, {1,1,2,2,3}, and {1,2,3,4}.

Exercise 3.1.3: Suppose we have a universal set U of n elements, and we
choose two subsets S and T at random, each with m of the n elements. What
is the expected value of the Jaccard similarity of S and T'7

3.2 Shingling of Documents

The most effective way to represent documents as sets, for the purpose of iden-
tifying lexically similar documents is to construct from the document the set
of short strings that appear within it. If we do so, then documents that share
pieces as short as sentences or even phrases will have many common elements
in their sets, even if those sentences appear in different orders in the two docu-
ments. In this section, we introduce the simplest and most common approach,
shingling, as well as an interesting variation.

3.2.1 k-Shingles

A document is a string of characters. Define a k-shingle for a document to be
any substring of length k£ found within the document. Then, we may associate

2 Although the union for bags is normally (e.g., in the SQL standard) defined to have the
sum of the number of copies in the two bags, this definition causes some inconsistency with
the Jaccard similarity for sets. Under this definition of bag union, the maximum Jaccard
similarity is 1/2, not 1, since the union of a set with itself has twice as many elements as the
intersection of the same set with itself. If we prefer to have the Jaccard similarity of a set
with itself be 1, we can redefine the union of bags to have each element appear the maximum
number of times it appears in either of the two bags. This change does not simply double the
similarity in each case, but it also gives a reasonable measure of bag similarity.

78 CHAPTER 3. FINDING SIMILAR ITEMS

with each document the set of k-shingles that appear one or more times within
that document.

Example 3.3: Suppose our document D is the string abcdabd, and we pick
k = 2. Then the set of 2-shingles for D is {ab,bc, cd,da, bd}.

Note that the substring ab appears twice within D, but appears only once
as a shingle. A variation of shingling produces a bag, rather than a set, so each
shingle would appear in the result as many times as it appears in the document.
However, we shall not use bags of shingles here. O

There are several options regarding how white space (blank, tab, newline,
etc.) is treated. It probably makes sense to replace any sequence of one or more
white-space characters by a single blank. That way, we distinguish shingles that
cover two or more words from those that do not.

Example 3.4: If we use kK = 9, but eliminate whitespace altogether, then we
would see some lexical similarity in the sentences “The plane was ready for
touch down”. and “The quarterback scored a touchdown”. However, if we
retain the blanks, then the first has shingles touch dow and ouch down, while
the second has touchdown. If we eliminated the blanks, then both would have
touchdown. 0O

3.2.2 Choosing the Shingle Size

We can pick k to be any constant we like. However, if we pick k£ too small, then
we would expect most sequences of k£ characters to appear in most documents.
If so, then we could have documents whose shingle-sets had high Jaccard simi-
larity, yet the documents had none of the same sentences or even phrases. As
an extreme example, if we use k = 1, most Web pages will have most of the
common characters and few other characters, so almost all Web pages will have
high similarity.

How large k should be depends on how long typical documents are and how
large the set of typical characters is. The important thing to remember is:

e k should be picked large enough that the probability of any given shingle
appearing in any given document is low.

Thus, if our corpus of documents is emails, picking & = 5 should be fine.
To see why, suppose that only letters and a general white-space character ap-
pear in emails (although in practice, most of the printable ASCII characters
can be expected to appear occasionally). If so, then there would be 27° =
14,348,907 possible shingles. Since the typical email is much smaller than 14
million characters long, we would expect k = 5 to work well, and indeed it does.

However, the calculation is a bit more subtle. Surely, more than 27 charac-
ters appear in emails, However, all characters do not appear with equal proba-
bility. Common letters and blanks dominate, while ”z” and other letters that

3.2. SHINGLING OF DOCUMENTS 79

have high point-value in Scrabble are rare. Thus, even short emails will have
many 5-shingles consisting of common letters, and the chances of unrelated
emails sharing these common shingles is greater than would be implied by the
calculation in the paragraph above. A good rule of thumb is to imagine that
there are only 20 characters and estimate the number of k-shingles as 20*. For
large documents, such as research articles, choice k =9 is considered safe.

3.2.3 Hashing Shingles

Instead of using substrings directly as shingles, we can pick a hash function
that maps strings of length & to some number of buckets and treat the resulting
bucket number as the shingle. The set representing a document is then the
set of integers that are bucket numbers of one or more k-shingles that appear
in the document. For instance, we could construct the set of 9-shingles for a
document and then map each of those 9-shingles to a bucket number in the
range 0 to 232 — 1. Thus, each shingle is represented by four bytes instead
of nine. Not only has the data been compacted, but we can now manipulate
(hashed) shingles by single-word machine operations.

Notice that we can differentiate documents better if we use 9-shingles and
hash them down to four bytes than to use 4-shingles, even though the space used
to represent a shingle is the same. The reason was touched upon in Section 3.2.2.
If we use 4-shingles, most sequences of four bytes are unlikely or impossible to
find in typical documents. Thus, the effective number of different shingles is
much less than 232 — 1. If, as in Section 3.2.2, we assume only 20 characters are
frequent in English text, then the number of different 4-shingles that are likely
to occur is only (20)* = 160,000. However, if we use 9-shingles, there are many
more than 232 likely shingles. When we hash them down to four bytes, we can
expect almost any sequence of four bytes to be possible, as was discussed in
Section 1.3.2.

3.2.4 Shingles Built from Words

An alternative form of shingle has proved effective for the problem of identifying
similar news articles, mentioned in Section 3.1.2. The exploitable distinction for
this problem is that the news articles are written in a rather different style than
are other elements that typically appear on the page with the article. News
articles, and most prose, have a lot of stop words (see Section 1.3.1), the most
common words such as “and,” “you,” “to,” and so on. In many applications,
we want to ignore stop words, since they don’t tell us anything useful about
the article, such as its topic.

However, for the problem of finding similar news articles, it was found that
defining a shingle to be a stop word followed by the next two words, regardless
of whether or not they were stop words, formed a useful set of shingles. The
advantage of this approach is that the news article would then contribute more
shingles to the set representing the Web page than would the surrounding ele-

80 CHAPTER 3. FINDING SIMILAR ITEMS

ments. Recall that the goal of the exercise is to find pages that had the same
articles, regardless of the surrounding elements. By biasing the set of shingles
in favor of the article, pages with the same article and different surrounding
material have higher Jaccard similarity than pages with the same surrounding
material but with a different article.

Example 3.5: An ad might have the simple text “Buy Sudzo.” However, a
news article with the same idea might read something like “A spokesperson
for the Sudzo Corporation revealed today that studies have shown it is
good for people to buy Sudzo products.” Here, we have italicized all the
likely stop words, although there is no set number of the most frequent words
that should be considered stop words. The first three shingles made from a
stop word and the next two following are:

A spokesperson for
for the Sudzo
the Sudzo Corporation

There are nine shingles from the sentence, but none from the “ad.” 0O

3.2.5 Exercises for Section 3.2

Exercise 3.2.1: What are the first ten 3-shingles in the first sentence of Sec-
tion 3.27

Exercise 3.2.2: If we use the stop-word-based shingles of Section 3.2.4, and
we take the stop words to be all the words of three or fewer letters, then what
are the shingles in the first sentence of Section 3.27

Exercise 3.2.3: What is the largest number of k-shingles a document of n
bytes can have? You may assume that the size of the alphabet is large enough
that the number of possible strings of length k is at least as n.

3.3 Similarity-Preserving Summaries of Sets

Sets of shingles are large. Even if we hash them to four bytes each, the space
needed to store a set is still roughly four times the space taken by the document.
If we have millions of documents, it may well not be possible to store all the
shingle-sets in main memory.3

Our goal in this section is to replace large sets by much smaller represen-
tations called “signatures.” The important property we need for signatures is
that we can compare the signatures of two sets and estimate the Jaccard sim-
ilarity of the underlying sets from the signatures alone. It is not possible that

3There is another serious concern: even if the sets fit in main memory, the number of pairs
may be too great for us to evaluate the similarity of each pair. We take up the solution to
this problem in Section 3.4.

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 81

the signatures give the exact similarity of the sets they represent, but the esti-
mates they provide are close, and the larger the signatures the more accurate
the estimates. For example, if we replace the 200,000-byte hashed-shingle sets
that derive from 50,000-byte documents by signatures of 1000 bytes, we can
usually get within a few percent.

3.3.1 Matrix Representation of Sets

Before explaining how it is possible to construct small signatures from large
sets, it is helpful to visualize a collection of sets as their characteristic matriz.
The columns of the matrix correspond to the sets, and the rows correspond to
elements of the universal set from which elements of the sets are drawn. There
is a 1 in row 7 and column c if the element for row r is a member of the set for
column c. Otherwise the value in position (r,¢) is 0.

FElement | Sl | SQ | Sg | S4

a 1 0 0 1

0 0 1 0
c 0 1 0 1
d 1 0 1 1
e 0 0 1 0

Figure 3.2: A matrix representing four sets

Example 3.6: In Fig. 3.2 is an example of a matrix representing sets chosen
from the universal set {a, b, c,d, e}. Here, S1 = {a,d}, So = {c}, S3 = {b,d, e},
and Sy = {a, ¢, d}. The top row and leftmost columns are not part of the matrix,
but are present only to remind us what the rows and columns represent. O

It is important to remember that the characteristic matrix is unlikely to be
the way the data is stored, but it is useful as a way to visualize the data. For one
reason not to store data as a matrix, these matrices are almost always sparse
(they have many more 0’s than 1’s) in practice. It saves space to represent a
sparse matrix of 0’s and 1’s by the positions in which the 1’s appear. For another
reason, the data is usually stored in some other format for other purposes.

As an example, if rows are products, and columns are customers, represented
by the set of products they bought, then this data would really appear in a
database table of purchases. A tuple in this table would list the item, the
purchaser, and probably other details about the purchase, such as the date and
the credit card used.

3.3.2 Minhashing

The signatures we desire to construct for sets are composed of the results of a
large number of calculations, say several hundred, each of which is a “minhash”

82 CHAPTER 3. FINDING SIMILAR ITEMS

of the characteristic matrix. In this section, we shall learn how a minhash is
computed in principle, and in later sections we shall see how a good approxi-
mation to the minhash is computed in practice.

To minhash a set represented by a column of the characteristic matrix, pick
a permutation of the rows. The minhash value of any column is the number of
the first row, in the permuted order, in which the column has a 1.

Example 3.7: Let us suppose we pick the order of rows beadc for the matrix
of Fig. 3.2. This permutation defines a minhash function h that maps sets to
rows. Let us compute the minhash value of set S; according to h. The first
column, which is the column for set S7, has 0 in row b, so we proceed to row e,
the second in the permuted order. There is again a 0 in the column for Sy, so
we proceed to row a, where we find a 1. Thus. h(S7) = a.

FElement | Sl | SQ | Sg | 54
b 0 0 1 0
e 0 0 1 0
a 1 0 0 1
d 1 0 1 1
c 0 1 0 1

Figure 3.3: A permutation of the rows of Fig. 3.2

Although it is not physically possible to permute very large characteristic
matrices, the minhash function A implicitly reorders the rows of the matrix of
Fig. 3.2 so it becomes the matrix of Fig. 3.3. In this matrix, we can read off
the values of h by scanning from the top until we come to a 1. Thus, we see
that h(S2) = ¢, h(S3) = b, and h(Sy) =a. O

3.3.3 Minhashing and Jaccard Similarity

There is a remarkable connection between minhashing and Jaccard similarity
of the sets that are minhashed.

e The probability that the minhash function for a random permutation of
rows produces the same value for two sets equals the Jaccard similarity
of those sets.

To see why, we need to picture the columns for those two sets. If we restrict
ourselves to the columns for sets S7 and Ss, then rows can be divided into three
classes:

1. Type X rows have 1 in both columns.

2. Type Y rows have 1 in one of the columns and 0 in the other.

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 83

3. Type Z rows have 0 in both columns.

Since the matrix is sparse, most rows are of type Z. However, it is the ratio
of the numbers of type X and type Y rows that determine both SIM(S7,S2)
and the probability that h(S1) = h(S2). Let there be z rows of type X and y
rows of type Y. Then SIM(S7, S2) = z/(x + y). The reason is that x is the size
of S1 NSy and = + y is the size of S U Ss.

Now, consider the probability that h(Sy) = h(S3). If we imagine the rows
permuted randomly, and we proceed from the top, the probability that we shall
meet a type X row before we meet a type Y row is z/(z + y). But if the
first row from the top other than type Z rows is a type X row, then surely
h(S1) = h(S2). On the other hand, if the first row other than a type Z row
that we meet is a type Y row, then the set with a 1 gets that row as its minhash
value. However the set with a 0 in that row surely gets some row further down
the permuted list. Thus, we know h(S7) # h(S2) if we first meet a type Y row.
We conclude the probability that h(S1) = h(S2) is z/(x + y), which is also the
Jaccard similarity of S; and Ss.

3.3.4 Minhash Signatures

Again think of a collection of sets represented by their characteristic matrix M.
To represent sets, we pick at random some number n of permutations of the
rows of M. Perhaps 100 permutations or several hundred permutations will do.
Call the minhash functions determined by these permutations hi,hs, ..., hy.
From the column representing set .S, construct the minhash signature for S, the
vector [hy(S), ha(S),. .., hn(S)]. We normally represent this list of hash-values
as a column. Thus, we can form from matrix M a signature matriz, in which
the éth column of M is replaced by the minhash signature for (the set of) the
ith column.

Note that the signature matrix has the same number of columns as M but
only n rows. Even if M is not represented explicitly, but in some compressed
form suitable for a sparse matrix (e.g., by the locations of its 1’s), it is normal
for the signature matrix to be much smaller than M.

3.3.5 Computing Minhash Signatures

It is not feasible to permute a large characteristic matrix explicitly. Even picking
a random permutation of millions or billions of rows is time-consuming, and
the necessary sorting of the rows would take even more time. Thus, permuted
matrices like that suggested by Fig. 3.3, while conceptually appealing, are not
implementable.

Fortunately, it is possible to simulate the effect of a random permutation by
a random hash function that maps row numbers to as many buckets as there
are rows. A hash function that maps integers 0,1,...,k — 1 to bucket numbers
0 through k£ —1 typically will map some pairs of integers to the same bucket and
leave other buckets unfilled. However, the difference is unimportant as long as

84 CHAPTER 3. FINDING SIMILAR ITEMS

k is large and there are not too many collisions. We can maintain the fiction
that our hash function h “permutes” row r to position h(r) in the permuted
order.

Thus, instead of picking n random permutations of rows, we pick n randomly
chosen hash functions hy, hs, ..., h, on the rows. We construct the signature
matrix by considering each row in their given order. Let SIG (4, ¢) be the element
of the signature matrix for the ith hash function and column c. Initially, set
SIG(i,¢) to oo for all ¢ and ¢. We handle row r by doing the following:

1. Compute hq(r), ha(r), ..., hn(r).
2. For each column c¢ do the following:

(a) If ¢ has 0 in row r, do nothing.

(b) However, if ¢ has 1 in row r, then for each i = 1,2,...,n set SIG(¢, ¢)
to the smaller of the current value of SIG(7, ¢) and h;(r).

Row || S1 | S2 | S35 | Ss||lz+1 mod5 | 3z+1 modbH
0 1 0 0 1 1 1
1 0 0 1 0 2 4
2 0 1 0 1 3 2
3 1 0 1 1 4 0
4 0 0 1 0 0 3

Figure 3.4: Hash functions computed for the matrix of Fig. 3.2

Example 3.8: Let us reconsider the characteristic matrix of Fig. 3.2, which
we reproduce with some additional data as Fig. 3.4. We have replaced the
letters naming the rows by integers 0 through 4. We have also chosen two hash
functions: hq(z) = z+1 mod 5 and he(z) = 3z+1 mod 5. The values of these
two functions applied to the row numbers are given in the last two columns of
Fig. 3.4. Notice that these simple hash functions are true permutations of the
rows, but a true permutation is only possible because the number of rows, 5, is
a prime. In general, there will be collisions, where two rows get the same hash
value.

Now, let us simulate the algorithm for computing the signature matrix.
Initially, this matrix consists of all co’s:

5| | S|
[C SN IO Ol INC O NN BN O]
[C SN IO Ol INC O NN BN O]

hy
ha

First, we consider row 0 of Fig. 3.4. We see that the values of hi(0) and
h2(0) are both 1. The row numbered 0 has 1’s in the columns for sets S; and

3.3. SIMILARITY-PRESERVING SUMMARIES OF SETS 85

Sy, so only these columns of the signature matrix can change. As 1 is less than
00, we do in fact change both values in the columns for S; and S;. The current
estimate of the signature matrix is thus:

[51] 52 | S | S
1 00 | 00 1
1 00 | 00 1

ho

Now, we move to the row numbered 1 in Fig. 3.4. This row has 1 only in
S3, and its hash values are hi(1) = 2 and ho(1) = 4. Thus, we set SIG(1, 3) to 2
and SIG(2,3) to 4. All other signature entries remain as they are because their
columns have 0 in the row numbered 1. The new signature matrix:

[S1 | Sz | S5 | S
1 oo | 2 1
1 oo | 4 1

hy
ha

The row of Fig. 3.4 numbered 2 has 1’s in the columns for S5 and Sy, and
its hash values are hq(2) = 3 and ha(2) = 2. We could change the values in the
signature for Sy, but the values in this column of the signature matrix, [1, 1], are
each less than the corresponding hash values [3, 2]. However, since the column
for Sy still has oo’s, we replace it by [3, 2], resulting in:

EACAENE
1 3 2 1
1 2 4 1

hy
ha

Next comes the row numbered 3 in Fig. 3.4. Here, all columns but Sy have
1, and the hash values are h1(3) = 4 and h3(3) = 0. The value 4 for hy exceeds
what is already in the signature matrix for all the columns, so we shall not
change any values in the first row of the signature matrix. However, the value
0 for hg is less than what is already present, so we lower SIG(2, 1), SIG(2, 3) and
SIG(2,4) to 0. Note that we cannot lower SIG(2,2) because the column for Sy in
Fig. 3.4 has 0 in the row we are currently considering. The resulting signature
matrix:

| 51| Sz | S | Sy

1 3 2 1

HEHHE
Finally, consider the row of Fig. 3.4 numbered 4. hy(4) = 0 and hq(4) = 3.
Since row 4 has 1 only in the column for S3, we only compare the current
signature column for that set, [2,0] with the hash values [0, 3]. Since 0 < 2, we

change SIG(1,3) to 0, but since 3 > 0 we do not change SIG(2,3). The final
signature matrix is:

[
[

hy
ha

w
=

Sy | S5]S
3
2

0 1
010

86 CHAPTER 3. FINDING SIMILAR ITEMS

We can estimate the Jaccard similarities of the underlying sets from this
signature matrix. Notice that columns 1 and 4 are identical, so we guess that
SIM(S1, S4) = 1.0. If we look at Fig. 3.4, we see that the true Jaccard similarity
of S; and Sy is 2/3. Remember that the fraction of rows that agree in the
signature matrix is only an estimate of the true Jaccard similarity, and this
example is much too small for the law of large numbers to assure that the
estimates are close. For additional examples, the signature columns for S7 and
S3 agree in half the rows (true similarity 1/4), while the signatures of S; and
So estimate 0 as their Jaccard similarity (the correct value). O

3.3.6 Exercises for Section 3.3

Exercise 3.3.1: Verify the theorem from Section 3.3.3, which relates the Jac-
card similarity to the probability of minhashing to equal values, for the partic-
ular case of Fig. 3.2.

(a) Compute the Jaccard similarity of each of the pairs of columns in Fig. 3.2.

! (b) Compute, for each pair of columns of that figure, the fraction of the 120
permutations of the rows that make the two columns hash to the same
value.

Exercise 3.3.2: Using the data from Fig. 3.4, add to the signatures of the
columns the values of the following hash functions:

(a) hs(z) =22 +4 mod 5.

(b) h4(z) =3z —1 mod 5.

FElement | Sl | SQ | Sg | 54

0 0 1 0 1
1 0 1 0 0
2 1 0 0 1
3 0 0 1 0
4 0 0 1 1
) 1 0 0 0

Figure 3.5: Matrix for Exercise 3.3.3

Exercise 3.3.3: In Fig. 3.5 is a matrix with six rows.

(a) Compute the minhash signature for each column if we use the following
three hash functions: hi(z) = 22 + 1 mod 6; he(z) = 3z + 2 mod 6;
hs(xz) =5z +2 mod 6.

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 87

(b) Which of these hash functions are true permutations?

(c) How close are the estimated Jaccard similarities for the six pairs of columns
to the true Jaccard similarities?

! Exercise 3.3.4: Now that we know Jaccard similarity is related to the proba-
bility that two sets minhash to the same value, reconsider Exercise 3.1.3. Can
you use this relationship to simplify the problem of computing the expected
Jaccard similarity of randomly chosen sets?

! Exercise 3.3.5: Prove that if the Jaccard similarity of two columns is 0, then
minhashing always gives a correct estimate of the Jaccard similarity.

!! Exercise 3.3.6: One might expect that we could estimate the Jaccard simi-
larity of columns without using all possible permutations of rows. For example,
we could only allow cyclic permutations; i.e., start at a randomly chosen row
r, which becomes the first in the order, followed by rows r + 1, r + 2, and so
on, down to the last row, and then continuing with the first row, second row,
and so on, down to row r — 1. There are only n such permutations if there are
n rows. However, these permutations are not sufficient to estimate the Jaccard
similarity correctly. Give an example of a two-column matrix where averaging
over all the cyclic permutations does not give the Jaccard similarity.

o=

Exercise 3.3.7: Suppose we want to use a MapReduce framework to compute
minhash signatures. If the matrix is stored in chunks that correspond to some
columns, then it is quite easy to exploit parallelism. Each Map task gets some
of the columns and all the hash functions, and computes the minhash signatures
of its given columns. However, suppose the matrix were chunked by rows, so
that a Map task is given the hash functions and a set of rows to work on. Design
Map and Reduce functions to exploit MapReduce with data in this form.

3.4 Locality-Sensitive Hashing for Documents

Even though we can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of documents, it
still may be impossible to find the pairs with greatest similarity efficiently. The
reason is that the number of pairs of documents may be too large, even if there
are not too many documents.

Example 3.9: Suppose we have a million documents, and we use signatures
of length 250. Then we use 1000 bytes per document for the signatures, and
the entire data fits in a gigabyte — less than a typical main memory of a laptop.
However, there are (1’003’000) or half a trillion pairs of documents. If it takes a
microsecond to compute the similarity of two signatures, then it takes almost
six days to compute all the similarities on that laptop. O

88 CHAPTER 3. FINDING SIMILAR ITEMS

If our goal is to compute the similarity of every pair, there is nothing we
can do to reduce the work, although parallelism can reduce the elapsed time.
However, often we want only the most similar pairs or all pairs that are above
some lower bound in similarity. If so, then we need to focus our attention only
on pairs that are likely to be similar, without investigating every pair. There is
a general theory of how to provide such focus, called locality-sensitive hashing
(LSH) or near-neighbor search. In this section we shall consider a specific form
of LSH, designed for the particular problem we have been studying: documents,
represented by shingle-sets, then minhashed to short signatures. In Section 3.6
we present the general theory of locality-sensitive hashing and a number of
applications and related techniques.

3.4.1 LSH for Minhash Signatures

One general approach to LSH is to “hash” items several times, in such a way that
similar items are more likely to be hashed to the same bucket than dissimilar
items are. We then consider any pair that hashed to the same bucket for any
of the hashings to be a candidate pair. We check only the candidate pairs for
similarity. The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked. Those dissimilar pairs that
do hash to the same bucket are false positives; we hope these will be only a
small fraction of all pairs. We also hope that most of the truly similar pairs
will hash to the same bucket under at least one of the hash functions. Those
that do not are false negatives; we hope these will be only a small fraction of
the truly similar pairs.

If we have minhash signatures for the items, an effective way to choose the
hashings is to divide the signature matrix into b bands consisting of r rows
each. For each band, there is a hash function that takes vectors of r integers
(the portion of one column within that band) and hashes them to some large
number of buckets. We can use the same hash function for all the bands, but
we use a separate bucket array for each band, so columns with the same vector
in different bands will not hash to the same bucket.

Example 3.10: Figure 3.6 shows part of a signature matrix of 12 rows divided
into four bands of three rows each. The second and fourth of the explicitly
shown columns each have the column vector [0,2,1] in the first band, so they
will definitely hash to the same bucket in the hashing for the first band. Thus,
regardless of what those columns look like in the other three bands, this pair
of columns will be a candidate pair. It is possible that other columns, such as
the first two shown explicitly, will also hash to the same bucket according to
the hashing of the first band. However, since their column vectors are different,
[1,3,0] and [0, 2, 1], and there are many buckets for each hashing, we expect the
chances of an accidental collision to be very small. We shall normally assume
that two vectors hash to the same bucket if and only if they are identical.
Two columns that do not agree in band 1 have three other chances to become
a candidate pair; they might be identical in any one of these other bands.

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 89

10002
band 1 32122
01311
band 2
band 3
band 4

Figure 3.6: Dividing a signature matrix into four bands of three rows per band

However, observe that the more similar two columns are, the more likely it is
that they will be identical in some band. Thus, intuitively the banding strategy
makes similar columns much more likely to be candidate pairs than dissimilar
pairs. O

3.4.2 Analysis of the Banding Technique

Suppose we use b bands of r rows each, and suppose that a particular pair of
documents have Jaccard similarity s. Recall from Section 3.3.3 that the prob-
ability the minhash signatures for these documents agree in any one particular
row of the signature matrix is s. We can calculate the probability that these
documents (or rather their signatures) become a candidate pair as follows:

1. The probability that the signatures agree in all rows of one particular
band is s".

2. The probability that the signatures disagree in at least one row of a par-
ticular band is 1 — s".

3. The probability that the signatures disagree in at least one row of each
of the bands is (1 — s")°.

4. The probability that the signatures agree in all the rows of at least one
b

band, and therefore become a candidate pair, is 1 — (1 — s")°.

It may not be obvious, but regardless of the chosen constants b and r, this
function has the form of an S-curve, as suggested in Fig. 3.7. The threshold, that
is, the value of similarity s at which the probability of becoming a candidate
is 1/2, is a function of b and r. The threshold is roughly where the rise is
the steepest, and for large b and r there we find that pairs with similarity
above the threshold are very likely to become candidates, while those below the
threshold are unlikely to become candidates — exactly the situation we want.

90 CHAPTER 3. FINDING SIMILAR ITEMS

|

Probability
of becoming
a candidate

0 Jaccard similarity 1
of documents

Figure 3.7: The S-curve

An approximation to the threshold is (1/b)'/". For example, if b = 16 and
r = 4, then the threshold is approximately at s = 1/2, since the 4th root of
1/16 is 1/2.

Example 3.11: Let us consider the case b = 20 and r = 5. That is, we suppose
we have signatures of length 100, divided into twenty bands of five rows each.
Figure 3.8 tabulates some of the values of the function 1 — (1 — s°)?°. Notice
that the threshold, the value of s at which the curve has risen halfway, is just
slightly more than 0.5. Also notice that the curve is not exactly the ideal step
function that jumps from 0 to 1 at the threshold, but the slope of the curve
in the middle is significant. For example, it rises by more than 0.6 going from
s = 0.4 to s = 0.6, so the slope in the middle is greater than 3.

s 1—(1—sm)®
.006

047

.186

A70

.802

975

.9996

0 No ;e b

Figure 3.8: Values of the S-curve for b =20 and r =5

For example, at s = 0.8, 1 — (0.8)° is about 0.672. If you raise this number
to the 20th power, you get about 0.00035. Subtracting this fraction from 1

3.4. LOCALITY-SENSITIVE HASHING FOR DOCUMENTS 91

yields 0.99965. That is, if we consider two documents with 80% similarity, then
in any one band, they have only about a 33% chance of agreeing in all five rows
and thus becoming a candidate pair. However, there are 20 bands and thus 20
chances to become a candidate. Only roughly one in 3000 pairs that are as high
as 80% similar will fail to become a candidate pair and thus be a false negative.
O

3.4.3 Combining the Techniques

We can now give an approach to finding the set of candidate pairs for similar
documents and then discovering the truly similar documents among them. It
must be emphasized that this approach can produce false negatives — pairs of
similar documents that are not identified as such because they never become
a candidate pair. There will also be false positives — candidate pairs that are
evaluated, but are found not to be sufficiently similar.

1. Pick a value of k and construct from each document the set of k-shingles.
Optionally, hash the k-shingles to shorter bucket numbers.

2. Sort the document-shingle pairs to order them by shingle.

3. Pick a length n for the minhash signatures. Feed the sorted list to the
algorithm of Section 3.3.5 to compute the minhash signatures for all the
documents.

4. Choose a threshold ¢ that defines how similar documents have to be in
order for them to be regarded as a desired “similar pair.” Pick a number
of bands b and a number of rows 7 such that br = n, and the threshold
t is approximately (1/b)Y/". If avoidance of false negatives is important,
you may wish to select b and r to produce a threshold lower than ¢; if
speed is important and you wish to limit false positives, select b and r to
produce a higher threshold.

5. Construct candidate pairs by applying the LSH technique of Section 3.4.1.

6. Examine each candidate pair’s signatures and determine whether the frac-
tion of components in which they agree is at least ¢.

7. Optionally, if the signatures are sufficiently similar, go to the documents
themselves and check that they are truly similar, rather than documents
that, by luck, had similar signatures.

3.4.4 Exercises for Section 3.4

Exercise 3.4.1: Evaluate the S-curve 1 — (1 —s")? for s = 0.1,0.2,...,0.9, for
the following values of r and b:

e r =3 and b= 10.

o=

-

o=

92 CHAPTER 3. FINDING SIMILAR ITEMS

e r =6 and b = 20.
e r =5 and b= 50.

Exercise 3.4.2: For each of the (r,b) pairs in Exercise 3.4.1, compute the
threshold, that is, the value of s for which the value of 1—(1—3s")" is exactly 1/2.
How does this value compare with the estimate of (1/b)/" that was suggested
in Section 3.4.27

Exercise 3.4.3: Use the techniques explained in Section 1.3.5 to approximate
the S-curve 1 — (1 — s™)® when s" is very small.

Exercise 3.4.4: Suppose we wish to implement LSH by MapReduce. Specifi-
cally, assume chunks of the signature matrix consist of columns, and elements
are key-value pairs where the key is the column number and the value is the
signature itself (i.e., a vector of values).

(a) Show how to produce the buckets for all the bands as output of a single
MapReduce process. Hint: Remember that a Map function can produce
several key-value pairs from a single element.

(b) Show how another MapReduce process can convert the output of (a) to
a list of pairs that need to be compared. Specifically, for each column 4,
there should be a list of those columns j > ¢ with which ¢ needs to be
compared.

3.5 Distance Measures

We now take a short detour to study the general notion of distance measures.
The Jaccard similarity is a measure of how close sets are, although it is not
really a distance measure. That is, the closer sets are, the higher the Jaccard
similarity. Rather, 1 minus the Jaccard similarity is a distance measure, as we
shall see; it is called the Jaccard distance.

However, Jaccard distance is not the only measure of closeness that makes
sense. We shall examine in this section some other distance measures that have
applications. Then, in Section 3.6 we see how some of these distance measures
also have an LSH technique that allows us to focus on nearby points without
comparing all points. Other applications of distance measures will appear when
we study clustering in Chapter 7.

3.5.1 Definition of a Distance Measure

Suppose we have a set of points, called a space. A distance measure on this
space is a function d(z,y) that takes two points in the space as arguments and
produces a real number, and satisfies the following axioms:

1. d(z,y) > 0 (no negative distances).

3.5. DISTANCE MEASURES 93

2. d(xz,y) = 0 if and only if z = y (distances are positive, except for the
distance from a point to itself).

3. d(z,y) = d(y,x) (distance is symmetric).
4. d(z,y) < d(z,z) +d(z,y) (the triangle inequality).

The triangle inequality is the most complex condition. It says, intuitively, that
to travel from x to y, we cannot obtain any benefit if we are forced to travel via
some particular third point z. The triangle-inequality axiom is what makes all
distance measures behave as if distance describes the length of a shortest path
from one point to another.

3.5.2 Euclidean Distances

The most familiar distance measure is the one we normally think of as “dis-
tance.” An n-dimensional Euclidean space is one where points are vectors of n
real numbers. The conventional distance measure in this space, which we shall
refer to as the Lo-norm, is defined:

d([‘rl)an' ..,.Z'n], [ylayQa' .. ayn]) =

That is, we square the distance in each dimension, sum the squares, and take
the positive square root.

It is easy to verify the first three requirements for a distance measure are
satisfied. The Fuclidean distance between two points cannot be negative, be-
cause the positive square root is intended. Since all squares of real numbers are
nonnegative, any i such that x; # y; forces the distance to be strictly positive.
On the other hand, if x; = y; for all 7, then the distance is clearly 0. Symmetry
follows because (x; —y;)? = (y; — z;)?. The triangle inequality requires a good
deal of algebra to verify. However, it is well understood to be a property of
FEuclidean space: the sum of the lengths of any two sides of a triangle is no less
than the length of the third side.

There are other distance measures that have been used for Euclidean spaces.
For any constant r, we can define the L,-norm to be the distance measure d
defined by:

n

d([zlazQa R 7$n]; [y15y27 e aynD = (Z |:CZ - yi|T)1/T

i=1

The case r = 2 is the usual Lo-norm just mentioned. Another common distance
measure is the Li-norm, or Manhattan distance. There, the distance between
two points is the sum of the magnitudes of the differences in each dimension.
It is called “Manhattan distance” because it is the distance one would have to

94 CHAPTER 3. FINDING SIMILAR ITEMS

travel between points if one were constrained to travel along grid lines, as on
the streets of a city such as Manhattan.

Another interesting distance measure is the Lo,-norm, which is the limit
as r approaches infinity of the L,-norm. As r gets larger, only the dimension
with the largest difference matters, so formally, the Lo,-norm is defined as the
maximum of |z; — y;| over all dimensions 1.

Example 3.12: Consider the two-dimensional Euclidean space (the custom-
ary plane) and the points (2,7) and (6,4). The Lo-norm gives a distance
of /(2—6)2+ (7T—4)2 = V42 +32 = 5. The Li-norm gives a distance of
|2—6|+|7T—4] =4+ 3 =7. The Lo-norm gives a distance of

max(|2 — 6/,|7 — 4]) = max(4,3) = 4

O

3.5.3 Jaccard Distance

As mentioned at the beginning of the section, we define the Jaccard distance
of sets by d(z,y) = 1 — SIM(z, y). That is, the Jaccard distance is 1 minus the
ratio of the sizes of the intersection and union of sets x and y. We must verify
that this function is a distance measure.

1. d(z,y) is nonnegative because the size of the intersection cannot exceed
the size of the union.

2. d(z,y) =0 if x =y, because x Uz = x N & = x. However, if z # y, then
the size of © Ny is strictly less than the size of x U y, so d(x,y) is strictly
positive.

3. d(z,y) = d(y, z) because both union and intersection are symmetric; i.e.,
zUy=yUzandzNy=yNx.

4. For the triangle inequality, recall from Section 3.3.3 that SIM(x,y) is the
probability a random minhash function maps x and y to the same value.
Thus, the Jaccard distance d(z,y) is the probability that a random min-
hash function does not send x and y to the same value. We can therefore
translate the condition d(z,y) < d(z, z) + d(z,y) to the statement that if
h is a random minhash function, then the probability that h(x) # h(y)
is no greater than the sum of the probability that h(z) # h(z) and the
probability that h(z) # h(y). However, this statement is true because
whenever h(z) # h(y), at least one of h(x) and h(y) must be different
from h(z). They could not both be h(z), because then h(z) and h(y)
would be the same.

3.5. DISTANCE MEASURES 95

3.5.4 Cosine Distance

The cosine distance makes sense in spaces that have dimensions, including Eu-
clidean spaces and discrete versions of Euclidean spaces, such as spaces where
points are vectors with integer components or Boolean (0 or 1) components. In
such a space, points may be thought of as directions. We do not distinguish be-
tween a vector and a multiple of that vector. Then the cosine distance between
two points is the angle that the vectors to those points make. This angle will
be in the range 0 to 180 degrees, regardless of how many dimensions the space
has.

We can calculate the cosine distance by first computing the cosine of the
angle, and then applying the arc-cosine function to translate to an angle in the
0-180 degree range. Given two vectors x and y, the cosine of the angle between
them is the dot product x.y divided by the Lo-norms of x and y (i.e., their
Euclidean distances from the origin). Recall that the dot product of vectors

(21,22, .. 0] [Y1, Y2, - - Yn] 18 2?21 LiYi-

Example 3.13: Let our two vectors be z = [1,2, —1] and = [2,1, 1]. The dot
product z.y is 1 x 242 x 1+ (—1) x 1 = 3. The Ly-norm of both vectors is
V6. For example, has Lo-norm /12 + 22 + (1) = v/6. Thus, the cosine of
the angle between = and y is 3/(v/6v/6) or 1/2. The angle whose cosine is 1/2
is 60 degrees, so that is the cosine distance between x and y. O

We must show that the cosine distance is indeed a distance measure. We
have defined it so the values are in the range 0 to 180, so no negative distances
are possible. Two vectors have angle 0 if and only if they are the same direction.*
Symmetry is obvious: the angle between x and y is the same as the angle
between y and . The triangle inequality is best argued by physical reasoning.
One way to rotate from x to y is to rotate to z and thence to y. The sum of
those two rotations cannot be less than the rotation directly from z to y.

3.5.5 Edit Distance

This distance makes sense when points are strings. The distance between two
strings * = x129 -, and y = y1Y2 - - - Y 1S the smallest number of insertions
and deletions of single characters that will convert = to y.

Example 3.14: The edit distance between the strings * = abcde and y =
acfdeg is 3. To convert z to y:

1. Delete b.

2. Insert £ after c.

4Notice that to satisfy the second axiom, we have to treat vectors that are multiples of
one another, e.g. [1,2] and [3, 6], as the same direction, which they are. If we regarded these
as different vectors, we would give them distance 0 and thus violate the condition that only
d(z,x) is 0.

96 CHAPTER 3. FINDING SIMILAR ITEMS

3. Insert g after e.

No sequence of fewer than three insertions and/or deletions will convert x to y.
Thus, d(z,y) =3. O

Another way to define and calculate the edit distance d(z,y) is to compute
a longest common subsequence (LCS) of z and y. An LCS of z and y is a
string that is constructed by deleting positions from z and y, and that is as
long as any string that can be constructed that way. The edit distance d(z,y)
can be calculated as the length of x plus the length of y minus twice the length
of their LCS.

Example 3.15: The strings © = abcde and y = acfdeg from Example 3.14
have a unique LCS, which is acde. We can be sure it is the longest possible,
because it contains every symbol appearing in both x and y. Fortunately, these
common symbols appear in the same order in both strings, so we are able to
use them all in an LCS. Note that the length of = is 5, the length of y is 6, and
the length of their LCS is 4. The edit distance is thus 54+ 6 — 2 x 4 = 3, which
agrees with the direct calculation in Example 3.14.

For another example, consider z = aba and y = bab. Their edit distance is
2. For example, we can convert x to y by deleting the first a and then inserting
b at the end. There are two LCS’s: ab and ba. Each can be obtained by
deleting one symbol from each string. As must be the case for multiple LCS’s
of the same pair of strings, both LCS’s have the same length. Therefore, we
may compute the edit distance as 3+3—-2x2=2. 0O

Edit distance is a distance measure. Surely no edit distance can be negative,
and only two identical strings have an edit distance of 0. To see that edit
distance is symmetric, note that a sequence of insertions and deletions can be
reversed, with each insertion becoming a deletion, and vice versa. The triangle
inequality is also straightforward. One way to turn a string s into a string ¢
is to turn s into some string v and then turn w into ¢. Thus, the number of
edits made going from s to w, plus the number of edits made going from u to ¢
cannot be less than the smallest number of edits that will turn s into t.

3.5.6 Hamming Distance

Given a space of vectors, we define the Hamming distance between two vectors
to be the number of components in which they differ. It should be obvious
that Hamming distance is a distance measure. Clearly the Hamming distance
cannot be negative, and if it is zero, then the vectors are identical. The dis-
tance does not depend on which of two vectors we consider first. The triangle
inequality should also be evident. If z and z differ in m components, and z
and y differ in n components, then z and y cannot differ in more than m + n
components. Most commonly, Hamming distance is used when the vectors are
Boolean; they consist of 0’s and 1’s only. However, in principle, the vectors can
have components from any set.

o=

o—

3.5. DISTANCE MEASURES 97

Non-Euclidean Spaces

Notice that several of the distance measures introduced in this section are
not Euclidean spaces. A property of Euclidean spaces that we shall find
important when we take up clustering in Chapter 7 is that the average
of points in a Euclidean space always exists and is a point in the space.
However, consider the space of sets for which we defined the Jaccard dis-
tance. The notion of the “average” of two sets makes no sense. Likewise,
the space of strings, where we can use the edit distance, does not let us
take the “average” of strings.

Vector spaces, for which we suggested the cosine distance, may or may
not be Euclidean. If the components of the vectors can be any real num-
bers, then the space is Euclidean. However, if we restrict components to
be integers, then the space is not Euclidean. Notice that, for instance, we
cannot find an average of the vectors [1, 2] and [3, 1] in the space of vectors
with two integer components, although if we treated them as members of
the two-dimensional Euclidean space, then we could say that their average
was [2.0, 1.5].

Example 3.16: The Hamming distance between the vectors 10101 and 11110
is 3. That is, these vectors differ in the second, fourth, and fifth components,
while they agree in the first and third components. O

3.5.7 Exercises for Section 3.5

Exercise 3.5.1: On the space of nonnegative integers, which of the following
functions are distance measures? If so, prove it; if not, prove that it fails to
satisfy one or more of the axioms.

(a) max(z,y) = the larger of z and y.

(b) diff(z,y) = |x — y| (the absolute magnitude of the difference between x
and y).

(c) sum(x,y) =z +y.

Exercise 3.5.2: Find the L, and Ly distances between the points (5,6, 7) and
(8,2,4).

Exercise 3.5.3: Prove that if ¢ and j are any positive integers, and i < 7,
then the L; norm between any two points is greater than the L; norm between
those same two points.

Exercise 3.5.4: Find the Jaccard distances between the following pairs of
sets:

o—

o=

o—

98 CHAPTER 3. FINDING SIMILAR ITEMS

(a) {1,2,3,4} and {2,3,4,5}.
(b) {1,2,3} and {4,5,6).

Exercise 3.5.5: Compute the cosines of the angles between each of the fol-
lowing pairs of vectors.®

(a

(b
(c
(d

(3,—-1,2) and (—2,3,1).

)
) (1,2,3) and (2,4,6).

) (5,0,—4) and (-1, —6,2).

) (0,1,1,0,1,1) and (0,0,1,0,0,0).

Exercise 3.5.6: Prove that the cosine distance between any two vectors of 0’s
and 1’s, of the same length, is at most 90 degrees.

Exercise 3.5.7: Find the edit distances (using only insertions and deletions)
between the following pairs of strings.

(a) abcdef and bdaefc.
(b) abccdabc and acbdcab.
(c) abcdef and baedfc.

Exercise 3.5.8: There are a number of other notions of edit distance available.
For instance, we can allow, in addition to insertions and deletions, the following
operations:

i. Mutation, where one symbol is replaced by another symbol. Note that a
mutation can always be performed by an insertion followed by a deletion,
but if we allow mutations, then this change counts for only 1, not 2, when
computing the edit distance.

it. Transposition, where two adjacent symbols have their positions swapped.
Like a mutation, we can simulate a transposition by one insertion followed
by one deletion, but here we count only 1 for these two steps.

Repeat Exercise 3.5.7 if edit distance is defined to be the number of insertions,
deletions, mutations, and transpositions needed to transform one string into
another.

Exercise 3.5.9: Prove that the edit distance discussed in Exercise 3.5.8 is
indeed a distance measure.

Exercise 3.5.10: Find the Hamming distances between each pair of the fol-
lowing vectors: 000000, 110011, 010101, and 011100.

5Note that what we are asking for is not precisely the cosine distance, but from the cosine
of an angle, you can compute the angle itself, perhaps with the aid of a table or library
function.

3.6. THE THEORY OF LOCALITY-SENSITIVE FUNCTIONS 99

3.6 The Theory of Locality-Sensitive Functions

The LSH technique developed in Section 3.4 is one example of a family of func-
tions (the minhash functions) that can be combined (by the banding technique)
to distinguish strongly between pairs at a low distance from pairs at a high dis-
tance. The steepness of the S-curve in Fig. 3.7 reflects how effectively we can
avoid false positives and false negatives among the candidate pairs.

Now, we shall explore other families of functions, besides the minhash func-
tions, that can serve to produce candidate pairs efficiently. These functions can
apply to the space of sets and the Jaccard distance, or to another space and/or
another distance measure. There are three conditions that we need for a family
of functions:

1. They must be more likely to make close pairs be candidate pairs than
distant pairs. We make this notion precise in Section 3.6.1.

2. They must be statistically independent, in the sense that it is possible to
estimate the probability that two or more functions will all give a certain
response by the product rule for independent events.

3. They must be efficient, in two ways:

(a) They must be able to identify candidate pairs in time much less
than the time it takes to look at all pairs. For example, minhash
functions have this capability, since we can hash sets to minhash
values in time proportional to the size of the data, rather than the
square of the number of sets in the data. Since sets with common
values are colocated in a bucket, we have implicitly produced the
candidate pairs for a single minhash function in time much less than
the number of pairs of sets.

(b) They must be combinable to build functions that are better at avoid-
ing false positives and negatives, and the combined functions must
also take time that is much less than the number of pairs. For ex-
ample, the banding technique of Section 3.4.1 takes single minhash
functions, which satisfy condition 3a but do not, by themselves have
the S-curve behavior we want, and produces from a number of min-
hash functions a combined function that has the S-curve shape.

Our first step is to define “locality-sensitive functions” generally. We then
see how the idea can be applied in several applications. Finally, we discuss
how to apply the theory to arbitrary data with either a cosine distance or a
Euclidean distance measure.

3.6.1 Locality-Sensitive Functions

For the purposes of this section, we shall consider functions that take two items
and render a decision about whether these items should be a candidate pair.

100 CHAPTER 3. FINDING SIMILAR ITEMS

In many cases, the function f will “hash” items, and the decision will be based
on whether or not the result is equal. Because it is convenient to use the
notation f(x) = f(y) to mean that f(z,y) is “yes; make x and y a candidate
pair,” we shall use f(x) = f(y) as a shorthand with this meaning. We also use
f(x) # f(y) to mean “do not make = and y a candidate pair unless some other
function concludes we should do so.”

A collection of functions of this form will be called a family of functions.
For example, the family of minhash functions, each based on one of the possible
permutations of rows of a characteristic matrix, form a family.

Let d; < da be two distances according to some distance measure d. A
family F of functions is said to be (di, da, p1, p2)-sensitive if for every f in F:

1. If d(z,y) < dj, then the probability that f(z) = f(y) is at least p;.

2. If d(z,y) > da, then the probability that f(x) = f(y) is at most ps.

T N

Probabilty
of being

declared a
candidate Py fo-ooo-- 1o

Distance ———»
Figure 3.9: Behavior of a (dy, da, p1, p2)-sensitive function

Figure 3.9 illustrates what we expect about the probability that a given
function in a (dy, da, p1, p2)-sensitive family will declare two items to be a can-
didate pair. Notice that we say nothing about what happens when the distance
between the items is strictly between d; and ds, but we can make d; and ds as
close as we wish. The penalty is that typically p; and ps are then close as well.
As we shall see, it is possible to drive p; and ps apart while keeping d; and ds
fixed.

3.6.2 Locality-Sensitive Families for Jaccard Distance

For the moment, we have only one way to find a family of locality-sensitive
functions: use the family of minhash functions, and assume that the distance

3.6. THE THEORY OF LOCALITY-SENSITIVE FUNCTIONS 101

measure is the Jaccard distance. As before, we interpret a minhash function h
to make = and y a candidate pair if and only if h(x) = h(y).

e The family of minhash functions is a (dy, d2, 1 —dy, 1 — dz)-sensitive family
for any d; and ds, where 0 < d; < dy < 1.

The reason is that if d(x,y) < dy, where d is the Jaccard distance, then
SIM(z,y) = 1 —d(z,y) > 1 — d;. But we know that the Jaccard similarity
of x and y is equal to the probability that a minhash function will hash x and
y to the same value. A similar argument applies to ds or any distance.

Example 3.17: We could let d; = 0.3 and ds = 0.6. Then we can assert that
the family of minhash functions is a (0.3,0.6,0.7, 0.4)-sensitive family. That is,
if the Jaccard distance between = and y is at most 0.3 (i.e., SIM(z,y) > 0.7)
then there is at least a 0.7 chance that a minhash function will send x and y to
the same value, and if the Jaccard distance between x and y is at least 0.6 (i.e.,
SIM(z,y) < 0.4), then there is at most a 0.4 chance that x and y will be sent
to the same value. Note that we could make the same assertion with another
choice of d; and ds; only dy < ds is required. O

3.6.3 Amplifying a Locality-Sensitive Family

Suppose we are given a (di, dz, p1, p2)-sensitive family F. We can construct a
new family F’ by the AND-construction on F, which is defined as follows. Each
member of F/ consists of members of F for some fixed r. If f is in F’, and f is
constructed from the set {f1, fa,..., fr} of members of F, we say f(z) = f(y)
if and only if f;(z) = fi(y) for alli =1,2,...,r. Notice that this construction
mirrors the effect of the r rows in a single band: the band makes x and y a
candidate pair if every one of the r rows in the band say that = and y are equal
(and therefore a candidate pair according to that row).

Since the members of F are independently chosen to make a member of F,
we can assert that F’ is a (dl, da, (p1)", (pg)r)—sensitive family. That is, for any
p, if p is the probability that a member of F will declare (z,y) to be a candidate
pair, then the probability that a member of F/ will so declare is p”.

There is another construction, which we call the OR-construction, that turns
a (dy,ds, p1,p2)-sensitive family F into a (dl,dg,l —(1=p)b1 -1~ pg)b)—
sensitive family F’. Each member f of F’ is constructed from b members of F,
say f1, fa,..., fo. We define f(z) = f(y) if and only if f;(x) = fi(y) for one or
more values of i. The OR~construction mirrors the effect of combining several
bands: = and y become a candidate pair if any band makes them a candidate
pair.

If p is the probability that a member of F will declare (z, y) to be a candidate
pair, then 1—p is the probability it will not so declare. (1—p)® is the probability
that none of f1, fa,..., fy will declare (z,y) a candidate pair, and 1 — (1 — p)®
is the probability that at least one f; will declare (x,y) a candidate pair, and
therefore that f will declare (x,y) to be a candidate pair.

102 CHAPTER 3. FINDING SIMILAR ITEMS

Notice that the AND-construction lowers all probabilities, but if we choose F
and r judiciously, we can make the small probability ps get very close to 0, while
the higher probability p; stays significantly away from 0. Similarly, the OR-
construction makes all probabilities rise, but by choosing F and b judiciously,
we can make the larger probability approach 1 while the smaller probability
remains bounded away from 1. We can cascade AND- and OR-constructions in
any order to make the low probability close to 0 and the high probability close
to 1. Of course the more constructions we use, and the higher the values of r
and b that we pick, the larger the number of functions from the original family
that we are forced to use. Thus, the better the final family of functions is, the
longer it takes to apply the functions from this family.

Example 3.18: Suppose we start with a family F. We use the AND-construc-
tion with » = 4 to produce a family F;. We then apply the OR-construction
to F1 with b = 4 to produce a third family F5. Note that the members of Fy
each are built from 16 members of F, and the situation is analogous to starting
with 16 minhash functions and treating them as four bands of four rows each.

p [1-(1-p")*
0.2 0.0064
03| 0.0320
04| 0.0985
05| 02275
0.6 | 0.4260
0.7] 0.6666
0.8| 0.8785
0.9 | 0.9860

Figure 3.10: Effect of the 4-way AND-construction followed by the 4-way OR-
construction

The 4-way AND-function converts any probability p into p*. When we
follow it by the 4-way OR-construction, that probability is further converted
into 1 — (1 —p*)*. Some values of this transformation are indicated in Fig. 3.10.
This function is an S-curve, staying low for a while, then rising steeply (although
not too steeply; the slope never gets much higher than 2), and then leveling
off at high values. Like any S-curve, it has a fizedpoint, the value of p that is
left unchanged when we apply the function of the S-curve. In this case, the
fixedpoint is the value of p for which p = 1 — (1 — p*)%. We can see that the
fixedpoint is somewhere between 0.7 and 0.8. Below that value, probabilities are
decreased, and above it they are increased. Thus, if we pick a high probability
above the fixedpoint and a low probability below it, we shall have the desired
effect that the low probability is decreased and the high probability is increased.

Suppose F is the minhash functions, regarded as a (0.2,0.6,0.8,0.4)-sens-
itive family. Then Fso, the family constructed by a 4-way AND followed by a

3.6. THE THEORY OF LOCALITY-SENSITIVE FUNCTIONS 103

4-way OR, is a (0.2,0.6,0.8785, 0.0985)-sensitive family, as we can read from the
rows for 0.8 and 0.4 in Fig. 3.10. By replacing F by F5, we have reduced both
the false-negative and false-positive rates, at the cost of making application of
the functions take 16 times as long. O

p | (-0-pY
0.1 0.0140
0.2 0.1215
0.3 0.3334
0.4 0.5740
0.5 0.7725
0.6 0.9015
0.7 0.9680
0.8 0.9936

Figure 3.11: Effect of the 4-way OR-construction followed by the 4-way AND-
construction

Example 3.19: For the same cost, we can apply a 4-way OR-construction
followed by a 4-way AND-construction. Figure 3.11 gives the transformation
on probabilities implied by this construction. For instance, suppose that F is a
(0.2,0.6,0.8,0.4)-sensitive family. Then the constructed family is a

(0.2,0.6,0.9936, 0.5740)-sensitive

family. This choice is not necessarily the best. Although the higher probability
has moved much closer to 1, the lower probability has also raised, increasing
the number of false positives. O

Example 3.20: We can cascade constructions as much as we like. For exam-
ple, we could use the construction of Example 3.18 on the family of minhash
functions and then use the construction of Example 3.19 on the resulting family.
The constructed family would then have functions each built from 256 minhash
functions. It would, for instance transform a (0.2, 0.8,0.8,0.2)-sensitive family
into a (0.2,0.8,0.9991285, 0.0000004)-sensitive family. O

3.6.4 Exercises for Section 3.6

Exercise 3.6.1: What is the effect on probability of starting with the family
of minhash functions and applying:

(a) A 2-way AND construction followed by a 3-way OR construction.

(b) A 3-way OR construction followed by a 2-way AND construction.

o—

.
o=

104 CHAPTER 3. FINDING SIMILAR ITEMS

(¢) A 2-way AND coustruction followed by a 2-way OR construction, followed
by a 2-way AND construction.

(d) A 2-way OR construction followed by a 2-way AND construction, followed
by a 2-way OR construction followed by a 2-way AND construction.

Exercise 3.6.2: Find the fixedpoints for each of the functions constructed in
Exercise 3.6.1.

Exercise 3.6.3: Any function of probability p, such as that of Fig. 3.10, has
a slope given by the derivative of the function. The maximum slope is where
that derivative is a maximum. Find the value of p that gives a maximum slope
for the S-curves given by Fig. 3.10 and Fig. 3.11. What are the values of these
maximum slopes?

Exercise 3.6.4: Generalize Exercise 3.6.3 to give, as a function of r and b, the
point of maximum slope and the value of that slope, for families of functions
defined from the minhash functions by:

(a) An r-way AND construction followed by a b-way OR construction.

(b) A b-way OR construction followed by an r-way AND construction.

3.7 LSH Families for Other Distance Measures

There is no guarantee that a distance measure has a locality-sensitive family of
hash functions. So far, we have only seen such families for the Jaccard distance.
In this section, we shall show how to construct locality-sensitive families for
Hamming distance, the cosine distance and for the normal Euclidean distance.

3.7.1 LSH Families for Hamming Distance

It is quite simple to build a locality-sensitive family of functions for the Ham-
ming distance. Suppose we have a space of d-dimensional vectors, and h(z,y)
denotes the Hamming distance between vectors z and y. If we take any one
position of the vectors, say the ith position, we can define the function f;(x)
to be the ith bit of vector . Then f;(x) = f;(y) if and only if vectors x and
y agree in the ith position. Then the probability that f;(x) = fi(y) for a ran-
domly chosen i is exactly 1 — h(x,y)/d; i.e., it is the fraction of positions in
which z and y agree.

This situation is almost exactly like the one we encountered for minhashing.
Thus, the family F consisting of the functions {f1, f2,..., fa} is a

(d1,d2,1 —dy/d,1 — dy/d)-sensitive

family of hash functions, for any diy < da. There are only two differences
between this family and the family of minhash functions.

3.7. LSH FAMILIES FOR OTHER DISTANCE MEASURES 105

1. While Jaccard distance runs from 0 to 1, the Hamming distance on a
vector space of dimension d runs from 0 to d. It is therefore necessary to
scale the distances by dividing by d, to turn them into probabilities.

2. While there is essentially an unlimited supply of minhash functions, the
size of the family F for Hamming distance is only d.

The first point is of no consequence; it only requires that we divide by d at
appropriate times. The second point is more serious. If d is relatively small,
then we are limited in the number of functions that can be composed using
the AND and OR constructions, thereby limiting how steep we can make the
S-curve be.

3.7.2 Random Hyperplanes and the Cosine Distance

Recall from Section 3.5.4 that the cosine distance between two vectors is the
angle between the vectors. For instance, we see in Fig. 3.12 two vectors z
and y that make an angle 6 between them. Note that these vectors may be
in a space of many dimensions, but they always define a plane, and the angle
between them is measured in this plane. Figure 3.12 is a “top-view” of the
plane containing x and y.

Figure 3.12: Two vectors make an angle 0

Suppose we pick a hyperplane through the origin. This hyperplane intersects
the plane of x and y in a line. Figure 3.12 suggests two possible hyperplanes,
one whose intersection is the dashed line and the other’s intersection is the
dotted line. To pick a random hyperplane, we actually pick the normal vector
to the hyperplane, say v. The hyperplane is then the set of points whose dot
product with v is 0.

106 CHAPTER 3. FINDING SIMILAR ITEMS

First, consider a vector v that is normal to the hyperplane whose projection
is represented by the dashed line in Fig. 3.12; that is, and y are on different
sides of the hyperplane. Then the dot products v.x and v.y will have different
signs. If we assume, for instance, that v is a vector whose projection onto the
plane of x and y is above the dashed line in Fig. 3.12, then v.z is positive,
while v.y is negative. The normal vector v instead might extend in the opposite
direction, below the dashed line. In that case v.x is negative and v.y is positive,
but the signs are still different.

On the other hand, the randomly chosen vector v could be normal to a
hyperplane like the dotted line in Fig. 3.12. In that case, both v.z and v.y
have the same sign. If the projection of v extends to the right, then both dot
products are positive, while if v extends to the left, then both are negative.

What is the probability that the randomly chosen vector is normal to a
hyperplane that looks like the dashed line rather than the dotted line? All
angles for the line that is the intersection of the random hyperplane and the
plane of x and y are equally likely. Thus, the hyperplane will look like the
dashed line with probability #/180 and will look like the dotted line otherwise.

Thus, each hash function f in our locality-sensitive family F is built from
a randomly chosen vector vy. Given two vectors z and y, say f(z) = f(y) if
and only if the dot products v¢.x and vy.y have the same sign. Then F is a
locality-sensitive family for the cosine distance. The parameters are essentially
the same as for the Jaccard-distance family described in Section 3.6.2, except
the scale of distances is 0-180 rather than 0-1. That is, F is a

(dy,ds, (180 — dy1)/180, (180 — dz)/180)-sensitive

family of hash functions. From this basis, we can amplify the family as we wish,
just as for the minhash-based family.

3.7.3 Sketches

Instead of chosing a random vector from all possible vectors, it turns out to be
sufficiently random if we restrict our choice to vectors whose components are
+1 and —1. The dot product of any vector x with a vector v of +1’s and —1’s
is formed by adding the components of = where v is +1 and then subtracting
the other components of x — those where v is —1.

If we pick a collection of random vectors, say wvi,vs,...,v,, then we can
apply them to an arbitrary vector x by computing v1.x,vs.2, . .., v,.2 and then
replacing any positive value by +1 and any negative value by —1. The result is
called the sketch of . You can handle 0’s arbitrarily, e.g., by chosing a result +1
or —1 at random. Since there is only a tiny probability of a zero dot product,
the choice has essentially no effect.

Example 3.21: Suppose our space consists of 4-dimensional vectors, and we
pick three random vectors: vy = [+1,—1,+1,+1], v2 = [-1,4+1,—1,+1], and
vs = [+1,+1,—1, —1]. For the vector x = [3,4,5, 6], the sketch is [+1,+1,—1].

3.7. LSH FAMILIES FOR OTHER DISTANCE MEASURES 107

That is, v;.¢ = 3—4+5+6 = 10. Since the result is positive, the first component
of the sketch is +1. Similarly, vo.z = 2 and v3.z = —4, so the second component
of the sketch is +1 and the third component is —1.

Consider the vector y = [4,3,2,1]. We can similarly compute its sketch to
be [+1,—1,+1]. Since the sketches for z and y agree in 1/3 of the positions,
we estimate that the angle between them is 120 degrees. That is, a randomly
chosen hyperplane is twice as likely to look like the dashed line in Fig. 3.12 than
like the dotted line.

The above conclusion turns out to be quite wrong. We can calculate the
cosine of the angle between = and y to be z.y, which is

6xXx1+5x2+4x3+3x4=40

divided by the magnitudes of the two vectors. These magnitudes are

V62 + 52 442 + 32 = 9.274

and /12 + 22 4+ 32 + 42 = 5.477. Thus, the cosine of the angle between 2 and
y is 0.7875, and this angle is about 38 degrees. However, if you look at all
16 different vectors v of length 4 that have +1 and —1 as components, you
find that there are only four of these whose dot products with x and y have
a different sign, namely vy, vs, and their complements [+1,—1,+1, —1] and
[-1,—1,41,+1]. Thus, had we picked all sixteen of these vectors to form a
sketch, the estimate of the angle would have been 180/4 = 45 degrees. O

3.7.4 LSH Families for Euclidean Distance

Now, let us turn to the Euclidean distance (Section 3.5.2), and see if we can
develop a locality-sensitive family of hash functions for this distance. We shall
start with a 2-dimensional Euclidean space. Each hash function f in our family
F will be associated with a randomly chosen line in this space. Pick a constant
a and divide the line into segments of length a, as suggested by Fig. 3.13, where
the “random” line has been oriented to be horizontal.

The segments of the line are the buckets into which function f hashes points.
A point is hashed to the bucket in which its projection onto the line lies. If the
distance d between two points is small compared with a, then there is a good
chance the two points hash to the same bucket, and thus the hash function f
will declare the two points equal. For example, if d = a/2, then there is at least
a 50% chance the two points will fall in the same bucket. In fact, if the angle
0 between the randomly chosen line and the line connecting the points is large,
then there is an even greater chance that the two points will fall in the same
bucket. For instance, if 6 is 90 degrees, then the two points are certain to fall
in the same bucket.

However, suppose d is larger than a. In order for there to be any chance of
the two points falling in the same bucket, we need dcosf < a. The diagram of
Fig. 3.13 suggests why this requirement holds. Note that even if dcosf < a it

108 CHAPTER 3. FINDING SIMILAR ITEMS

Points at
distance d

Bucket
width a

Figure 3.13: Two points at distance d > a have a small chance of being hashed
to the same bucket

is still not certain that the two points will fall in the same bucket. However,
we can guarantee the following. If d > 2a, then there is no more than a 1/3
chance the two points fall in the same bucket. The reason is that for cosf to
be less than 1/2, we need to have 0 in the range 60 to 90 degrees. If 6 is in the
range 0 to 60 degrees, then cos@ is more than 1/2. But since 6 is the smaller
angle between two randomly chosen lines in the plane, € is twice as likely to be
between 0 and 60 as it is to be between 60 and 90.

We conclude that the family F just described forms a (a/2,2a,1/2,1/3)-
sensitive family of hash functions. That is, for distances up to a/2 the proba-
bility is at least 1/2 that two points at that distance will fall in the same bucket,
while for distances at least 2a the probability points at that distance will fall in
the same bucket is at most 1/3. We can amplify this family as we like, just as
for the other examples of locality-sensitive hash functions we have discussed.

3.7.5 More LSH Families for Euclidean Spaces

There is something unsatisfying about the family of hash functions developed
in Section 3.7.4. First, the technique was only described for two-dimensional
Euclidean spaces. What happens if our data is points in a space with many
dimensions? Second, for Jaccard and cosine distances, we were able to develop
locality-sensitive families for any pair of distances d; and ds as long as dy < ds.
In Section 3.7.4 we appear to need the stronger condition d; < 4ds.

However, we claim that there is a locality-sensitive family of hash func-
tions for any d; < dy and for any number of dimensions. The family’s hash
functions still derive from random lines through the space and a bucket size
a that partitions the line. We still hash points by projecting them onto the
line. Given that d; < dz, we may not know what the probability p; is that two

3.7. LSH FAMILIES FOR OTHER DISTANCE MEASURES 109

points at distance d; hash to the same bucket, but we can be certain that it
is greater than po, the probability that two points at distance do hash to the
same bucket. The reason is that this probability surely grows as the distance
shrinks. Thus, even if we cannot calculate p; and po easily, we know that there
is a (d1,d2, p1,p2)-sensitive family of hash functions for any d; < do and any
given number of dimensions.

Using the amplification techniques of Section 3.6.3, we can then adjust the
two probabilities to surround any particular value we like, and to be as far apart
as we like. Of course, the further apart we want the probabilities to be, the
larger the number of basic hash functions in F we must use.

3.7.6 Exercises for Section 3.7

Exercise 3.7.1: Suppose we construct the basic family of six locality-sensitive
functions for vectors of length six. For each pair of the vectors 000000, 110011,
010101, and 011100, which of the six functions makes them candidates?

Exercise 3.7.2: Let us compute sketches using the following four “random”
vectors:

vy = [+1,41,4+1,-1] vy =[+1,+1,—1,+1]
V3 = [+1) _1)+1)+1] Vg = [_1a+1a+1a+1]

Compute the sketches of the following vectors.
(a) [2,3,4,5].
(b) [-2,3,—4,5].
(c) [2,-3,4,-5].

For each pair, what is the estimated angle between them, according to the
sketches? What are the true angles?

Exercise 3.7.3: Suppose we form sketches by using all sixteen of the vectors
of length 4, whose components are each +1 or —1. Compute the sketches of
the three vectors in Exercise 3.7.2. How do the estimates of the angles between
each pair compare with the true angles?

Exercise 3.7.4: Suppose we form sketches using the four vectors from Exer-
cise 3.7.2.

! (a) What are the constraints on a, b, ¢, and d that will cause the sketch of
the vector [a, b, ¢,d] to be [+1,+1,+1,+1]?

' (b) Consider two vectors [a, b, ¢, d] and [e, f, g, h]. What are the conditions on
a,b,...,h that will make the sketches of these two vectors be the same?

110 CHAPTER 3. FINDING SIMILAR ITEMS

Exercise 3.7.5: Suppose we have points in a 3-dimensional Euclidean space:
p1 = (1,2,3), p2 = (0,2,4), and ps = (4, 3,2). Consider the three hash functions
defined by the three axes (to make our calculations very easy). Let buckets be
of length a, with one bucket the interval [0, a) (i.e., the set of points such that
0 <z < a), the next [a,2a), the previous one [—a, 0), and so on.

(a) For each of the three lines, assign each of the points to buckets, assuming
a=1.

(b) Repeat part (a), assuming a = 2.
(c) What are the candidate pairs for the cases ¢ = 1 and a = 27

! (d) For each pair of points, for what values of a will that pair be a candidate
pair?

3.8 Applications of Locality-Sensitive Hashing

In this section, we shall explore three examples of how LSH is used in practice.
In each case, the techniques we have learned must be modified to meet certain
constraints of the problem. The three subjects we cover are:

1. Entity Resolution: This term refers to matching data records that refer to
the same real-world entity, e.g., the same person. The principal problem
addressed here is that the similarity of records does not match exactly
either the similar-sets or similar-vectors models of similarity on which the
theory is built.

2. Matching Fingerprints: It is possible to represent fingerprints as sets.
However, we shall explore a different family of locality-sensitive hash func-
tions from the one we get by minhashing.

3. Matching Newspaper Articles: Here, we consider a different notion of
shingling that focuses attention on the core article in an on-line news-
paper’s Web page, ignoring all the extraneous material such as ads and
newspaper-specific material.

3.8.1 Entity Resolution

It is common to have several data sets available, and to know that they refer to
some of the same entities. For example, several different bibliographic sources
provide information about many of the same books or papers. In the general
case, we have records describing entities of some type, such as people or books.
The records may all have the same format, or they may have different formats,
with different kinds of information.

There are many reasons why information about an entity may vary, even if
the field in question is supposed to be the same. For example, names may be

3.8. APPLICATIONS OF LOCALITY-SENSITIVE HASHING 111

expressed differently in different records because of misspellings, absence of a
middle initial, use of a nickname, and many other reasons. For example, “Bob
S. Jomes” and “Robert Jones Jr.” may or may not be the same person. If
records come from different sources, the fields may differ as well. One source’s
records may have an “age” field, while another does not. The second source
might have a “date of birth” field, or it may have no information at all about
when a person was born.

3.8.2 An Entity-Resolution Example

We shall examine a real example of how LSH was used to deal with an entity-
resolution problem. Company A was engaged by Company B to solicit cus-
tomers for B. Company B would pay A a yearly fee, as long as the customer
maintained their subscription. They later quarreled and disagreed over how
many customers A had provided to B. Each had about 1,000,000 records, some
of which described the same people; those were the customers A had provided
to B. The records had different data fields, but unfortunately none of those
fields was “this is a customer that A had provided to B.” Thus, the problem
was to match records from the two sets to see if a pair represented the same
person.

Each record had fields for the name, address, and phone number of the
person. However, the values in these fields could differ for many reasons. Not
only were there the misspellings and other naming differences mentioned in
Section 3.8.1, but there were other opportunities to disagree as well. A customer
might give their home phone to A and their cell phone to B. Or they might
move, and tell B but not A (because they no longer had need for a relationship
with A). Area codes of phones sometimes change.

The strategy for identifying records involved scoring the differences in three
fields: name, address, and phone. To create a score describing the likelihood
that two records, one from A and the other from B, described the same per-
son, 100 points was assigned to each of the three fields, so records with exact
matches in all three fields got a score of 300. However, there were deductions for
mismatches in each of the three fields. As a first approximation, edit-distance
(Section 3.5.5) was used, but the penalty grew quadratically with the distance.
Then, certain publicly available tables were used to reduce the penalty in ap-
propriate situations. For example, “Bill” and “William” were treated as if they
differed in only one letter, even though their edit-distance is 5.

However, it is not feasible to score all one trillion pairs of records. Thus,
a simple LSH was used to focus on likely candidates. Three “hash functions”
were used. The first sent records to the same bucket only if they had identical
names; the second did the same but for identical addresses, and the third did
the same for phone numbers. In practice, there was no hashing; rather the
records were sorted by name, so records with identical names would appear
consecutively and get scored for overall similarity of the name, address, and
phone. Then the records were sorted by address, and those with the same

112 CHAPTER 3. FINDING SIMILAR ITEMS

When Are Record Matches Good Enough?

While every case will be different, it may be of interest to know how the
experiment of Section 3.8.3 turned out on the data of Section 3.8.2. For
scores down to 185, the value of = was very close to 10; i.e., these scores
indicated that the likelihood of the records representing the same person
was essentially 1. Note that a score of 185 in this example represents a
situation where one field is the same (as would have to be the case, or the
records would never even be scored), one field was completely different,
and the third field had a small discrepancy. Moreover, for scores as low as
115, the value of = was noticeably less than 45, meaning that some of these
pairs did represent the same person. Note that a score of 115 represents
a case where one field is the same, but there is only a slight similarity in
the other two fields.

address were scored. Finally, the records were sorted a third time by phone,
and records with identical phones were scored.

This approach missed a record pair that truly represented the same person
but none of the three fields matched exactly. Since the goal was to prove in
a court of law that the persons were the same, it is unlikely that such a pair
would have been accepted by a judge as sufficiently similar anyway.

3.8.3 Validating Record Matches

What remains is to determine how high a score indicates that two records truly
represent the same individual. In the example at hand, there was an easy
way to make that decision, and the technique can be applied in many similar
situations. It was decided to look at the creation-dates for the records at hand,
and to assume that 90 days was an absolute maximum delay between the time
the service was bought at Company A and registered at B. Thus, a proposed
match between two records that were chosen at random, subject only to the
constraint that the date on the B-record was between 0 and 90 days after the
date on the A-record, would have an average delay of 45 days.

It was found that of the pairs with a perfect 300 score, the average delay was
10 days. If you assume that 300-score pairs are surely correct matches, then you
can look at the pool of pairs with any given score s, and compute the average
delay of those pairs. Suppose that the average delay is z, and the fraction of
true matches among those pairs with score s is f. Then x = 10f + 45(1 — f),
or x = 45 —35f. Solving for f, we find that the fraction of the pairs with score
s that are truly matches is (45 — z)/35.

The same trick can be used whenever:

1. There is a scoring system used to evaluate the likelihood that two records

3.8. APPLICATIONS OF LOCALITY-SENSITIVE HASHING 113

represent the same entity, and

2. There is some field, not used in the scoring, from which we can derive a
measure that differs, on average, for true pairs and false pairs.

For instance, suppose there were a “height” field recorded by both companies
A and B in our running example. We can compute the average difference in
height for pairs of random records, and we can compute the average difference in
height for records that have a perfect score (and thus surely represent the same
entities). For a given score s, we can evaluate the average height difference of the
pairs with that score and estimate the probability of the records representing
the same entity. That is, if hg is the average height difference for the perfect
matches, h; is the average height difference for random pairs, and h is the
average height difference for pairs of score s, then the fraction of good pairs
with score s is (hy — h)/(h1 — ho).

3.8.4 Matching Fingerprints

When fingerprints are matched by computer, the usual representation is not
an image, but a set of locations in which minutiae are located. A minutia,
in the context of fingerprint descriptions, is a place where something unusual
happens, such as two ridges merging or a ridge ending. If we place a grid over a
fingerprint, we can represent the fingerprint by the set of grid squares in which
minutiae are located.

Ideally, before overlaying the grid, fingerprints are normalized for size and
orientation, so that if we took two images of the same finger, we would find
minutiae lying in exactly the same grid squares. We shall not consider here
the best ways to normalize images. Let us assume that some combination of
techniques, including choice of grid size and placing a minutia in several adjacent
grid squares if it lies close to the border of the squares enables us to assume
that grid squares from two images have a significantly higher probability of
agreeing in the presence or absence of a minutia than if they were from images
of different fingers.

Thus, fingerprints can be represented by sets of grid squares — those where
their minutiae are located — and compared like any sets, using the Jaccard sim-
ilarity or distance. There are two versions of fingerprint comparison, however.

e The many-one problem is the one we typically expect. A fingerprint has
been found on a gun, and we want to compare it with all the fingerprints
in a large database, to see which one matches.

e The many-many version of the problem is to take the entire database, and
see if there are any pairs that represent the same individual.

While the many-many version matches the model that we have been following
for finding similar items, the same technology can be used to speed up the
many-one problem.

114 CHAPTER 3. FINDING SIMILAR ITEMS

3.8.5 A LSH Family for Fingerprint Matching

We could minhash the sets that represent a fingerprint, and use the standard
LSH technique from Section 3.4. However, since the sets are chosen from a
relatively small set of grid points (perhaps 1000), the need to minhash them
into more succinct signatures is not clear. We shall study here another form of
locality-sensitive hashing that works well for data of the type we are discussing.

Suppose for an example that the probability of finding a minutia in a random
grid square of a random fingerprint is 20%. Also, assume that if two fingerprints
come from the same finger, and one has a minutia in a given grid square, then
the probability that the other does too is 80%. We can define a locality-sensitive
family of hash functions as follows. Each function f in this family F is defined
by three grid squares. Function f says “yes” for two fingerprints if both have
minutiae in all three grid squares, and otherwise f says “no.” Put another
way, we may imagine that f sends to a single bucket all fingerprints that have
minutiae in all three of f’s grid points, and sends each other fingerprint to a
bucket of its own. In what follows, we shall refer to the first of these buckets as
“the” bucket for f and ignore the buckets that are required to be singletons.

If we want to solve the many-one problem, we can use many functions from
the family F and precompute their buckets of fingerprints to which they answer
“yes.” Then, given a new fingerprint that we want to match, we determine
which of these buckets it belongs to and compare it with all the fingerprints
found in any of those buckets. To solve the many-many problem, we compute
the buckets for each of the functions and compare all fingerprints in each of the
buckets.

Let us consider how many functions we need to get a reasonable probability
of catching a match, without having to compare the fingerprint on the gun with
each of the millions of fingerprints in the database. First, the probability that
two fingerprints from different fingers would be in the bucket for a function f
in F is (0.2)° = 0.000064. The reason is that they will both go into the bucket
only if they each have a minutia in each of the three grid points associated with
f, and the probability of each of those six independent events is 0.2.

Now, consider the probability that two fingerprints from the same finger
wind up in the bucket for f. The probability that the first fingerprint has
minutiae in each of the three squares belonging to f is (0.2)% = 0.008. However,
if it does, then the probability is (0.8)> = 0.512 that the other fingerprint
will as well. Thus, if the fingerprints are from the same finger, there is a
0.008 x 0.512 = 0.004096 probability that they will both be in the bucket of f.
That is not much; it is about one in 200. However, if we use many functions
from F, but not too many, then we can get a good probability of matching
fingerprints from the same finger while not having too many false positives —
fingerprints that must be considered but do not match.

Example 3.22: For a specific example, let us suppose that we use 1024
functions chosen randomly from F. Next, we shall construct a new fam-
ily F1 by performing a 1024-way OR on F. Then the probability that Fy

3.8. APPLICATIONS OF LOCALITY-SENSITIVE HASHING 115

will put fingerprints from the same finger together in at least one bucket is
1 — (1 — 0.004096)192* = 0.985. On the other hand, the probability that
two fingerprints from different fingers will be placed in the same bucket is
(1 — (1 — 0.000064)'924 = 0.063. That is, we get about 1.5% false negatives
and about 6.3% false positives. O

The result of Example 3.22 is not the best we can do. While it offers only a
1.5% chance that we shall fail to identify the fingerprint on the gun, it does force
us to look at 6.3% of the entire database. Increasing the number of functions
from F will increase the number of false positives, with only a small benefit
of reducing the number of false negatives below 1.5%. On the other hand, we
can also use the AND construction, and in so doing, we can greatly reduce
the probability of a false positive, while making only a small increase in the
false-negative rate. For instance, we could take 2048 functions from F in two
groups of 1024. Construct the buckets for each of the functions. However, given
a fingerprint P on the gun:

1. Find the buckets from the first group in which P belongs, and take the
union of these buckets.

2. Do the same for the second group.
3. Take the intersection of the two unions.

4. Compare P only with those fingerprints in the intersection.

Note that we still have to take unions and intersections of large sets of finger-
prints, but we compare only a small fraction of those. It is the comparison of
fingerprints that takes the bulk of the time; in steps (1) and (2) fingerprints
can be represented by their integer indices in the database.

If we use this scheme, the probability of detecting a matching fingerprint
is (0.985)% = 0.970; that is, we get about 3% false negatives. However, the
probability of a false positive is (0.063)% = 0.00397. That is, we only have to
examine about 1/250th of the database.

3.8.6 Similar News Articles

Our last case study concerns the problem of organizing a large repository of
on-line news articles by grouping together Web pages that were derived from
the same basic text. It is common for organizations like The Associated Press
to produce a news item and distribute it to many newspapers. Each newspaper
puts the story in its on-line edition, but surrounds it by information that is
special to that newspaper, such as the name and address of the newspaper,
links to related articles, and links to ads. In addition, it is common for the
newspaper to modify the article, perhaps by leaving off the last few paragraphs
or even deleting text from the middle. As a result, the same news article can
appear quite different at the Web sites of different newspapers.

116 CHAPTER 3. FINDING SIMILAR ITEMS

The problem looks very much like the one that was suggested in Section 3.4:
find documents whose shingles have a high Jaccard similarity. Note that this
problem is different from the problem of finding news articles that tell about the
same events. The latter problem requires other techniques, typically examining
the set of important words in the documents (a concept we discussed briefly
in Section 1.3.1) and clustering them to group together different articles about
the same topic.

However, an interesting variation on the theme of shingling was found to be
more effective for data of the type described. The problem is that shingling as
we described it in Section 3.2 treats all parts of a document equally. However,
we wish to ignore parts of the document, such as ads or the headlines of other
articles to which the newspaper added a link, that are not part of the news
article. It turns out that there is a noticeable difference between text that
appears in prose and text that appears in ads or headlines. Prose has a much
greater frequency of stop words, the very frequent words such as “the” or “and.”
The total number of words that are considered stop words varies with the
application, but it is common to use a list of several hundred of the most
frequent words.

Example 3.23: A typical ad might say simply “Buy Sudzo.” On the other
hand, a prose version of the same thought that might appear in an article is
“I recommend that you buy Sudzo for your laundry.” In the latter sentence, it
would be normal to treat “I,” “that,” “you,” “for,” and “your” as stop words.
a

Suppose we define a shingle to be a stop word followed by the next two
words. Then the ad “Buy Sudzo” from Example 3.23 has no shingles and
would not be reflected in the representation of the Web page containing that
ad. On the other hand, the sentence from Example 3.23 would be represented
by five shingles: “I recommend that,” “that you buy,” “you buy Sudzo,” “for
your laundry,” and “your laundry z,” where x is whatever word follows that
sentence.

Suppose we have two Web pages, each of which consists of half news text
and half ads or other material that has a low density of stop words. If the news
text is the same but the surrounding material is different, then we would expect
that a large fraction of the shingles of the two pages would be the same. They
might have a Jaccard similarity of 75%. However, if the surrounding material
is the same but the news content is different, then the number of common
shingles would be small, perhaps 25%. If we were to use the conventional
shingling, where shingles are (say) sequences of 10 consecutive characters, we
would expect the two documents to share half their shingles (i.e., a Jaccard
similarity of 1/3), regardless of whether it was the news or the surrounding
material that they shared.

o=

3.8. APPLICATIONS OF LOCALITY-SENSITIVE HASHING 117

3.8.7 Exercises for Section 3.8

Exercise 3.8.1: Suppose we are trying to perform entity resolution among
bibliographic references, and we score pairs of references based on the similar-
ities of their titles, list of authors, and place of publication. Suppose also that
all references include a year of publication, and this year is equally likely to be
any of the ten most recent years. Further, suppose that we discover that among
the pairs of references with a perfect score, there is an average difference in the
publication year of 0.1.5 Suppose that the pairs of references with a certain
score s are found to have an average difference in their publication dates of 2.
What is the fraction of pairs with score s that truly represent the same pub-
lication? Note: Do not make the mistake of assuming the average difference
in publication date between random pairs is 5 or 5.5. You need to calculate it
exactly, and you have enough information to do so.

Exercise 3.8.2: Suppose we use the family F of functions described in Sec-
tion 3.8.5, where there is a 20% chance of a minutia in an grid square, an 80%
chance of a second copy of a fingerprint having a minutia in a grid square where
the first copy does, and each function in F being formed from three grid squares.
In Example 3.22, we constructed family F; by using the OR construction on
1024 members of F. Suppose we instead used family F5 that is a 2048-way OR
of members of F.

(a) Compute the rates of false positives and false negatives for Fs.

(b) How do these rates compare with what we get if we organize the same
2048 functions into a 2-way AND of members of F1, as was discussed at
the end of Section 3.8.57

Exercise 3.8.3: Suppose fingerprints have the same statistics outlined in Ex-
ercise 3.8.2, but we use a base family of functions F’ defined like F, but using
only two randomly chosen grid squares. Construct another set of functions F]
from F’ by taking the n-way OR of functions from F’'. What, as a function of
n, are the false positive and false negative rates for F?

Exercise 3.8.4: Suppose we use the functions F; from Example 3.22, but we
want to solve the many-many problem.

(a) If two fingerprints are from the same finger, what is the probability that
they will not be compared (i.e., what is the false negative rate)?

(b) What fraction of the fingerprints from different fingers will be compared
(i.e., what is the false positive rate)?

Exercise 3.8.5: Assume we have the set of functions F as in Exercise 3.8.2,
and we construct a new set of functions F3 by an n-way OR of functions in
F. For what value of n is the sum of the false positive and false negative rates
minimized?

6We might expect the average to be 0, but in practice, errors in publication year do occur.

118 CHAPTER 3. FINDING SIMILAR ITEMS

3.9 Methods for High Degrees of Similarity

LSH-based methods appear most effective when the degree of similarity we
accept is relatively low. When we want to find sets that are almost identical,
there are other methods that can be faster. Moreover, these methods are exact,
in that they find every pair of items with the desired degree of similarity. There
are no false negatives, as there can be with LSH.

3.9.1 Finding Identical Items

The extreme case is finding identical items, for example, Web pages that are
identical, character-for-character. It is straightforward to compare two docu-
ments and tell whether they are identical, but we still must avoid having to
compare every pair of documents. Our first thought would be to hash docu-
ments based on their first few characters, and compare only those documents
that fell into the same bucket. That scheme should work well, unless all the
documents begin with the same characters, such as an HTML header.

Our second thought would be to use a hash function that examines the
entire document. That would work, and if we use enough buckets, it would be
very rare that two documents went into the same bucket, yet were not identical.
The downside of this approach is that we must examine every character of every
document. If we limit our examination to a small number of characters, then
we never have to examine a document that is unique and falls into a bucket of
its own.

A better approach is to pick some fixed random positions for all documents,
and make the hash function depend only on these. This way, we can avoid
a problem where there is a common prefix for all or most documents, yet we
need not examine entire documents unless they fall into a bucket with another
document. One problem with selecting fixed positions is that if some documents
are short, they may not have some of the selected positions. However, if we are
looking for highly similar documents, we never need to compare two documents
that differ significantly in their length. We exploit this idea in Section 3.9.3.

3.9.2 Representing Sets as Strings

Now, let us focus on the harder problem of finding, in a large collection of sets,
all pairs that have a high Jaccard similarity, say at least 0.9. We can represent
a set by sorting the elements of the universal set in some fixed order, and
representing any set by listing its elements in this order. The list is essentially
a string of “characters,” where the characters are the elements of the universal
set. These strings are unusual, however, in that:

1. No character appears more than once in a string, and

2. If two characters appear in two different strings, then they appear in the
same order in both strings.

3.9. METHODS FOR HIGH DEGREES OF SIMILARITY 119

Example 3.24: Suppose the universal set consists of the 26 lower-case letters,
and we use the normal alphabetical order. Then the set {d, a,b} is represented
by the string abd. O

In what follows, we shall assume all strings represent sets in the manner just
described. Thus, we shall talk about the Jaccard similarity of strings, when
strictly speaking we mean the similarity of the sets that the strings represent.
Also, we shall talk of the length of a string, as a surrogate for the number of
elements in the set that the string represents.

Note that the documents discussed in Section 3.9.1 do not exactly match
this model, even though we can see documents as strings. To fit the model,
we would shingle the documents, assign an order to the shingles, and represent
each document by its list of shingles in the selected order.

3.9.3 Length-Based Filtering

The simplest way to exploit the string representation of Section 3.9.2 is to sort
the strings by length. Then, each string s is compared with those strings ¢ that
follow s in the list, but are not too long. Suppose the lower bound on Jaccard
similarity between two strings is J. For any string x, denote its length by L.
Note that Ly < L;. The intersection of the sets represented by s and t cannot
have more than L, members, while their union has at least L; members. Thus,
the Jaccard similarity of s and ¢, which we denote SIM(s, t), is at most L/ L.
That is, in order for s and ¢ to require comparison, it must be that J < Ls/Ly,
or equivalently, L; < Lg/J.

Example 3.25: Suppose that s is a string of length 9, and we are looking for
strings with at least 0.9 Jaccard similarity. Then we have only to compare s
with strings following it in the length-based sorted order that have length at
most 9/0.9 = 10. That is, we compare s with those strings of length 9 that
follow it in order, and all strings of length 10. We have no need to compare s
with any other string.

Suppose the length of s were 8 instead. Then s would be compared with
following strings of length up to 8/0.9 = 8.89. That is, a string of length 9
would be too long to have a Jaccard similarity of 0.9 with s, so we only have to
compare s with the strings that have length 8 but follow it in the sorted order.
O

3.9.4 Prefix Indexing

In addition to length, there are several other features of strings that can be
exploited to limit the number of comparisons that must be made to identify
all pairs of similar strings. The simplest of these options is to create an index
for each symbol; recall a symbol of a string is any one of the elements of the
universal set. For each string s, we select a prefix of s consisting of the first p

120 CHAPTER 3. FINDING SIMILAR ITEMS

A Better Ordering for Symbols

Instead of using the obvious order for elements of the universal set, e.g.,
lexicographic order for shingles, we can order symbols rarest first. That
is, determine how many times each element appears in the collection of
sets, and order them by this count, lowest first. The advantage of doing
so is that the symbols in prefixes will tend to be rare. Thus, they will
cause that string to be placed in index buckets that have relatively few
members. Then, when we need to examine a string for possible matches,
we shall find few other strings that are candidates for comparison.

symbols of s. How large p must be depends on Ly and J, the lower bound on
Jaccard similarity. We add string s to the index for each of its first p symbols.

In effect, the index for each symbol becomes a bucket of strings that must be
compared. We must be certain that any other string ¢ such that siM(s,¢) > J
will have at least one symbol in its prefix that also appears in the prefix of s.

Suppose not; rather SIM(s,¢) > J, but ¢ has none of the first p symbols of
s. Then the highest Jaccard similarity that s and ¢ can have occurs when ¢ is
a suffix of s, consisting of everything but the first p symbols of s. The Jaccard
similarity of s and ¢ would then be (Ls — p)/Ls. To be sure that we do not
have to compare s with ¢, we must be certain that J > (Ls — p)/Ls. That
is, p must be at least [(1 — J)Ls| + 1. Of course we want p to be as small as
possible, so we do not index string s in more buckets than we need to. Thus,
we shall hereafter take p = | (1 — J)Ls] + 1 to be the length of the prefix that
gets indexed.

Example 3.26: Suppose J = 0.9. If Ly = 9, then p = [0.1 x 9] +1 =
[0.9] +1 = 1. That is, we need to index s under only its first symbol. Any
string ¢ that does not have the first symbol of s in a position such that ¢ is
indexed by that symbol will have Jaccard similarity with s that is less than 0.9.
Suppose s is becdefghij. Then s is indexed under b only. Suppose ¢t does not
begin with b. There are two cases to consider.

1. If ¢ begins with a, and SIM(s,t) > 0.9, then it can only be that ¢ is
abcdefghij. But if that is the case, t will be indexed under both a and
b. The reason is that L; = 10, so ¢t will be indexed under the symbols of
its prefix of length [0.1 x 10| +1 = 2.

2. If ¢ begins with c or a later letter, then the maximum value of SIM(s,t)
occurs when ¢ is cdefghij. But then SIM(s,t) = 8/9 < 0.9.

In general, with J = 0.9, strings of length up to 9 are indexed by their first
symbol, strings of lengths 10-19 are indexed under their first two symbols,

3.9. METHODS FOR HIGH DEGREES OF SIMILARITY 121

strings of length 20-29 are indexed under their first three symbols, and so on.
a

We can use the indexing scheme in two ways, depending on whether we
are trying to solve the many-many problem or a many-one problem; recall the
distinction was introduced in Section 3.8.4. For the many-one problem, we
create the index for the entire database. To query for matches to a new set
S, we convert that set to a string s, which we call the probe string. Determine
the length of the prefix that must be considered, that is, | (1 — J)Ls| + 1. For
each symbol appearing in one of the prefix positions of s, we look in the index
bucket for that symbol, and we compare s with all the strings appearing in that
bucket.

If we want to solve the many-many problem, start with an empty database
of strings and indexes. For each set S, we treat S as a new set for the many-one
problem. We convert S to a string s, which we treat as a probe string in the
many-one problem. However, after we examine an index bucket, we also add s
to that bucket, so s will be compared with later strings that could be matches.

3.9.5 Using Position Information

Consider the strings s = acdefghijk and ¢t = bcdefghijk, and assume J = 0.9.
Since both strings are of length 10, they are indexed under their first two
symbols. Thus, s is indexed under a and ¢, while ¢ is indexed under b and c.
Whichever is added last will find the other in the bucket for ¢, and they will be
compared. However, since c is the second symbol of both, we know there will
be two symbols, a and b in this case, that are in the union of the two sets but
not in the intersection. Indeed, even though s and ¢ are identical from ¢ to the
end, their intersection is 9 symbols and their union is 11; thus SIM(s,t) = 9/11,
which is less than 0.9.

If we build our index based not only on the symbol, but on the position of
the symbol within the string, we could avoid comparing s and ¢ above. That
is, let our index have a bucket for each pair (x,4), containing the strings that
have symbol x in position ¢ of their prefix. Given a string s, and assuming J is
the minimum desired Jaccard similarity, we look at the prefix of s, that is, the
positions 1 through |(1 — J)Ls| + 1. If the symbol in position 4 of the prefix is
z, add s to the index bucket for (z,1).

Now consider s as a probe string. With what buckets must it be compared?
We shall visit the symbols of the prefix of s from the left, and we shall take
advantage of the fact that we only need to find a possible matching string ¢ if
none of the previous buckets we have examined for matches held t. That is, we
only need to find a candidate match once. Thus, if we find that the ith symbol
of s is x, then we need look in the bucket (z,7) for certain small values of j.

To compute the upper bound on j, suppose t is a string none of whose first
j — 1 symbols matched anything in s, but the ith symbol of s is the same as the
jth symbol of ¢. The highest value of SIM(s,t) occurs if s and ¢ are identical

122 CHAPTER 3. FINDING SIMILAR ITEMS

Symbols definitely
appearing in
only one string

N\

t —

i

Figure 3.14: Strings s and ¢ begin with ¢ — 1 and 7 — 1 unique symbols, respec-
tively, and then agree beyond that

beyond their ith and jth symbols, respectively, as suggested by Fig. 3.14. If
that is the case, the size of their intersection is Ly — i + 1, since that is the
number of symbols of s that could possibly be in ¢. The size of their union is
at least Ls + j — 1. That is, s surely contributes Ls symbols to the union, and
there are also at least j — 1 symbols of ¢ that are not in s. The ratio of the sizes
of the intersection and union must be at least J, so we must have:

Ls_l.‘f'l > 7
Ls+7—-17

If we isolate j in this inequality, we have j < (Ls(1—J) —i+1+4J)/J.

Example 3.27: Consider the string s = acdefghijk with J = 0.9 discussed
at the beginning of this section. Suppose s is now a probe string. We already
established that we need to consider the first two positions; that is, ¢ can be 1
or 2. Suppose i = 1. Then j < (10 x 0.1 — 14 1+ 0.9)/0.9. That is, we only
have to compare the symbol a with strings in the bucket for (a, j) if j < 2.11.
Thus, j can be 1 or 2, but nothing higher.

Now suppose ¢ = 2. Then we require j < (10 x 0.1 —2+ 1+ 0.9)/0.9, Or
j < 1. We conclude that we must look in the buckets for (a, 1), (a,2), and (c, 1),
but in no other bucket. In comparison, using the buckets of Section 3.9.4, we
would look into the buckets for a and c, which is equivalent to looking to all
buckets (a,j) and (c,j) for any j. O

3.9.6 Using Position and Length in Indexes

When we considered the upper limit on j in the previous section, we assumed
that what follows positions ¢ and j were as in Fig. 3.14, where what followed
these positions in strings s and ¢ matched exactly. We do not want to build an
index that involves every symbol in the strings, because that makes the total
work excessive. However, we can add to our index a summary of what follows
the positions being indexed. Doing so expands the number of buckets, but not
beyond reasonable bounds, and yet enables us to eliminate many candidate

3.9. METHODS FOR HIGH DEGREES OF SIMILARITY 123

matches without comparing entire strings. The idea is to use index buckets
corresponding to a symbol, a position, and the suffix length, that is, the number
of symbols following the position in question.

Example 3.28: The string s = acdefghijk, with J = 0.9, would be indexed
in the buckets for (a,1,9) and (c, 2,8). That is, the first position of s has symbol
a, and its suffix is of length 9. The second position has symbol ¢ and its suffix
is of length 8. O

Figure 3.14 assumes that the suffixes for position i of s and position j of ¢
have the same length. If not, then we can either get a smaller upper bound on
the size of the intersection of s and ¢ (if ¢ is shorter) or a larger lower bound
on the size of the union (if ¢ is longer). Suppose s has suffix length p and ¢ has
suffix length q.

Case 1: p > q. Here, the maximum size of the intersection is
L57i+17(p7Q)

Since Ly =i + p, we can write the above expression for the intersection size as
q + 1. The minimum size of the union is Ls + j — 1, as it was when we did not
take suffix length into account. Thus, we require

L'l><]
Ls+j_1_

whenever p > q.

Case 2: p < q. Here, the maximum size of the intersection is Ly —¢ + 1, as
when suffix length was not considered. However, the minimum size of the union
isnow Lg+j — 14 g — p. If we again use the relationship L, = i + p, we can
replace Ly — p by i and get the formula ¢ + j — 1 + ¢ for the size of the union.
If the Jaccard similarity is at least J, then

1+j3—14+q
whenever p < q.

Example 3.29: Let us again consider the string s = acdefghi jk, but to make
the example show some details, let us choose J = 0.8 instead of 0.9. We know
that Ly = 10. Since (1 — J)Ls] +1 = 3, we must consider prefix positions
i =1, 2, and 3 in what follows. As before, let p be the suffix length of s and ¢
the suffix length of ¢.

First, consider the case p > q. The additional constraint we have on ¢ and
jis (g+1)/(9+ j) > 0.8. We can enumerate the pairs of values of j and ¢ for
each i between 1 and 3, as follows.

124 CHAPTER 3. FINDING SIMILAR ITEMS

i =1: Here, p=19, so ¢ < 9. Let us consider the possible values of g:

g = 9: We must have 10/(9 + j) > 0.8. Thus, we can have j =1, j = 2,
or j = 3. Note that for j =4, 10/13 > 0.8.

g = 8: We must have 9/(9 + j) > 0.8. Thus, we can have j =1 or j = 2.
For j =3,9/12 > 0.8.
g = 7: We must have 8/(9+j) > 0.8. Only j = 1 satisfies this inequality.

q = 6: There are no possible values of j, since 7/(9 + j) > 0.8 for every
positive integer j. The same holds for every smaller value of q.

i = 2: Here, p = 8, so we require ¢ < 8. Since the constraint (¢+1)/(9+j) > 0.8
does not depend on i,” we can use the analysis from the above case, but
exclude the case ¢ = 9. Thus, the only possible values of j and ¢ when

1= 2 are
1. ¢g=8;5=1.
2.q=28;j5=2.
3.q=7;5=1.

i = 3: Now, p =7 and the constraints are ¢ < 7 and (¢+1)/(9+ 7) > 0.8. The
only option is ¢ =7 and j = 1.

Next, we must consider the case p < ¢q. The additional constraint is
11 -4
" >08
t+j+qg—1
Again, consider each possible value of 3.
i=1: Then p = 9, so we require ¢ > 10 and 10/(¢ + j) > 0.8. The possible
values of ¢ and j are
1. ¢g=10; j = 1.
2. ¢q=10; 5 =2.
3.¢=11;j=1.
i =2: Now, p = 8, so we require ¢ > 9 and 9/(¢+ j + 1) > 0.8. Since j must

be a positive integer, the only solution is ¢ = 9 and j = 1, a possibility
that we already knew about.

i =3: Here, p =7, so we require ¢ > 8 and 8/(¢+ j +2) > 0.8. There are no
solutions.

When we accumulate the possible combinations of ¢, j, and ¢, we see that
the set of index buckets in which we must look forms a pyramid. Figure 3.15
shows the buckets in which we must search. That is, we must look in those
buckets (z, ,q) such that the ith symbol of the string s is x, j is the position
associated with the bucket and ¢ the suffix length. O

"Note that i does influence the value of p, and through p, puts a limit on q.

o=

3.9. METHODS FOR HIGH DEGREES OF SIMILARITY 125

qlj=1 j=2 j=3
7 X
8 X X
1=1 9 X X X
10 X X
11 X
7 X
1=2 8 X X
9 X
1=3 7 X

Figure 3.15: The buckets that must be examined to find possible matches for
the string s = acdefghijk with J = 0.8 are marked with an x

3.9.7 Exercises for Section 3.9

Exercise 3.9.1: Suppose our universal set is the lower-case letters, and the
order of elements is taken to be the vowels, in alphabetic order, followed by the
consonants in reverse alphabetic order. Represent the following sets as strings.

a {q,w,e,r,t,y}.
(b) {G,S,d, fagahvjauvi}'

Exercise 3.9.2: Suppose we filter candidate pairs based only on length, as in
Section 3.9.3. If s is a string of length 20, with what strings is s compared when
J, the lower bound on Jaccard similarity has the following values: (a) J = 0.85
(b) J=0.95 (c¢) J =0.98?

Exercise 3.9.3: Suppose we have a string s of length 15, and we wish to index
its prefix as in Section 3.9.4.

(a) How many positions are in the prefix if J = 0.85?
(b) How many positions are in the prefix if J = 0.957

! (¢) For what range of values of J will s be indexed under its first four symbols,
but no more?

Exercise 3.9.4: Suppose s is a string of length 12. With what symbol-position
pairs will s be compared with if we use the indexing approach of Section 3.9.5,
and (a) J =0.75 (b) J = 0.957

Exercise 3.9.5: Suppose we use position information in our index, as in Sec-
tion 3.9.5. Strings s and t are both chosen at random from a universal set of
100 elements. Assume J = 0.9. What is the probability that s and ¢ will be
compared if

126 CHAPTER 3. FINDING SIMILAR ITEMS

(a) s and t are both of length 9.
(b) s and t are both of length 10.

Exercise 3.9.6: Suppose we use indexes based on both position and suffix
length, as in Section 3.9.6. If s is a string of length 20, with what symbol-
position-length triples will s be compared with, if (a) J = 0.8 (b) J = 0.9?7

3.10 Summary of Chapter 3

4+ Jaccard Similarity: The Jaccard similarity of sets is the ratio of the size
of the intersection of the sets to the size of the union. This measure of
similarity is suitable for many applications, including textual similarity of
documents and similarity of buying habits of customers.

4 Shingling: A k-shingle is any k characters that appear consecutively in
a document. If we represent a document by its set of k-shingles, then
the Jaccard similarity of the shingle sets measures the textual similarity
of documents. Sometimes, it is useful to hash shingles to bit strings of
shorter length, and use sets of hash values to represent documents.

4 Minhashing: A minhash function on sets is based on a permutation of the
universal set. Given any such permutation, the minhash value for a set is
that element of the set that appears first in the permuted order.

4+ Minhash Signatures: We may represent sets by picking some list of per-
mutations and computing for each set its minhash signature, which is the
sequence of minhash values obtained by applying each permutation on the
list to that set. Given two sets, the expected fraction of the permutations
that will yield the same minhash value is exactly the Jaccard similarity
of the sets.

4 Efficient Minhashing: Since it is not really possible to generate random
permutations, it is normal to simulate a permutation by picking a random
hash function and taking the minhash value for a set to be the least hash
value of any of the set’s members.

4 Locality-Sensitive Hashing for Signatures: This technique allows us to
avoid computing the similarity of every pair of sets or their minhash sig-
natures. If we are given signatures for the sets, we may divide them into
bands, and only measure the similarity of a pair of sets if they are identi-
cal in at least one band. By choosing the size of bands appropriately, we
can eliminate from consideration most of the pairs that do not meet our
threshold of similarity.

4+ Distance Measures: A distance measure is a function on pairs of points in
a space that satisfy certain axioms. The distance between two points is 0 if

3.10.

SUMMARY OF CHAPTER 3 127

the points are the same, but greater than 0 if the points are different. The
distance is symmetric; it does not matter in which order we consider the
two points. A distance measure must satisfy the triangle inequality: the
distance between two points is never more than the sum of the distances
between those points and some third point.

Euclidean Distance: The most common notion of distance is the Euclidean
distance in an n-dimensional space. This distance, sometimes called the
Lo-norm, is the square root of the sum of the squares of the differences
between the points in each dimension. Another distance suitable for Eu-
clidean spaces, called Manhattan distance or the Li-norm is the sum of
the magnitudes of the differences between the points in each dimension.

Jaccard Distance: One minus the Jaccard similarity is a distance measure,
called the Jaccard distance.

Cosine Distance: The angle between vectors in a vector space is the cosine
distance measure. We can compute the cosine of that angle by taking the
dot product of the vectors and dividing by the lengths of the vectors.

Edit Distance: This distance measure applies to a space of strings, and
is the number of insertions and/or deletions needed to convert one string
into the other. The edit distance can also be computed as the sum of
the lengths of the strings minus twice the length of the longest common
subsequence of the strings.

Hamming Distance: This distance measure applies to a space of vectors.
The Hamming distance between two vectors is the number of positions in
which the vectors differ.

Generalized Locality-Sensitive Hashing: We may start with any collection
of functions, such as the minhash functions, that can render a decision
as to whether or not a pair of items should be candidates for similarity
checking. The only constraint on these functions is that they provide a
lower bound on the probability of saying “yes” if the distance (according
to some distance measure) is below a given limit, and an upper bound on
the probability of saying “yes” if the distance is above another given limit.
We can then increase the probability of saying “yes” for nearby items and
at the same time decrease the probability of saying “yes” for distant items
to as great an extent as we wish, by applying an AND construction and
an OR construction.

Random Hyperplanes and LSH for Cosine Distance: We can get a set of
basis functions to start a generalized LSH for the cosine distance measure
by identifying each function with a list of randomly chosen vectors. We
apply a function to a given vector v by taking the dot product of v with
each vector on the list. The result is a sketch consisting of the signs (+1 or
—1) of the dot products. The fraction of positions in which the sketches of

128 CHAPTER 3. FINDING SIMILAR ITEMS

two vectors agree, multiplied by 180, is an estimate of the angle between
the two vectors.

4 LSH For Euclidean Distance: A set of basis functions to start LSH for
FEuclidean distance can be obtained by choosing random lines and project-
ing points onto those lines. Each line is broken into fixed-length intervals,
and the function answers “yes” to a pair of points that fall into the same
interval.

4 High-Similarity Detection by String Comparison: An alternative approach
to finding similar items, when the threshold of Jaccard similarity is close to
1, avoids using minhashing and LSH. Rather, the universal set is ordered,
and sets are represented by strings, consisting their elements in order.
The simplest way to avoid comparing all pairs of sets or their strings is to
note that highly similar sets will have strings of approximately the same
length. If we sort the strings, we can compare each string with only a
small number of the immediately following strings.

4 Character Indexes: If we represent sets by strings, and the similarity
threshold is close to 1, we can index all strings by their first few characters.
The prefix whose characters must be indexed is approximately the length
of the string times the maximum Jaccard distance (1 minus the minimum
Jaccard similarity).

4 Position Indexes: We can index strings not only on the characters in
their prefixes, but on the position of that character within the prefix. We
reduce the number of pairs of strings that must be compared, because
if two strings share a character that is not in the first position in both
strings, then we know that either there are some preceding characters that
are in the union but not the intersection, or there is an earlier symbol that
appears in both strings.

4+ Suffix Indezes: We can also index strings based not only on the characters
in their prefixes and the positions of those characters, but on the length
of the character’s suffix — the number of positions that follow it in the
string. This structure further reduces the number of pairs that must be
compared, because a common symbol with different suffix lengths implies
additional characters that must be in the union but not in the intersection.

3.11 References for Chapter 3

The technique we called shingling is attributed to [10]. The use in the manner
we discussed here is from [2]. Minhashing comes from [3]. The original works
on locality-sensitive hashing were [9] and [7]. [1] is a useful summary of ideas
in this field.

3.11. REFERENCES FOR CHAPTER 3 129

[4] introduces the idea of using random-hyperplanes to summarize items in
a way that respects the cosine distance. [8] suggests that random hyperplanes
plus LSH can be more accurate at detecting similar documents than minhashing
plus LSH.

Techniques for summarizing points in a Euclidean space are covered in [6].
[11] presented the shingling technique based on stop words.

The length and prefix-based indexing schemes for high-similarity matching
comes from [5]. The technique involving suffix length is from [12].

1. A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” Comm. ACM 51:1, pp. 117-
122, 2008.

2. A.Z. Broder, “On the resemblance and containment of documents,” Proc.
Compression and Complexity of Sequences, pp. 21-29, Positano Italy,
1997.

3. A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher, “Min-wise
independent permutations,” ACM Symposium on Theory of Computing,
pp. 327-336, 1998.

4. M.S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” ACM Symposium on Theory of Computing, pp. 380-388, 2002.

5. S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for sim-
ilarity joins in data cleaning,” Proc. Intl. Conf. on Data Engineering,
2006.

6. M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” Symposium on Compu-
tational Geometry pp. 253-262, 2004.

7. A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” Proc. Intl. Conf. on Very Large Databases, pp. 518—
529, 1999.

8. M. Henzinger, “Finding near-duplicate web pages: a large-scale evaluation
of algorithms,” Proc. 29th SIGIR Conf., pp. 284-291, 2006.

9. P. Indyk and R. Motwani. “Approximate nearest neighbor: towards re-
moving the curse of dimensionality,” ACM Symposium on Theory of Com-
puting, pp. 604-613, 1998.

10. U. Manber, “Finding similar files in a large file system,” Proc. USENIX
Conference, pp. 1-10, 1994.

11. M. Theobald, J. Siddharth, and A. Paepcke, “SpotSigs: robust and effi-
cient near duplicate detection in large web collections,” 31st Annual ACM
SIGIR Conference, July, 2008, Singapore.

130 CHAPTER 3. FINDING SIMILAR ITEMS

12. C. Xiao, W. Wang, X. Lin, and J.X. Yu, “Efficient similarity joins for
near duplicate detection,” Proc. WWW Conference, pp. 131-140, 2008.

Chapter 4

Mining Data Streams

Most of the algorithms described in this book assume that we are mining a
database. That is, all our data is available when and if we want it. In this
chapter, we shall make another assumption: data arrives in a stream or streams,
and if it is not processed immediately or stored, then it is lost forever. Moreover,
we shall assume that the data arrives so rapidly that it is not feasible to store
it all in active storage (i.e., in a conventional database), and then interact with
it at the time of our choosing.

The algorithms for processing streams each involve summarization of the
stream in some way. We shall start by considering how to make a useful sample
of a stream and how to filter a stream to eliminate most of the “undesirable”
elements. We then show how to estimate the number of different elements in
a stream using much less storage than would be required if we listed all the
elements we have seen.

Another approach to summarizing a stream is to look at only a fixed-length
“window” consisting of the last n elements for some (typically large) n. We
then query the window as if it were a relation in a database. If there are
many streams and/or n is large, we may not be able to store the entire window
for every stream, so we need to summarize even the windows. We address the
fundamental problem of maintaining an approximate count on the number of 1’s
in the window of a bit stream, while using much less space than would be needed
to store the entire window itself. This technique generalizes to approximating
various kinds of sums.

4.1 The Stream Data Model

Let us begin by discussing the elements of streams and stream processing. We
explain the difference between streams and databases and the special problems
that arise when dealing with streams. Some typical applications where the
stream model applies will be examined.

131

132 CHAPTER 4. MINING DATA STREAMS

Ad-hoc
Queries
Streams entering ¢
1,5,2,7,4,0,3,5—» standing| [~ Output streams
g,w,erty,u,i o—s Queries| —
0.1,1,0,1,0,0,07 Stream
Processor

-— time

Limited
Working
Storage

Archival

Storage

Figure 4.1: A data-stream-management system

4.1.1 A Data-Stream-Management System

In analogy to a database-management system, we can view a stream processor
as a kind of data-management system, the high-level organization of which is
suggested in Fig. 4.1. Any number of streams can enter the system. Fach
stream can provide elements at its own schedule; they need not have the same
data rates or data types, and the time between elements of one stream need not
be uniform. The fact that the rate of arrival of stream elements is not under
the control of the system distinguishes stream processing from the processing
of data that goes on within a database-management system. The latter system
controls the rate at which data is read from the disk, and therefore never has
to worry about data getting lost as it attempts to execute queries.

Streams may be archived in a large archival store, but we assume it is not
possible to answer queries from the archival store. It could be examined only
under special circumstances using time-consuming retrieval processes. There is
also a working store, into which summaries or parts of streams may be placed,
and which can be used for answering queries. The working store might be disk,
or it might be main memory, depending on how fast we need to process queries.
But either way, it is of sufficiently limited capacity that it cannot store all the
data from all the streams.

4.1. THE STREAM DATA MODEL 133

4.1.2 Examples of Stream Sources

Before proceeding, let us consider some of the ways in which stream data arises
naturally.

Sensor Data

Imagine a temperature sensor bobbing about in the ocean, sending back to a
base station a reading of the surface temperature each hour. The data produced
by this sensor is a stream of real numbers. It is not a very interesting stream,
since the data rate is so low. It would not stress modern technology, and the
entire stream could be kept in main memory, essentially forever.

Now, give the sensor a GPS unit, and let it report surface height instead of
temperature. The surface height varies quite rapidly compared with tempera-
ture, so we might have the sensor send back a reading every tenth of a second.
If it sends a 4-byte real number each time, then it produces 3.5 megabytes per
day. It will still take some time to fill up main memory, let alone a single disk.

But one sensor might not be that interesting. To learn something about
ocean behavior, we might want to deploy a million sensors, each sending back a
stream, at the rate of ten per second. A million sensors isn’t very many; there
would be one for every 150 square miles of ocean. Now we have 3.5 terabytes
arriving every day, and we definitely need to think about what can be kept in
working storage and what can only be archived.

Image Data

Satellites often send down to earth streams consisting of many terabytes of
images per day. Surveillance cameras produce images with lower resolution
than satellites, but there can be many of them, each producing a stream of
images at intervals like one second. London is said to have six million such
cameras, each producing a stream.

Internet and Web Traffic

A switching node in the middle of the Internet receives streams of IP packets
from many inputs and routes them to its outputs. Normally, the job of the
switch is to transmit data and not to retain it or query it. But there is a
tendency to put more capability into the switch, e.g., the ability to detect
denial-of-service attacks or the ability to reroute packets based on information
about congestion in the network.

Web sites receive streams of various types. For example, Google receives sev-
eral hundred million search queries per day. Yahoo! accepts billions of “clicks”
per day on its various sites. Many interesting things can be learned from these
streams. For example, an increase in queries like “sore throat” enables us to
track the spread of viruses. A sudden increase in the click rate for a link could

134 CHAPTER 4. MINING DATA STREAMS

indicate some news connected to that page, or it could mean that the link is
broken and needs to be repaired.

4.1.3 Stream Queries

There are two ways that queries get asked about streams. We show in Fig. 4.1 a
place within the processor where standing queries are stored. These queries are,
in a sense, permanently executing, and produce outputs at appropriate times.

Example 4.1: The stream produced by the ocean-surface-temperature sen-
sor mentioned at the beginning of Section 4.1.2 might have a standing query
to output an alert whenever the temperature exceeds 25 degrees centigrade.
This query is easily answered, since it depends only on the most recent stream
element.

Alternatively, we might have a standing query that, each time a new reading
arrives, produces the average of the 24 most recent readings. That query also
can be answered easily, if we store the 24 most recent stream elements. When a
new stream element arrives, we can drop from the working store the 25th most
recent element, since it will never again be needed (unless there is some other
standing query that requires it).

Another query we might ask is the maximum temperature ever recorded by
that sensor. We can answer this query by retaining a simple summary: the
maximum of all stream elements ever seen. It is not necessary to record the
entire stream. When a new stream element arrives, we compare it with the
stored maximum, and set the maximum to whichever is larger. We can then
answer the query by producing the current value of the maximum. Similarly,
if we want the average temperature over all time, we have only to record two
values: the number of readings ever sent in the stream and the sum of those
readings. We can adjust these values easily each time a new reading arrives,
and we can produce their quotient as the answer to the query. O

The other form of query is ad-hoc, a question asked once about the current
state of a stream or streams. If we do not store all streams in their entirety, as
normally we can not, then we cannot expect to answer arbitrary queries about
streams. If we have some idea what kind of queries will be asked through the
ad-hoc query interface, then we can prepare for them by storing appropriate
parts or summaries of streams as in Example 4.1.

If we want the facility to ask a wide variety of ad-hoc queries, a common
approach is to store a sliding window of each stream in the working store. A
sliding window can be the most recent n elements of a stream, for some n, or
it can be all the elements that arrived within the last ¢ time units, e.g., one
day. If we regard each stream element as a tuple, we can treat the window as a
relation and query it with any SQL query. Of course the stream-management
system must keep the window fresh, deleting the oldest elements as new ones
come in.

4.1. THE STREAM DATA MODEL 135

Example 4.2: Web sites often like to report the number of unique users over
the past month. If we think of each login as a stream element, we can maintain
a window that is all logins in the most recent month. We must associate the
arrival time with each login, so we know when it no longer belongs to the
window. If we think of the window as a relation Logins(name, time), then
it is simple to get the number of unique users over the past month. The SQL
query is:

SELECT COUNT(DISTINCT (name))
FROM Logins
WHERE time >= t;

Here, t is a constant that represents the time one month before the current
time.

Note that we must be able to maintain the entire stream of logins for the
past month in working storage. However, for even the largest sites, that data
is not more than a few terabytes, and so surely can be stored on disk. O

4.1.4 Issues in Stream Processing

Before proceeding to discuss algorithms, let us consider the constraints under
which we work when dealing with streams. First, streams often deliver elements
very rapidly. We must process elements in real time, or we lose the opportunity
to process them at all, without accessing the archival storage. Thus, it often is
important that the stream-processing algorithm is executed in main memory,
without access to secondary storage or with only rare accesses to secondary
storage. Moreover, even when streams are “slow,” as in the sensor-data example
of Section 4.1.2, there may be many such streams. Even if each stream by itself
can be processed using a small amount of main memory, the requirements of all
the streams together can easily exceed the amount of available main memory.

Thus, many problems about streaming data would be easy to solve if we
had enough memory, but become rather hard and require the invention of new
techniques in order to execute them at a realistic rate on a machine of realistic
size. Here are two generalizations about stream algorithms worth bearing in
mind as you read through this chapter:

e Often, it is much more efficient to get an approximate answer to our
problem than an exact solution.

e As in Chapter 3, a variety of techniques related to hashing turn out to be
useful. Generally, these techniques introduce useful randomness into the
algorithm’s behavior, in order to produce an approximate answer that is
very close to the true result.

136 CHAPTER 4. MINING DATA STREAMS

4.2 Sampling Data in a Stream

As our first example of managing streaming data, we shall look at extracting
reliable samples from a stream. As with many stream algorithms, the “trick”
involves using hashing in a somewhat unusual way.

4.2.1 A Motivating Example

The general problem we shall address is selecting a subset of a stream so that we
can ask queries about the selected subset and have the answers be statistically
representative of the stream as a whole. If we know what queries are to be
asked, then there are a number of methods that might work, but we are looking
for a technique that will allow ad-hoc queries on the sample. We shall look at
a particular problem, from which the general idea will emerge.

Our running example is the following. A search engine receives a stream of
queries, and it would like to study the behavior of typical users.! We assume the
stream consists of tuples (user, query, time). Suppose that we want to answer
queries such as “What fraction of the typical user’s queries were repeated over
the past month?” Assume also that we wish to store only 1/10th of the stream
elements.

The obvious approach would be to generate a random number, say an integer
from 0 to 9, in response to each search query. Store the tuple if and only if the
random number is 0. If we do so, each user has, on average, 1/10th of their
queries stored. Statistical fluctuations will introduce some noise into the data,
but if users issue many queries, the law of large numbers will assure us that
most users will have a fraction quite close to 1/10th of their queries stored.

However, this scheme gives us the wrong answer to the query asking for
the average number of duplicate queries for a user. Suppose a user has issued
s search queries one time in the past month, d search queries twice, and no
search queries more than twice. If we have a 1/10th sample, of queries, we shall
see in the sample for that user an expected s/10 of the search queries issued
once. Of the d search queries issued twice, only d/100 will appear twice in the
sample; that fraction is d times the probability that both occurrences of the
query will be in the 1/10th sample. Of the queries that appear twice in the full
stream, 18d/100 will appear exactly once. To see why, note that 18/100 is the
probability that one of the two occurrences will be in the 1/10th of the stream
that is selected, while the other is in the 9/10th that is not selected.

The correct answer to the query about the fraction of repeated searches is
d/(s+d). However, the answer we shall obtain from the sample is d/(10s+19d).
To derive the latter formula, note that d/100 appear twice, while s/10418d/100
appear once. Thus, the fraction appearing twice in the sample is d/100 divided

IWhile we shall refer to “users,” the search engine really receives IP addresses from which
the search query was issued. We shall assume that these IP addresses identify unique users,
which is approximately true, but not exactly true.

4.2. SAMPLING DATA IN A STREAM 137

by d/100 + s/10 4+ 18d/100. This ratio is d/(10s + 19d). For no positive values
of sand d is d/(s+ d) = d/(10s + 19d).

4.2.2 Obtaining a Representative Sample

The query of Section 4.2.1, like many queries about the statistics of typical
users, cannot be answered by taking a sample of each user’s search queries.
Thus, we must strive to pick 1/10th of the users, and take all their searches for
the sample, while taking none of the searches from other users. If we can store
a list of all users, and whether or not they are in the sample, then we could
do the following. Each time a search query arrives in the stream, we look up
the user to see whether or not they are in the sample. If so, we add this search
query to the sample, and if not, then not. However, if we have no record of
ever having seen this user before, then we generate a random integer between
0 and 9. If the number is 0, we add this user to our list with value “in,” and if
the number is other than 0, we add the user with the value “out.”

That method works as long as we can afford to keep the list of all users and
their in/out decision in main memory, because there isn’t time to go to disk for
every search that arrives. By using a hash function, one can avoid keeping the
list of users. That is, we hash each user name to one of ten buckets, 0 through
9. If the user hashes to bucket 0, then accept this search query for the sample,
and if not, then not.

Note we do not actually store the user in the bucket; in fact, there is no
data in the buckets at all. Effectively, we use the hash function as a random-
number generator, with the important property that, when applied to the same
user several times, we always get the same “random” number. That is, without
storing the in/out decision for any user, we can reconstruct that decision any
time a search query by that user arrives.

More generally, we can obtain a sample consisting of any rational fraction
a/b of the users by hashing user names to b buckets, 0 through b — 1. Add the
search query to the sample if the hash value is less than a.

4.2.3 The General Sampling Problem

The running example is typical of the following general problem. Our stream
consists of tuples with n components. A subset of the components are the key
components, on which the selection of the sample will be based. In our running
example, there are three components — user, query, and time — of which only
user is in the key. However, we could also take a sample of queries by making
query be the key, or even take a sample of user-query pairs by making both
those components form the key.

To take a sample of size a/b, we hash the key value for each tuple to b
buckets, and accept the tuple for the sample if the hash value is less than a.
If the key consists of more than one component, the hash function needs to
combine the values for those components to make a single hash-value. The

138 CHAPTER 4. MINING DATA STREAMS

result will be a sample consisting of all tuples with certain key values. The
selected key values will be approximately a/b of all the key values appearing in
the stream.

4.2.4 Varying the Sample Size

Often, the sample will grow as more of the stream enters the system. In our
running example, we retain all the search queries of the selected 1/10th of
the users, forever. As time goes on, more searches for the same users will be
accumulated, and new users that are selected for the sample will appear in the
stream.

If we have a budget for how many tuples from the stream can be stored as
the sample, then the fraction of key values must vary, lowering as time goes
on. In order to assure that at all times, the sample consists of all tuples from a
subset of the key values, we choose a hash function A from key values to a very
large number of values 0,1, ..., B—1. We maintain a threshold t, which initially
can be the largest bucket number, B — 1. At all times, the sample consists of
those tuples whose key K satisfies h(K) < t. New tuples from the stream are
added to the sample if and only if they satisfy the same condition.

If the number of stored tuples of the sample exceeds the allotted space, we
lower t to t—1 and remove from the sample all those tuples whose key K hashes
to t. For efficiency, we can lower ¢ by more than 1, and remove the tuples with
several of the highest hash values, whenever we need to throw some key values
out of the sample. Further efficiency is obtained by maintaining an index on
the hash value, so we can find all those tuples whose keys hash to a particular
value quickly.

4.2.5 Exercises for Section 4.2

Exercise 4.2.1: Suppose we have a stream of tuples with the schema
Grades(university, courselD, studentID, grade)

Assume universities are unique, but a courselD is unique only within a uni-
versity (i.e., different universities may have different courses with the same ID,
e.g., “CS101”) and likewise, studentID’s are unique only within a university
(different universities may assign the same ID to different students). Suppose
we want to answer certain queries approximately from a 1/20th sample of the
data. For each of the queries below, indicate how you would construct the
sample. That is, tell what the key attributes should be.

(a) For each university, estimate the average number of students in a course.
(b) Estimate the fraction of students who have a GPA of 3.5 or more.

(c¢) Estimate the fraction of courses where at least half the students got “A.”

4.3. FILTERING STREAMS 139

4.3 Filtering Streams

Another common process on streams is selection, or filtering. We want to
accept those tuples in the stream that meet a criterion. Accepted tuples are
passed to another process as a stream, while other tuples are dropped. If the
selection criterion is a property of the tuple that can be calculated (e.g., the
first component is less than 10), then the selection is easy to do. The problem
becomes harder when the criterion involves lookup for membership in a set. It
is especially hard, when that set is too large to store in main memory. In this
section, we shall discuss the technique known as “Bloom filtering” as a way to
eliminate most of the tuples that do not meet the criterion.

4.3.1 A Motivating Example

Again let us start with a running example that illustrates the problem and
what we can do about it. Suppose we have a set .S of one billion allowed email
addresses — those that we will allow through because we believe them not to
be spam. The stream consists of pairs: an email address and the email itself.
Since the typical email address is 20 bytes or more, it is not reasonable to store
S in main memory. Thus, we can either use disk accesses to determine whether
or not to let through any given stream element, or we can devise a method that
requires no more main memory than we have available, and yet will filter most
of the undesired stream elements.

Suppose for argument’s sake that we have one gigabyte of available main
memory. In the technique known as Bloom filtering, we use that main memory
as a bit array. In this case, we have room for eight billion bits, since one byte
equals eight bits. Devise a hash function A from email addresses to eight billion
buckets. Hash each member of S to a bit, and set that bit to 1. All other bits
of the array remain 0.

Since there are one billion members of S, approximately 1/8th of the bits
will be 1. The exact fraction of bits set to 1 will be slightly less than 1/8th,
because it is possible that two members of S hash to the same bit. We shall
discuss the exact fraction of 1’s in Section 4.3.3. When a stream element arrives,
we hash its email address. If the bit to which that email address hashes is 1,
then we let the email through. But if the email address hashes to a 0, we are
certain that the address is not in S, so we can drop this stream element.

Unfortunately, some spam email will get through. Approximately 1/8th of
the stream elements whose email address is not in .S will happen to hash to a
bit whose value is 1 and will be let through. Nevertheless, since the majority of
emails are spam (about 80% according to some reports), eliminating 7/8th of
the spam is a significant benefit. Moreover, if we want to eliminate every spam,
we need only check for membership in S those good and bad emails that get
through the filter. Those checks will require the use of secondary memory to
access S itself. There are also other options, as we shall see when we study the
general Bloom-filtering technique. As a simple example, we could use a cascade

140 CHAPTER 4. MINING DATA STREAMS
of filters, each of which would eliminate 7/8th of the remaining spam.

4.3.2 The Bloom Filter
A Bloom filter consists of:

1. An array of n bits, initially all 0’s.

2. A collection of hash functions hi, hs,...,hi. Each hash function maps
“key” values to n buckets, corresponding to the n bits of the bit-array.

3. A set S of m key values.

The purpose of the Bloom filter is to allow through all stream elements whose
keys are in S, while rejecting most of the stream elements whose keys are not
in S.

To initialize the bit array, begin with all bits 0. Take each key value in S
and hash it using each of the & hash functions. Set to 1 each bit that is h;(K)
for some hash function h; and some key value K in S.

To test a key K that arrives in the stream, check that all of

hl(K)th(K)a'--ahk(K)

are 1’s in the bit-array. If all are 1’s, then let the stream element through. If
one or more of these bits are 0, then K could not be in S, so reject the stream
element.

4.3.3 Analysis of Bloom Filtering

If a key value is in S, then the element will surely pass through the Bloom
filter. However, if the key value is not in S, it might still pass. We need to
understand how to calculate the probability of a false positive, as a function of
n, the bit-array length, m the number of members of S, and k, the number of
hash functions.

The model to use is throwing darts at targets. Suppose we have x targets
and y darts. Any dart is equally likely to hit any target. After throwing the
darts, how many targets can we expect to be hit at least once? The analysis is
similar to the analysis in Section 3.4.2, and goes as follows:

e The probability that a given dart will not hit a given target is (z — 1)/x.

e The probability that none of the y darts will hit a given target is (C”T_l)y

We can write this expression as (1 — %)I(%).

e Using the approximation (1—¢)'/¢ = 1/e for small € (recall Section 1.3.5),

we conclude that the probability that none of the y darts hit a given target
is e~ v/*,

o=

4.3. FILTERING STREAMS 141

Example 4.3: Consider the running example of Section 4.3.1. We can use
the above calculation to get the true expected number of 1’s in the bit array.
Think of each bit as a target, and each member of S as a dart. Then the
probability that a given bit will be 1 is the probability that the corresponding
target will be hit by one or more darts. Since there are one billion members of
S, we have y = 10° darts. As there are eight billion bits, there are x = 8 x 10°
targets. Thus, the probability that a given target is not hit is e =¥/ = ¢~1/8
and the probability that it is hit is 1 — e~1/8. That quantity is about 0.1175.
In Section 4.3.1 we suggested that 1/8 = 0.125 is a good approximation, which
it is, but now we have the exact calculation. O

We can apply the rule to the more general situation, where set S has m
members, the array has n bits, and there are k& hash functions. The number
of targets is = n, and the number of darts is y = km. Thus, the probability
that a bit remains 0 is e *™/". We want the fraction of 0 bits to be fairly
large, or else the probability that a nonmember of S will hash at least once to
a 0 becomes too small, and there are too many false positives. For example,
we might choose k, the number of hash functions to be n/m or less. Then the
probability of a 0 is at least e~! or 37%. In general, the probability of a false
positive is the probability of a 1 bit, which is 1 — e~*™/"_ raised to the kth
power, i.e., (1 — e km/n)k,

Example 4.4: In Example 4.3 we found that the fraction of 1’s in the array of
our running example is 0.1175, and this fraction is also the probability of a false
positive. That is, a nonmember of S will pass through the filter if it hashes to
a 1, and the probability of it doing so is 0.1175.

Suppose we used the same S and the same array, but used two different
hash functions. This situation corresponds to throwing two billion darts at
eight billion targets, and the probability that a bit remains 0 is e~'/%. In order
to be a false positive, a nonmember of S must hash twice to bits that are 1,
and this probability is (1 — e~ /)2 or approximately 0.0493. Thus, adding a
second hash function for our running example is an improvement, reducing the
false-positive rate from 0.1175 to 0.0493. O

4.3.4 Exercises for Section 4.3

Exercise 4.3.1: For the situation of our running example (8 billion bits, 1
billion members of the set S), calculate the false-positive rate if we use three
hash functions? What if we use four hash functions?

Exercise 4.3.2: Suppose we have n bits of memory available, and our set S
has m members. Instead of using k hash functions, we could divide the n bits
into k arrays, and hash once to each array. As a function of n, m, and k, what
is the probability of a false positive? How does it compare with using k£ hash
functions into a single array?

.
o=

142 CHAPTER 4. MINING DATA STREAMS

Exercise 4.3.3: As a function of n, the number of bits and m the number
of members in the set S, what number of hash functions minimizes the false-
positive rate?

4.4 Counting Distinct Elements in a Stream

In this section we look at a third simple kind of processing we might want to
do on a stream. As with the previous examples — sampling and filtering — it is
somewhat tricky to do what we want in a reasonable amount of main memory,
so we use a variety of hashing and a randomized algorithm to get approximately
what we want with little space needed per stream.

4.4.1 The Count-Distinct Problem

Suppose stream elements are chosen from some universal set. We would like
to know how many different elements have appeared in the stream, counting
either from the beginning of the stream or from some known time in the past.

Example 4.5: As a useful example of this problem, consider a Web site gath-
ering statistics on how many unique users it has seen in each given month. The
universal set is the set of logins for that site, and a stream element is generated
each time someone logs in. This measure is appropriate for a site like Amazon,
where the typical user logs in with their unique login name.

A similar problem is a Web site like Google that does not require login to
issue a search query, and may be able to identify users only by the IP address
from which they send the query. There are about 4 billion IP addresses,?
sequences of four 8-bit bytes will serve as the universal set in this case. O

The obvious way to solve the problem is to keep in main memory a list of all
the elements seen so far in the stream. Keep them in an efficient search structure
such as a hash table or search tree, so one can quickly add new elements and
check whether or not the element that just arrived on the stream was already
seen. As long as the number of distinct elements is not too great, this structure
can fit in main memory and there is little problem obtaining an exact answer
to the question how many distinct elements appear in the stream.

However, if the number of distinct elements is too great, or if there are too
many streams that need to be processed at once (e.g., Yahoo! wants to count
the number of unique users viewing each of its pages in a month), then we
cannot store the needed data in main memory. There are several options. We
could use more machines, each machine handling only one or several of the
streams. We could store most of the data structure in secondary memory and
batch stream elements so whenever we brought a disk block to main memory
there would be many tests and updates to be performed on the data in that
block. Or we could use the strategy to be discussed in this section, where we

2 At least that will be the case until IPv6 becomes the norm.

4.4. COUNTING DISTINCT ELEMENTS IN A STREAM 143

only estimate the number of distinct elements but use much less memory than
the number of distinct elements.

4.4.2 The Flajolet-Martin Algorithm

It is possible to estimate the number of distinct elements by hashing the ele-
ments of the universal set to a bit-string that is sufficiently long. The length of
the bit-string must be sufficient that there are more possible results of the hash
function than there are elements of the universal set. For example, 64 bits is
sufficient to hash URL’s. We shall pick many different hash functions and hash
each element of the stream using these hash functions. The important property
of a hash function is that when applied to the same element, it always produces
the same result. Notice that this property was also essential for the sampling
technique of Section 4.2.

The idea behind the Flajolet-Martin Algorithm is that the more different
elements we see in the stream, the more different hash-values we shall see. As
we see more different hash-values, it becomes more likely that one of these
values will be “unusual.” The particular unusual property we shall exploit is
that the value ends in many 0’s, although many other options exist.

Whenever we apply a hash function h to a stream element a, the bit string
h(a) will end in some number of 0’s, possibly none. Call this number the tail
length for a and h. Let R be the maximum tail length of any a seen so far in
the stream. Then we shall use estimate 27 for the number of distinct elements
seen in the stream.

This estimate makes intuitive sense. The probability that a given stream
element a has h(a) ending in at least r 0’s is 27". Suppose there are m distinct
elements in the stream. Then the probability that none of them has tail length
at least r is (1 — 27")™. This sort of expression should be familiar by now.
We can rewrite it as ((1 — 2_T)2T)m2 . Assuming r is reasonably large, the
inner expression is of the form (1 — €)'/¢, which is approximately 1/e. Thus,
the probability of not finding a stream element with as many as r 0’s at the
end of its hash value is e ™2 . We can conclude:

1. If m is much larger than 2", then the probability that we shall find a tail
of length at least r approaches 1.

2. If m is much less than 2", then the probability of finding a tail length at
least r approaches 0.

We conclude from these two points that the proposed estimate of m, which is
2 (recall R is the largest tail length for any stream element) is unlikely to be
either much too high or much too low.

144 CHAPTER 4. MINING DATA STREAMS

4.4.3 Combining Estimates

Unfortunately, there is a trap regarding the strategy for combining the estimates
of m, the number of distinct elements, that we obtain by using many different
hash functions. Our first assumption would be that if we take the average of
the values 27 that we get from each hash function, we shall get a value that
approaches the true m, the more hash functions we use. However, that is not
the case, and the reason has to do with the influence an overestimate has on
the average.

Consider a value of r such that 2" is much larger than m. There is some
probability p that we shall discover 7 to be the largest number of 0’s at the end
of the hash value for any of the m stream elements. Then the probability of
finding r + 1 to be the largest number of 0’s instead is at least p/2. However, if
we do increase by 1 the number of 0’s at the end of a hash value, the value of
2% doubles. Consequently, the contribution from each possible large R to the
expected value of 2% grows as R grows, and the expected value of 2% is actually
infinite.?

Another way to combine estimates is to take the median of all estimates.
The median is not affected by the occasional outsized value of 2%, so the worry
described above for the average should not carry over to the median. Unfortu-
nately, the median suffers from another defect: it is always a power of 2. Thus,
no matter how many hash functions we use, should the correct value of m be
between two powers of 2, say 400, then it will be impossible to obtain a close
estimate.

There is a solution to the problem, however. We can combine the two
methods. First, group the hash functions into small groups, and take their
average. Then, take the median of the averages. It is true that an occasional
outsized 2% will bias some of the groups and make them too large. However,
taking the median of group averages will reduce the influence of this effect
almost to nothing. Moreover, if the groups themselves are large enough, then
the averages can be essentially any number, which enables us to approach the
true value m as long as we use enough hash functions. In order to guarantee
that any possible average can be obtained, groups should be of size at least a
small multiple of log, m.

4.4.4 Space Requirements

Observe that as we read the stream it is not necessary to store the elements
seen. The only thing we need to keep in main memory is one integer per hash
function; this integer records the largest tail length seen so far for that hash
function and any stream element. If we are processing only one stream, we
could use millions of hash functions, which is far more than we need to get a

3Technically, since the hash value is a bit-string of finite length, there is no contribution
to 27 for R’s that are larger than the length of the hash value. However, this effect is not
enough to avoid the conclusion that the expected value of 2% is much too large.

o=

4.5. ESTIMATING MOMENTS 145

close estimate. Only if we are trying to process many streams at the same time
would main memory constrain the number of hash functions we could associate
with any one stream. In practice, the time it takes to compute hash values for
each stream element would be the more significant limitation on the number of
hash functions we use.

4.4.5 Exercises for Section 4.4

Exercise 4.4.1: Suppose our stream consists of the integers 3, 1,4, 1, 5, 9, 2,
6, 5. Our hash functions will all be of the form h(z) = az +b mod 32 for some
a and b. You should treat the result as a 5-bit binary integer. Determine the
tail length for each stream element and the resulting estimate of the number of
distinct elements if the hash function is:

(a) h(z) =22+ 1 mod 32.
(b) h(x) =3x+7 mod 32.
(¢) h(xz) =4z mod 32.

Exercise 4.4.2: Do you see any problems with the choice of hash functions in
Exercise 4.4.17 What advice could you give someone who was going to use a
hash function of the form h(z) = az + b mod 2*?

4.5 Estimating Moments

In this section we consider a generalization of the problem of counting distinct
elements in a stream. The problem, called computing “moments,” involves the
distribution of frequencies of different elements in the stream. We shall define
moments of all orders and concentrate on computing second moments, from
which the general algorithm for all moments is a simple extension.

4.5.1 Definition of Moments

Suppose a stream consists of elements chosen from a universal set. Assume the
universal set is ordered so we can speak of the ith element for any ¢. Let m;
be the number of occurrences of the ith element for any i. Then the kth-order

moment (or just kth moment) of the stream is the sum over all i of (m;)¥.

Example 4.6: The 0th moment is the sum of 1 for each m; that is greater than
0.% That is, the Oth moment is a count of the number of distinct elements in
the stream. We can use the method of Section 4.4 to estimate the Oth moment
of a stream.

4Technically, since m; could be 0 for some elements in the universal set, we need to make
explicit in the definition of “moment” that 0° is taken to be 0. For moments 1 and above,
the contribution of m;’s that are 0 is surely 0.

146 CHAPTER 4. MINING DATA STREAMS

The 1st moment is the sum of the m;’s, which must be the length of the
stream. Thus, first moments are especially easy to compute; just count the
length of the stream seen so far.

The second moment is the sum of the squares of the m;’s. It is some-
times called the surprise number, since it measures how uneven the distribu-
tion of elements in the stream is. To see the distinction, suppose we have a
stream of length 100, in which eleven different elements appear. The most
even distribution of these eleven elements would have one appearing 10 times
and the other ten appearing 9 times each. In this case, the surprise number is
102 + 10 x 92 = 910. At the other extreme, one of the eleven elements could
appear 90 times and the other ten appear 1 time each. Then, the surprise
number would be 902 + 10 x 1?2 = 8110. O

As in Section 4.4, there is no problem computing moments of any order if we
can afford to keep in main memory a count for each element that appears in the
stream. However, also as in that section, if we cannot afford to use that much
memory, then we need to estimate the kth moment by keeping a limited number
of values in main memory and computing an estimate from these values. For
the case of distinct elements, each of these values were counts of the longest tail
produced by a single hash function. We shall see another form of value that is
useful for second and higher moments.

4.5.2 The Alon-Matias-Szegedy Algorithm for Second
Moments

For now, let us assume that a stream has a particular length n. We shall show
how to deal with growing streams in the next section. Suppose we do not have
enough space to count all the m;’s for all the elements of the stream. We can
still estimate the second moment of the stream using a limited amount of space;
the more space we use, the more accurate the estimate will be. We compute
some number of variables. For each variable X, we store:

1. A particular element of the universal set, which we refer to as X.element,
and

2. An integer X.value, which is the wvalue of the variable. To determine the
value of a variable X, we choose a position in the stream between 1 and n,
uniformly and at random. Set X.element to be the element found there,
and initialize X.value to 1. As we read the stream, add 1 to X.value each
time we encounter another occurrence of X.element.

Example 4.7: Suppose the stream is a,b,c,b,d,a,c,d,a,b,d,c,a,a,b. The
length of the stream is n = 15. Since a appears 5 times, b appears 4 times,
and ¢ and d appear three times each, the second moment for the stream is
52442432 4+ 32 = 59. Suppose we keep three variables, X1, X5, and X3. Also,

4.5. ESTIMATING MOMENTS 147

assume that at “random” we pick the 3rd, 8th, and 13th positions to define
these three variables.

When we reach position 3, we find element ¢, so we set X;.element = ¢
and Xj.value = 1. Position 4 holds b, so we do not change X;. Likewise,
nothing happens at positions 5 or 6. At position 7, we see ¢ again, so we set
X1.value = 2.

At position 8 we find d, and so set Xs.element = d and Xs.value = 1.
Positions 9 and 10 hold a and b, so they do not affect X; or Xs. Position 11
holds d so we set Xo.value = 2, and position 12 holds ¢ so we set X;.value = 3.
At position 13, we find element a, and so set X3.element = a and Xs.value = 1.
Then, at position 14 we see another a and so set Xs.value = 2. Position 15,
with element b does not affect any of the variables, so we are done, with final
values X.value = 3 and Xs.value = X3.value =2. 0O

We can derive an estimate of the second moment from any variable X. This
estimate is n(2X.value — 1).

Example 4.8: Consider the three variables from Example 4.7. From X; we
derive the estimate n(2X;.value — 1) = 15 x (2 x 3 — 1) = 75. The other
two variables, Xs and X3, each have value 2 at the end, so their estimates are
15 x (2 x 2 — 1) = 45. Recall that the true value of the second moment for this
stream is 59. On the other hand, the average of the three estimates is 55, a
fairly close approximation. O

4.5.3 Why the Alon-Matias-Szegedy Algorithm Works

We can prove that the expected value of any variable constructed as in Sec-
tion 4.5.2 is the second moment of the stream from which it is constructed.
Some notation will make the argument easier to follow. Let e(i) be the stream
element that appears at position 4 in the stream, and let ¢(i) be the number of
times element e(i) appears in the stream among positions 4,7+ 1,...,n.

Example 4.9: Consider the stream of Example 4.7. e(6) = a, since the 6th
position holds a. Also, ¢(6) = 4, since a appears at positions 9, 13, and 14, as
well as at position 6. Note that a also appears at position 1, but that fact does
not contribute to ¢(6). O

The expected value of n(2X.value — 1) is the average over all positions i
between 1 and n of n(2¢(i) — 1), that is

n

> n(2e(i) — 1)

=1

E(n(2X.value — 1)) =

S|

We can simplify the above by canceling factors 1/n and n, to get

E(n(2X.value — 1)) = > (2¢(i) — 1)

i=1

148 CHAPTER 4. MINING DATA STREAMS

However, to make sense of the formula, we need to change the order of
summation by grouping all those positions that have the same element. For
instance, concentrate on some element a that appears m, times in the stream.
The term for the last position in which a appears must be 2 x 1 —1 = 1. The
term for the next-to-last position in which a appears is 2 x 2 — 1 = 3. The
positions with a before that yield terms 5, 7, and so on, up to 2m, — 1, which
is the term for the first position in which a appears. That is, the formula for
the expected value of 2X.value — 1 can be written:

E(n(2X.value — 1)) 221+3+5+---+(2ma—1)

Note that 14+3+5+---+(2mg —1) = (m,)?. The proof is an easy induction
on the number of terms in the sum. Thus, E(n(2X.value — 1)) = 3 (mq)?,
which is the definition of the second moment.

4.5.4 Higher-Order Moments

We estimate kth moments, for k > 2, in essentially the same way as we estimate
second moments. The only thing that changes is the way we derive an estimate
from a variable. In Section 4.5.2 we used the formula n(2v — 1) to turn a value
v, the count of the number of occurrences of some particular stream element
a, into an estimate of the second moment. Then, in Section 4.5.3 we saw why
this formula works: the terms 2v — 1, for v = 1,2,...,m sum to m?, where m
is the number of times a appears in the stream.

Notice that 2v — 1 is the difference between v? and (v — 1)2. Suppose we
wanted the third moment rather than the second. Then all we have to do is
replace 2v—1 by v3—(v—1)3 = 3v*—3v+1. Then > /", 3v2—3v+1 = m3, so we
can use as our estimate of the third moment the formula n(3v* — 3v + 1), where
v = X.value is the value associated with some variable X. More generally, we
can estimate kth moments for any k£ > 2 by turning value v = X.value into

n(vh — (v —1)%).

4.5.5 Dealing With Infinite Streams

Technically, the estimate we used for second and higher moments assumes that
n, the stream length, is a constant. In practice, n grows with time. That fact,
by itself, doesn’t cause problems, since we store only the values of variables
and multiply some function of that value by n when it is time to estimate the
moment. If we count the number of stream elements seen and store this value,
which only requires logn bits, then we have n available whenever we need it.
A more serious problem is that we must be careful how we select the positions
for the variables. If we do this selection once and for all, then as the stream gets
longer, we are biased in favor of early positions, and the estimate of the moment
will be too large. On the other hand, if we wait too long to pick positions, then

4.5. ESTIMATING MOMENTS 149

early in the stream we do not have many variables and so will get an unreliable
estimate.

The proper technique is to maintain as many variables as we can store at
all times, and to throw some out as the stream grows. The discarded variables
are replaced by new ones, in such a way that at all times, the probability of
picking any one position for a variable is the same as that of picking any other
position. Suppose we have space to store s variables. Then the first s positions
of the stream are each picked as the position of one of the s variables.

Inductively, suppose we have seen n stream elements, and the probability of
any particular position being the position of a variable is uniform, that is s/n.
When the (n+1)st element arrives, pick that position with probability s/(n+1).
If not picked, then the s variables keep their same positions. However, if the
(n + 1)st position is picked, then throw out one of the current s variables, with
equal probability. Replace the one discarded by a new variable whose element
is the one at position n + 1 and whose value is 1.

Surely, the probability that position n + 1 is selected for a variable is what
it should be: s/(n + 1). However, the probability of every other position also
is $/(n+ 1), as we can prove by induction on n. By the inductive hypothesis,
before the arrival of the (n + 1)st stream element, this probability was s/n.
With probability 1 — s/(n + 1) the (n + 1)st position will not be selected, and
the probability of each of the first n positions remains s/n. However, with
probability s/(n + 1), the (n + 1)st position is picked, and the probability for
each of the first n positions is reduced by factor (s —1)/s. Considering the two
cases, the probability of selecting each of the first n positions is

)

S n

S

(1-)+ ()

n

This expression simplifies to

(-0 +(EDE)

and then to
s—1

(- =)+ =) C)

which in turn simplifies to

(7)) =—

n+1 n n+1

Thus, we have shown by induction on the stream length n that all positions
have equal probability s/n of being chosen as the position of a variable.

4.5.6 Exercises for Section 4.5

Exercise 4.5.1: Compute the surprise number (second moment) for the stream
3,1,4,1, 3,4, 2,1, 2. What is the third moment of this stream?

150 CHAPTER 4. MINING DATA STREAMS

A General Stream-Sampling Problem

Notice that the technique described in Section 4.5.5 actually solves a more
general problem. It gives us a way to maintain a sample of s stream
elements so that at all times, all stream elements are equally likely to be
selected for the sample.

As an example of where this technique can be useful, recall that in
Section 4.2 we arranged to select all the tuples of a stream having key
value in a randomly selected subset. Suppose that, as time goes on, there
are too many tuples associated with any one key. We can arrange to limit
the number of tuples for any key K to a fixed constant s by using the
technique of Section 4.5.5 whenever a new tuple for key K arrives.

! Exercise 4.5.2: If a stream has n elements, of which m are distinct, what are
the minimum and maximum possible surprise number, as a function of m and
n?

Exercise 4.5.3: Suppose we are given the stream of Exercise 4.5.1, to which
we apply the Alon-Matias-Szegedy Algorithm to estimate the surprise number.
For each possible value of i, if X; is a variable starting position ¢, what is the
value of X;.value?

Exercise 4.5.4: Repeat Exercise 4.5.3 if the intent of the variables is to com-
pute third moments. What is the value of each variable at the end? What
estimate of the third moment do you get from each variable? How does the
average of these estimates compare with the true value of the third moment?

Exercise 4.5.5: Prove by induction on m that 1+3+5+---+(2m—1) = m?2.

Exercise 4.5.6: If we wanted to compute fourth moments, how would we
convert X.value to an estimate of the fourth moment?

4.6 Counting Ones in a Window

We now turn our attention to counting problems for streams. Suppose we have
a window of length N on a binary stream. We want at all times to be able to
answer queries of the form “how many 1’s are there in the last & bits?” for any
k < N. As in previous sections, we focus on the situation where we cannot
afford to store the entire window. After showing an approximate algorithm for
the binary case, we discuss how this idea can be extended to summing numbers.

4.6. COUNTING ONES IN A WINDOW 151

4.6.1 The Cost of Exact Counts

To begin, suppose we want to be able to count exactly the number of 1’s in
the last k bits for any £ < N. Then we claim it is necessary to store all N
bits of the window, as any representation that used fewer than N bits could
not work. In proof, suppose we have a representation that uses fewer than NV
bits to represent the N bits in the window. Since there are 2V sequences of N
bits, but fewer than 2V representations, there must be two different bit strings
w and x that have the same representation. Since w # z, they must differ in
at least one bit. Let the last k — 1 bits of w and x agree, but let them differ on
the kth bit from the right end.

Example 4.10: If w = 0101 and x = 1010, then k = 1, since scanning from
the right, they first disagree at position 1. If w = 1001 and = = 0101, then
k = 3, because they first disagree at the third position from the right. O

Suppose the data representing the contents of the window is whatever se-
quence of bits represents both w and xz. Ask the query “how many 1’s are in
the last k bits?” The query-answering algorithm will produce the same an-
swer, whether the window contains w or x, because the algorithm can only see
their representation. But the correct answers are surely different for these two
bit-strings. Thus, we have proved that we must use at least N bits to answer
queries about the last k bits for any k.

In fact, we need N bits, even if the only query we can ask is “how many
1’s are in the entire window of length N?” The argument is similar to that
used above. Suppose we use fewer than N bits to represent the window, and
therefore we can find w, x, and k as above. It might be that w and x have
the same number of 1’s, as they did in both cases of Example 4.10. However,
if we follow the current window by any N — k bits, we will have a situation
where the true window contents resulting from w and z are identical except for
the leftmost bit, and therefore, their counts of 1’s are unequal. However, since
the representations of w and x are the same, the representation of the window
must still be the same if we feed the same bit sequence to these representations.
Thus, we can force the answer to the query “how many 1’s in the window?” to
be incorrect for one of the two possible window contents.

4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm

We shall present the simplest case of an algorithm called DGIM. This version of
the algorithm uses O(log® N) bits to represent a window of N bits, and allows
us to estimate the number of 1’s in the window with an error of no more than
50%. Later, we shall discuss an improvement of the method that limits the
error to any fraction € > 0, and still uses only O(log N) bits (although with a
constant factor that grows as € shrinks).

To begin, each bit of the stream has a timestamp, the position in which it
arrives. The first bit has timestamp 1, the second has timestamp 2, and so on.

152 CHAPTER 4. MINING DATA STREAMS

Since we only need to distinguish positions within the window of length N, we
shall represent timestamps modulo NN, so they can be represented by log, NV
bits. If we also store the total number of bits ever seen in the stream (i.e., the
most recent timestamp) modulo N, then we can determine from a timestamp
modulo N where in the current window the bit with that timestamp is.

We divide the window into buckets,® consisting of:

1. The timestamp of its right (most recent) end.

2. The number of 1’s in the bucket. This number must be a power of 2, and
we refer to the number of 1’s as the size of the bucket.

To represent a bucket, we need log, N bits to represent the timestamp (modulo
N) of its right end. To represent the number of 1’s we only need log, logs N
bits. The reason is that we know this number i is a power of 2, say 27, so we
can represent ¢ by coding j in binary. Since j is at most log, IV, it requires
log, logy N bits. Thus, O(log N) bits suffice to represent a bucket.

There are six rules that must be followed when representing a stream by
buckets.

e The right end of a bucket is always a position with a 1.

e Every position with a 1 is in some bucket.

No position is in more than one bucket.

There are one or two buckets of any given size, up to some maximum size.

All sizes must be a power of 2.

Buckets cannot decrease in size as we move to the left (back in time).

10110110001011101100101120

| .. .101Jto0110001fop 11011001010

?

At Iegst one Two of size 4 Qne of T\(vo of
of size 8 size 2 size 1

Figure 4.2: A bit-stream divided into buckets following the DGIM rules

5Do not confuse these “buckets” with the “buckets” discussed in connection with hashing.

4.6. COUNTING ONES IN A WINDOW 153

Example 4.11: Figure 4.2 shows a bit stream divided into buckets in a way
that satisfies the DGIM rules. At the right (most recent) end we see two buckets
of size 1. To its left we see one bucket of size 2. Note that this bucket covers
four positions, but only two of them are 1. Proceeding left, we see two buckets
of size 4, and we suggest that a bucket of size 8 exists further left.

Notice that it is OK for some 0’s to lie between buckets. Also, observe from
Fig. 4.2 that the buckets do not overlap; there are one or two of each size up to
the largest size, and sizes only increase moving left. O

In the next sections, we shall explain the following about the DGIM algo-
rithm:

1. Why the number of buckets representing a window must be small.

2. How to estimate the number of 1’s in the last k bits for any k, with an
error no greater than 50%.

3. How to maintain the DGIM conditions as new bits enter the stream.

4.6.3 Storage Requirements for the DGIM Algorithm

We observed that each bucket can be represented by O(log N) bits. If the
window has length N, then there are no more than N 1’s, surely. Suppose the
largest bucket is of size 2/. Then j cannot exceed log, N, or else there are more
1’s in this bucket than there are 1’s in the entire window. Thus, there are at
most two buckets of all sizes from log, N down to 1, and no buckets of larger
sizes.

We conclude that there are O(log N) buckets. Since each bucket can be
represented in O(log V) bits, the total space required for all the buckets repre-
senting a window of size N is O(log® N).

4.6.4 Query Answering in the DGIM Algorithm

Suppose we are asked how many 1’s there are in the last & bits of the window,
for some 1 < k < N. Find the bucket b with the earliest timestamp that
includes at least some of the k£ most recent bits. Estimate the number of 1’s to
be the sum of the sizes of all the buckets to the right (more recent) than bucket
b, plus half the size of b itself.

Example 4.12: Suppose the stream is that of Fig. 4.2, and £ = 10. Then the
query asks for the number of 1’s in the ten rightmost bits, which happen to be
0110010110. Let the current timestamp (time of the rightmost bit) be ¢. Then
the two buckets with one 1, having timestamps ¢ — 1 and ¢t — 2 are completely
included in the answer. The bucket of size 2, with timestamp ¢t — 4, is also
completely included. However, the rightmost bucket of size 4, with timestamp
t — 8 is only partly included. We know it is the last bucket to contribute to the
answer, because the next bucket to its left has timestamp less than ¢ — 9 and

154 CHAPTER 4. MINING DATA STREAMS

thus is completely out of the window. On the other hand, we know the buckets
to its right are completely inside the range of the query because of the existence
of a bucket to their left with timestamp t — 9 or greater.

Our estimate of the number of 1’s in the last ten positions is thus 6. This
number is the two buckets of size 1, the bucket of size 2, and half the bucket of
size 4 that is partially within range. Of course the correct answer is 5. O

Suppose the above estimate of the answer to a query involves a bucket b
of size 27 that is partially within the range of the query. Let us consider how
far from the correct answer ¢ our estimate could be. There are two cases: the
estimate could be larger or smaller than c.

Case 1: The estimate is less than c¢. In the worst case, all the 1’s of b are
actually within the range of the query, so the estimate misses half bucket b, or
291 1’s. But in this case, c is at least 27; in fact it is at least 29+1 — 1, since
there is at least one bucket of each of the sizes 2771, 2972, ... 1. We conclude
that our estimate is at least 50% of c.

Case 2: The estimate is greater than c. In the worst case, only the rightmost
bit of bucket b is within range, and there is only one bucket of each of the sizes
smaller than b. Then ¢ = 1+2/71 +2/72 4 ... 1 1 = 27 and the estimate we
give is 2971 42971 42972 4 ...+ 1 =27 + 2971 — 1. We see that the estimate
is no more than 50% greater than c.

4.6.5 Maintaining the DGIM Conditions

Suppose we have a window of length N properly represented by buckets that
satisfy the DGIM conditions. When a new bit comes in, we may need to modify
the buckets, so they continue to represent the window and continue to satisfy
the DGIM conditions. First, whenever a new bit enters:

e Check the leftmost (earliest) bucket. If its timestamp has now reached
the current timestamp minus IV, then this bucket no longer has any of its
1’s in the window. Therefore, drop it from the list of buckets.

Now, we must consider whether the new bit is 0 or 1. If it is 0, then no
further change to the buckets is needed. If the new bit is a 1, however, we may
need to make several changes. First:

e Create a new bucket with the current timestamp and size 1.

If there was only one bucket of size 1, then nothing more needs to be done.
However, if there are now three buckets of size 1, that is one too many. We fix
this problem by combining the leftmost (earliest) two buckets of size 1.

e To combine any two adjacent buckets of the same size, replace them by
one bucket of twice the size. The timestamp of the new bucket is the
timestamp of the rightmost (later in time) of the two buckets.

4.6. COUNTING ONES IN A WINDOW 155

Combining two buckets of size 1 may create a third bucket of size 2. If so,
we combine the leftmost two buckets of size 2 into a bucket of size 4. That, in
turn, may create a third bucket of size 4, and if so we combine the leftmost two
into a bucket of size 8. This process may ripple through the bucket sizes, but
there are at most logy, N different sizes, and the combination of two adjacent
buckets of the same size only requires constant time. As a result, any new bit
can be processed in O(log N) time.

Example 4.13: Suppose we start with the buckets of Fig. 4.2 and a 1 enters.
First, the leftmost bucket evidently has not fallen out of the window, so we
do not drop any buckets. We create a new bucket of size 1 with the current
timestamp, say t. There are now three buckets of size 1, so we combine the
leftmost two. They are replaced with a single bucket of size 2. Its timestamp is
t — 2, the timestamp of the bucket on the right (i.e., the rightmost bucket that
actually appears in Fig. 4.2.

| .. 101f101120002of 110100 1]of21]oq]
| e

At Iegst one Two of size 4 Tyvo of Qne of
of size 8 size 2 size 1

Figure 4.3: Modified buckets after a new 1 arrives in the stream

There are now two buckets of size 2, but that is allowed by the DGIM rules.
Thus, the final sequence of buckets after the addition of the 1 is as shown in
Fig. 4.3. O

4.6.6 Reducing the Error

Instead of allowing either one or two of each size bucket, suppose we allow either
r — 1 or r of each of the exponentially growing sizes 1, 2,4, ..., for some integer
r > 2. In order to represent any possible number of 1’s, we must relax this
condition for the buckets of size 1 and buckets of the largest size present; there
may be any number, from 1 to 7, of buckets of these sizes.

The rule for combining buckets is essentially the same as in Section 4.6.5. If
we get r + 1 buckets of size 27, combine the leftmost two into a bucket of size
27+1 That may, in turn, cause there to be 4+ 1 buckets of size 2771, and if so
we continue combining buckets of larger sizes.

The argument used in Section 4.6.4 can also be used here. However, because
there are more buckets of smaller sizes, we can get a stronger bound on the error.
We saw there that the largest relative error occurs when only one 1 from the
leftmost bucket b is within the query range, and we therefore overestimate the
true count. Suppose bucket b is of size 2. Then the true count is at least

156 CHAPTER 4. MINING DATA STREAMS

Bucket Sizes and Ripple-Carry Adders

There is a pattern to the distribution of bucket sizes as we execute the
basic algorithm of Section 4.6.5. Think of two buckets of size 27 as a 71”
in position j and one bucket of size 27 as a ”0” in that position. Then
as 1’s arrive in the stream, the bucket sizes after each 1 form consecutive
binary integers. The occasional long sequences of bucket combinations
are analogous to the occasional long rippling of carries as we go from an
integer like 101111 to 110000.

1+ (r—1)(27t4+2724...4+1) =1+ (r —1)(2/ — 1). The overestimate is
291 _ 1. Thus, the fractional error is
2i-1 _1
1+ (r—1)(2 1)

No matter what j is, this fraction is upper bounded by 1/(r — 1). Thus, by
picking r sufficiently large, we can limit the error to any desired € > 0.

4.6.7 Extensions to the Counting of Ones

It is natural to ask whether we can extend the technique of this section to
handle aggregations more general than counting 1’s in a binary stream. An
obvious direction to look is to consider streams of integers and ask if we can
estimate the sum of the last k integers for any 1 < k < N, where N, as usual,
is the window size.

It is unlikely that we can use the DGIM approach to streams containing
both positive and negative integers. We could have a stream containing both
very large positive integers and very large negative integers, but with a sum in
the window that is very close to 0. Any imprecision in estimating the values of
these large integers would have a huge effect on the estimate of the sum, and
so the fractional error could be unbounded.

For example, suppose we broke the stream into buckets as we have done, but
represented the bucket by the sum of the integers therein, rather than the count
of 1’s. If b is the bucket that is partially within the query range, it could be that
b has, in its first half, very large negative integers and in its second half, equally
large positive integers, with a sum of 0. If we estimate the contribution of b by
half its sum, that contribution is essentially 0. But the actual contribution of
that part of bucket b that is in the query range could be anything from 0 to the
sum of all the positive integers. This difference could be far greater than the
actual query answer, and so the estimate would be meaningless.

On the other hand, some other extensions involving integers do work. Sup-
pose that the stream consists of only positive integers in the range 1 to 2™ for

o=

4.7. DECAYING WINDOWS 157

some m. We can treat each of the m bits of each integer as if it were a separate
stream. We then use the DGIM method to count the 1’s in each bit. Suppose
the count of the ith bit (assuming bits count from the low-order end, starting
at 0) is ¢;. Then the sum of the integers is

m—1
E Cin
=0

If we use the technique of Section 4.6.6 to estimate each ¢; with fractional error
at most €, then the estimate of the true sum has error at most e. The worst
case occurs when all the ¢;’s are overestimated or all are underestimated by the
same fraction.

4.6.8 Exercises for Section 4.6

Exercise 4.6.1: Suppose the window is as shown in Fig. 4.2. Estimate the
number of 1’s the the last k positions, for k = (a) 5 (b) 15. In each case, how
far off the correct value is your estimate?

Exercise 4.6.2: There are several ways that the bit-stream 1001011011101
could be partitioned into buckets. Find all of them.

Exercise 4.6.3: Describe what happens to the buckets if three more 1’s enter
the window represented by Fig. 4.3. You may assume none of the 1’s shown
leave the window.

4.7 Decaying Windows

We have assumed that a sliding window held a certain tail of the stream, either
the most recent N elements for fixed IV, or all the elements that arrived after
some time in the past. Sometimes we do not want to make a sharp distinction
between recent elements and those in the distant past, but want to weight
the recent elements more heavily. In this section, we consider “exponentially
decaying windows,” and an application where they are quite useful: finding the
most common “recent” elements.

4.7.1 The Problem of Most-Common Elements

Suppose we have a stream whose elements are the movie tickets purchased all
over the world, with the name of the movie as part of the element. We want
to keep a summary of the stream that is the most popular movies “currently.”
While the notion of “currently” is imprecise, intuitively, we want to discount
the popularity of a movie like Star Wars—FEpisode 4, which sold many tickets,
but most of these were sold decades ago. On the other hand, a movie that sold

158 CHAPTER 4. MINING DATA STREAMS

n tickets in each of the last 10 weeks is probably more popular than a movie
that sold 2n tickets last week but nothing in previous weeks.

One solution would be to imagine a bit stream for each movie. The ith bit
has value 1 if the ith ticket is for that movie, and 0 otherwise. Pick a window
size N, which is the number of most recent tickets that would be considered
in evaluating popularity. Then, use the method of Section 4.6 to estimate the
number of tickets for each movie, and rank movies by their estimated counts.
This technique might work for movies, because there are only thousands of
movies, but it would fail if we were instead recording the popularity of items
sold at Amazon, or the rate at which different Twitter-users tweet, because
there are too many Amazon products and too many tweeters. Further, it only
offers approximate answers.

4.7.2 Definition of the Decaying Window

An alternative approach is to redefine the question so that we are not asking
for a count of 1’s in a window. Rather, let us compute a smooth aggregation of
all the 1’s ever seen in the stream, with decaying weights, so the further back
in the stream, the less weight is given. Formally, let a stream currently consist
of the elements a1, as,...,a;, where a; is the first element to arrive and a; is
the current element. Let ¢ be a small constant, such as 1076 or 109, Define
the exponentially decaying window for this stream to be the sum

t—1
Z at—i(1—c)'
i=0

The effect of this definition is to spread out the weights of the stream el-
ements as far back in time as the stream goes. In contrast, a fixed window
with the same sum of the weights, 1/¢, would put equal weight 1 on each of the
most recent 1/c elements to arrive and weight 0 on all previous elements. The
distinction is suggested by Fig. 4.4.

- Window of
length 1/c

Figure 4.4: A decaying window and a fixed-length window of equal weight

It is much easier to adjust the sum in an exponentially decaying window
than in a sliding window of fixed length. In the sliding window, we have to
worry about the element that falls out of the window each time a new element
arrives. That forces us to keep the exact elements along with the sum, or to use

4.7. DECAYING WINDOWS 159

an approximation scheme such as DGIM. However, when a new element asy;
arrives at the stream input, all we need to do is:

1. Multiply the current sum by 1 —c.
2. Add At41-

The reason this method works is that each of the previous elements has now
moved one position further from the current element, so its weight is multiplied
by 1 — c. Further, the weight on the current element is (1 — ¢) = 1, so adding
a¢+1 is the correct way to include the new element’s contribution.

4.7.3 Finding the Most Popular Elements

Let us return to the problem of finding the most popular movies in a stream of
ticket sales.® We shall use an exponentially decaying window with a constant
¢, which you might think of as 1079, That is, we approximate a sliding window
holding the last one billion ticket sales. For each movie, we imagine a separate
stream with a 1 each time a ticket for that movie appears in the stream, and a
0 each time a ticket for some other movie arrives. The decaying sum of the 1’s
measures the current popularity of the movie.

We imagine that the number of possible movies in the stream is huge, so we
do not want to record values for the unpopular movies. Therefore, we establish
a threshold, say 1/2, so that if the popularity score for a movie goes below this
number, its score is dropped from the counting. For reasons that will become
obvious, the threshold must be less than 1, although it can be any number less
than 1. When a new ticket arrives on the stream, do the following:

1. For each movie whose score we are currently maintaining, multiply its
score by (1 — c¢).

2. Suppose the new ticket is for movie M. If there is currently a score for M,
add 1 to that score. If there is no score for M, create one and initialize it
to 1.

3. If any score is below the threshold 1/2, drop that score.

It may not be obvious that the number of movies whose scores are main-
tained at any time is limited. However, note that the sum of all scores is 1/c.
There cannot be more than 2/c¢ movies with score of 1/2 or more, or else the
sum of the scores would exceed 1/¢. Thus, 2/c is a limit on the number of
movies being counted at any time. Of course in practice, the ticket sales would
be concentrated on only a small number of movies at any time, so the number
of actively counted movies would be much less than 2/c.

6This example should be taken with a grain of salt, because, as we pointed out, there
aren’t enough different movies for this technique to be essential. Imagine, if you will, that
the number of movies is extremely large, so counting ticket sales of each one separately is not
feasible.

160

CHAPTER 4. MINING DATA STREAMS

4.8 Summary of Chapter 4

+

The Stream Data Model: This model assumes data arrives at a processing
engine at a rate that makes it infeasible to store everything in active
storage. One strategy to dealing with streams is to maintain summaries
of the streams, sufficient to answer the expected queries about the data.
A second approach is to maintain a sliding window of the most recently
arrived data.

Sampling of Streams: To create a sample of a stream that is usable for
a class of queries, we identify a set of key attributes for the stream. By
hashing the key of any arriving stream element, we can use the hash value
to decide consistently whether all or none of the elements with that key
will become part of the sample.

Bloom Filters: This technique allows us to filter streams so elements that
belong to a particular set are allowed through, while most nonmembers
are deleted. We use a large bit array, and several hash functions. Members
of the selected set are hashed to buckets, which are bits in the array, and
those bits are set to 1. To test a stream element for membership, we hash
the element to a set of bits using each of the hash functions, and only
accept the element if all these bits are 1.

Counting Distinct Elements: To estimate the number of different elements
appearing in a stream, we can hash elements to integers, interpreted as
binary numbers. 2 raised to the power that is the longest sequence of 0’s
seen in the hash value of any stream element is an estimate of the number
of different elements. By using many hash functions and combining these
estimates, first by taking averages within groups, and then taking the
median of the averages, we get a reliable estimate.

Moments of Streams: The kth moment of a stream is the sum of the kth
powers of the counts of each element that appears at least once in the
stream. The Oth moment is the number of distinct elements, and the 1st
moment is the length of the stream.

Estimating Second Moments: A good estimate for the second moment, or
surprise number, is obtained by choosing a random position in the stream,
taking twice the number of times this element appears in the stream from
that position onward, subtracting 1, and multiplying by the length of
the stream. Many random variables of this type can be combined like
the estimates for counting the number of distinct elements, to produce a
reliable estimate of the second moment.

Estimating Higher Moments: The technique for second moments works
for kth moments as well, as long as we replace the formula 22 — 1 (where
x is the number of times the element appears at or after the selected
position) by z* — (x — 1)k.

4.9. REFERENCES FOR CHAPTER 4 161

4+ Estimating the Number of 1’s in a Window: We can estimate the number
of 1’s in a window of 0’s and 1’s by grouping the 1’s into buckets. Each
bucket has a number of 1’s that is a power of 2; there are one or two
buckets of each size, and sizes never decrease as we go back in time. If
we record only the position and size of the buckets, we can represent the
contents of a window of size N with O(log® N) space.

4+ Answering Queries About Numbers of 1’s: If we want to know the approx-
imate numbers of 1’s in the most recent k elements of a binary stream,
we find the earliest bucket B that is at least partially within the last k
positions of the window and estimate the number of 1’s to be the sum of
the sizes of each of the more recent buckets plus half the size of B. This
estimate can never be off by more that 50% of the true count of 1’s.

4 Closer Approximations to the Number of 1’s: By changing the rule for
how many buckets of a given size can exist in the representation of a
binary window, so that either r or r — 1 of a given size may exist, we can
assure that the approximation to the true number of 1’s is never off by
more than 1/r.

4+ FEzponentially Decaying Windows: Rather than fixing a window size, we
can imagine that the window consists of all the elements that ever arrived
in the stream, but with the element that arrived ¢ time units ago weighted
by e~ for some time-constant c¢. Doing so allows us to maintain certain
summaries of an exponentially decaying window easily. For instance, the
weighted sum of elements can be recomputed, when a new element arrives,
by multiplying the old sum by 1 — ¢ and then adding the new element.

4 Maintaining Frequent Elements in an FExzponentially Decaying Window:
We can imagine that each item is represented by a binary stream, where
0 means the item was not the element arriving at a given time, and 1
means that it was. We can find the elements whose sum of their binary
stream is at least 1/2. When a new element arrives, multiply all recorded
sums by 1 minus the time constant, add 1 to the count of the item that
just arrived, and delete from the record any item whose sum has fallen
below 1/2.

4.9 References for Chapter 4

Many ideas associated with stream management appear in the “chronicle data
model” of [8]. An early survey of research in stream-management systems is
[2]. Also, [6] is a recent book on the subject of stream management.

The sampling technique of Section 4.2 is from [7]. The Bloom Filter is
generally attributed to [3], although essentially the same technique appeared as
“superimposed codes” in [9].

162

CHAPTER 4. MINING DATA STREAMS

The algorithm for counting distinct elements is essentially that of [5], al-
though the particular method we described appears in [1]. The latter is also
the source for the algorithm for calculating the surprise number and higher
moments. However, the technique for maintaining a uniformly chosen sample
of positions in the stream is called “reservoir sampling” and comes from [10].

The technique for approximately counting 1’s in a window is from [4].

1.

10.

N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approxi-
mating frequency moments,” 28th ACM Symposium on Theory of Com-
puting, pp. 2029, 1996.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” Symposium on Principles of Database
Systems, pp. 1-16, 2002.

B.H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Comm. ACM 13:7, pp. 422-426, 1970.

M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream
statistics over sliding windows,” SIAM J. Computing 31, pp. 1794-1813,
2002.

P. Flajolet and G.N. Martin, “Probabilistic counting for database applica-
tions,” 24th Symposium on Foundations of Computer Science, pp. 76-82,
1983.

M. Garofalakis, J. Gehrke, and R. Rastogi (editors), Data Stream Man-
agement, Springer, 2009.

P.B. Gibbons, “Distinct sampling for highly-accurate answers to distinct
values queries and event reports,” Intl. Conf. on Very Large Databases,
pp- 541-550, 2001.

H.V. Jagadish, I.S. Mumick, and A. Silberschatz, “View maintenance
issues for the chronicle data model,” Proc. ACM Symp. on Principles of
Database Systems, pp. 113-124, 1995.

W.H. Kautz and R.C. Singleton, “Nonadaptive binary superimposed codes,”
IEEE Transactions on Information Theory 10, pp. 363-377, 1964.

J. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software 11:1, pp. 37-57, 1985.

Chapter 5

Link Analysis

One of the biggest changes in our lives in the decade following the turn of
the century was the availability of efficient and accurate Web search, through
search engines such as Google. While Google was not the first search engine, it
was the first able to defeat the spammers who had made search almost useless.
Moreover, the innovation provided by Google was a nontrivial technological
advance, called “PageRank.” We shall begin the chapter by explaining what
PageRank is and how it is computed efficiently.

Yet the war between those who want to make the Web useful and those
who would exploit it for their own purposes is never over. When PageRank was
established as an essential technique for a search engine, spammers invented
ways to manipulate the PageRank of a Web page, often called link spam.!
That development led to the response of TrustRank and other techniques for
preventing spammers from attacking PageRank. We shall discuss TrustRank
and other approaches to detecting link spam.

Finally, this chapter also covers some variations on PageRank. These tech-
niques include topic-sensitive PageRank (which can also be adapted for combat-
ing link spam) and the HITS, or “hubs and authorities” approach to evaluating
pages on the Web.

5.1 PageRank

We begin with a portion of the history of search engines, in order to motivate
the definition of PageRank,? a tool for evaluating the importance of Web pages
in a way that it is not easy to fool. We introduce the idea of “random surfers,”
to explain why PageRank is effective. We then introduce the technique of “tax-
ation” or recycling of random surfers, in order to avoid certain Web structures

1Link spammers sometimes try to make their unethicality less apparent by referring to
what they do as “search-engine optimization.”

2The term PageRank comes from Larry Page, the inventor of the idea and a founder of
Google.

163

164 CHAPTER 5. LINK ANALYSIS
that present problems for the simple version of PageRank.

5.1.1 Early Search Engines and Term Spam

There were many search engines before Google. Largely, they worked by crawl-
ing the Web and listing the terms (words or other strings of characters other
than white space) found in each page, in an inverted index. An inverted index
is a data structure that makes it easy, given a term, to find (pointers to) all the
places where that term occurs.

When a search query (list of terms) was issued, the pages with those terms
were extracted from the inverted index and ranked in a way that reflected the
use of the terms within the page. Thus, presence of a term in a header of
the page made the page more relevant than would the presence of the term in
ordinary text, and large numbers of occurrences of the term would add to the
assumed relevance of the page for the search query.

As people began to use search engines to find their way around the Web,
unethical people saw the opportunity to fool search engines into leading people
to their page. Thus, if you were selling shirts on the Web, all you cared about
was that people would see your page, regardless of what they were looking for.
Thus, you could add a term like “movie” to your page, and do it thousands of
times, so a search engine would think you were a terribly important page about
movies. When a user issued a search query with the term “movie,” the search
engine would list your page first. To prevent the thousands of occurrences of
“movie” from appearing on your page, you could give it the same color as the
background. And if simply adding “movie” to your page didn’t do the trick,
then you could go to the search engine, give it the query “movie,” and see what
page did come back as the first choice. Then, copy that page into your own,
again using the background color to make it invisible.

Techniques for fooling search engines into believing your page is about some-
thing it is not, are called term spam. The ability of term spammers to operate
so easily rendered early search engines almost useless. To combat term spam,
Google introduced two innovations:

1. PageRank was used to simulate where Web surfers, starting at a random
page, would tend to congregate if they followed randomly chosen outlinks
from the page at which they were currently located, and this process were
allowed to iterate many times. Pages that would have a large number of
surfers were considered more “important” than pages that would rarely
be visited. Google prefers important pages to unimportant pages when
deciding which pages to show first in response to a search query.

2. The content of a page was judged not only by the terms appearing on that
page, but by the terms used in or near the links to that page. Note that
while it is easy for a spammer to add false terms to a page they control,
they cannot as easily get false terms added to the pages that link to their
own page, if they do not control those pages.

5.1. PAGERANK 165

Simplified PageRank Doesn’t Work

As we shall see, computing PageRank by simulating random surfers is
a time-consuming process. One might think that simply counting the
number of in-links for each page would be a good approximation to where
random surfers would wind up. However, if that is all we did, then the
hypothetical shirt-seller could simply create a “spam farm” of a million
pages, each of which linked to his shirt page. Then, the shirt page looks
very important indeed, and a search engine would be fooled.

These two techniques together make it very hard for the hypothetical shirt
vendor to fool Google. While the shirt-seller can still add “movie” to his page,
the fact that Google believed what other pages say about him, over what he says
about himself would negate the use of false terms. The obvious countermeasure
is for the shirt seller to create many pages of his own, and link to his shirt-
selling page with a link that says “movie.” But those pages would not be given
much importance by PageRank, since other pages would not link to them. The
shirt-seller could create many links among his own pages, but none of these
pages would get much importance according to the PageRank algorithm, and
therefore, he still would not be able to fool Google into thinking his page was
about movies.

It is reasonable to ask why simulation of random surfers should allow us to
approximate the intuitive notion of the “importance” of pages. There are two
related motivations that inspired this approach.

e Users of the Web “vote with their feet.” They tend to place links to pages
they think are good or useful pages to look at, rather than bad or useless

pages.

e The behavior of a random surfer indicates which pages users of the Web
are likely to visit. Users are more likely to visit useful pages than useless

pages.

But regardless of the reason, the PageRank measure has been proved empirically
to work, and so we shall study in detail how it is computed.

5.1.2 Definition of PageRank

PageRank is a function that assigns a real number to each page in the Web
(or at least to that portion of the Web that has been crawled and its links
discovered). The intent is that the higher the PageRank of a page, the more
“important” it is. There is not one fixed algorithm for assignment of PageRank,
and in fact variations on the basic idea can alter the relative PageRank of any
two pages. We begin by defining the basic, idealized PageRank, and follow it

166 CHAPTER 5. LINK ANALYSIS

by modifications that are necessary for dealing with some real-world problems
concerning the structure of the Web.

Think of the Web as a directed graph, where pages are the nodes, and there
is an arc from page p; to page ps if there are one or more links from p; to po.
Figure 5.1 is an example of a tiny version of the Web, where there are only four
pages. Page A has links to each of the other three pages; page B has links to
A and D only; page C has a link only to A, and page D has links to B and C
only.

Figure 5.1: A hypothetical example of the Web

Suppose a random surfer starts at page A in Fig. 5.1. There are links to B,
C, and D, so this surfer will next be at each of those pages with probability
1/3, and has zero probability of being at A. A random surfer at B has, at the
next step, probability 1/2 of being at A, 1/2 of being at D, and 0 of being at
Bor C.

In general, we can define the transition matrix of the Web to describe what
happens to random surfers after one step. This matrix M has n rows and
columns, if there are n pages. The element m;; in row ¢ and column j has value
1/k if page j has k arcs out, and one of them is to page i. Otherwise, m;; = 0.

Example 5.1: The transition matrix for the Web of Fig. 5.1 is

0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0

M =

In this matrix, the order of the pages is the natural one, A, B, C, and D. Thus,
the first column expresses the fact, already discussed, that a surfer at A has a
1/3 probability of next being at each of the other pages. The second column
expresses the fact that a surfer at B has a 1/2 probability of being next at A
and the same of being at D. The third column says a surfer at C' is certain to
be at A next. The last column says a surfer at D has a 1/2 probability of being
next at B and the same at C. O

5.1. PAGERANK 167

The probability distribution for the location of a random surfer can be
described by a column vector whose jth component is the probability that the
surfer is at page j. This probability is the (idealized) PageRank function.

Suppose we start a random surfer at any of the n pages of the Web with
equal probability. Then the initial vector v will have 1/n for each component.
If M is the transition matrix of the Web, then after one step, the distribution
of the surfer will be Mg, after two steps it will be M (Mvq) = M?vg, and so
on. In general, multiplying the initial vector vo by M a total of i times will
give us the distribution of the surfer after ¢ steps.

To see why multiplying a distribution vector v by M gives the distribution
x = Mv at the next step, we reason as follows. The probability x; that a
random surfer will be at node i at the next step, is Zj m;;vj. Here, my; is the
probability that a surfer at node j will move to node i at the next step (often
0 because there is no link from j to), and v; is the probability that the surfer
was at node j at the previous step.

This sort of behavior is an example of the ancient theory of Markov processes.
It is known that the distribution of the surfer approaches a limiting distribution
v that satisfies v. = Mv, provided two conditions are met:

1. The graph is strongly connected; that is, it is possible to get from any
node to any other node.

2. There are no dead ends: nodes that have no arcs out.

Note that Fig. 5.1 satisfies both these conditions.

The limit is reached when multiplying the distribution by M another time
does not change the distribution. In other terms, the limiting v is an eigenvec-
tor of M (an eigenvector of a matrix M is a vector v that satisfies v.= AMv for
some constant eigenvalue). In fact, because M is stochastic, meaning that its
columns each add up to 1, v is the principal eigenvector (its associated eigen-
value is the largest of all eigenvalues). Note also that, because M is stochastic,
the eigenvalue associated with the principal eigenvector is 1.

The principal eigenvector of M tells us where the surfer is most likely to
be after a long time. Recall that the intuition behind PageRank is that the
more likely a surfer is to be at a page, the more important the page is. We
can compute the principal eigenvector of M by starting with the initial vector
vo and multiplying by M some number of times, until the vector we get shows
little change at each round. In practice, for the Web itself, 5075 iterations are
sufficient to converge to within the error limits of double-precision arithmetic.

Example 5.2: Suppose we apply the process described above to the matrix
M from Example 5.1. Since there are four nodes, the initial vector v has four
components, each 1/4. The sequence of approximations to the limit that we

168 CHAPTER 5. LINK ANALYSIS

Solving Linear Equations

If you look at the 4-node “Web” of Example 5.2, you might think that the
way to solve the equation v = Mv is by Gaussian elimination. Indeed,
in that example, we argued what the limit would be essentially by doing
so. However, in realistic examples, where there are tens or hundreds of
billions of nodes, Gaussian elimination is not feasible. The reason is that
Gaussian elimination takes time that is cubic in the number of equations.
Thus, the only way to solve equations on this scale is to iterate as we
have suggested. Even that iteration is quadratic at each round, but we
can speed it up by taking advantage of the fact that the matrix M is very
sparse; there are on average about ten links per page, i.e., ten nonzero
entries per column.

Moreover, there is another difference between PageRank calculation
and solving linear equations. The equation v = Mv has an infinite number
of solutions, since we can take any solution v, multiply its components by
any fixed constant ¢, and get another solution to the same equation. When
we include the constraint that the sum of the components is 1, as we have
done, then we get a unique solution.

get by multiplying at each step by M is:

1/4 9/24 15/48 11/32 3/9
1/4 5/24 11/48 7/32 2/9
1/4 || 5724 || 11748 || 732 || 279
1/4 5/24 11/48 7/32 2/9

Notice that in this example, the probabilities for B, C', and D remain the
same. It is easy to see that B and C' must always have the same values at any
iteration, because their rows in M are identical. To show that their values are
also the same as the value for D, an inductive proof works, and we leave it as
an exercise. Given that the last three values of the limiting vector must be the
same, it is easy to discover the limit of the above sequence. The first row of
M tells us that the probability of A must be 3/2 the other probabilities, so the
limit has the probability of A equal to 3/9, or 1/3, while the probability for the
other three nodes is 2/9.

This difference in probability is not great. But in the real Web, with billions
of nodes of greatly varying importance, the true probability of being at a node
like www.amazon.com is orders of magnitude greater than the probability of
typical nodes. O

5.1. PAGERANK 169

5.1.3 Structure of the Web

It would be nice if the Web were strongly connected like Fig. 5.1. However, it
is not, in practice. An early study of the Web found it to have the structure
shown in Fig. 5.2. There was a large strongly connected component (SCC), but
there were several other portions that were almost as large.

1. The in-component, consisting of pages that could reach the SCC by fol-
lowing links, but were not reachable from the SCC.

2. The out-component, consisting of pages reachable from the SCC but un-
able to reach the SCC.

3. Tendrils, which are of two types. Some tendrils consist of pages reachable
from the in-component but not able to reach the in-component. The
other tendrils can reach the out-component, but are not reachable from
the out-component.

Tendrils

out Tendrils

In

Strongly
Connected
Component

In
Component

Out

Component 3

-

Disconnected

@ Components

Figure 5.2: The “bowtie” picture of the Web

In addition, there were small numbers of pages found either in

170 CHAPTER 5. LINK ANALYSIS

(a) Tubes, which are pages reachable from the in-component and able to reach
the out-component, but unable to reach the SCC or be reached from the
SCC.

(b) Isolated components that are unreachable from the large components (the
SCC, in- and out-components) and unable to reach those components.

Several of these structures violate the assumptions needed for the Markov-
process iteration to converge to a limit. For example, when a random surfer
enters the out-component, they can never leave. As a result, surfers starting
in either the SCC or in-component are going to wind up in either the out-
component or a tendril off the in-component. Thus, no page in the SCC or in-
component winds up with any probability of a surfer being there. If we interpret
this probability as measuring the importance of a page, then we conclude falsely
that nothing in the SCC or in-component is of any importance.

As a result, PageRank is usually modified to prevent such anomalies. There
are really two problems we need to avoid. First is the dead end, a page that
has no links out. Surfers reaching such a page disappear, and the result is that
in the limit no page that can reach a dead end can have any PageRank at all.
The second problem is groups of pages that all have outlinks but they never
link to any other pages. These structures are called spider traps.®> Both these
problems are solved by a method called “taxation,” where we assume a random
surfer has a finite probability of leaving the Web at any step, and new surfers
are started at each page. We shall illustrate this process as we study each of
the two problem cases.

5.1.4 Avoiding Dead Ends

Recall that a page with no link out is called a dead end. If we allow dead
ends, the transition matrix of the Web is no longer stochastic, since some of
the columns will sum to 0 rather than 1. A matrix whose column sums are at
most 1 is called substochastic. If we compute M*v for increasing powers of a
substochastic matrix M, then some or all of the components of the vector go
to 0. That is, importance “drains out” of the Web, and we get no information
about the relative importance of pages.

Example 5.3: In Fig. 5.3 we have modified Fig. 5.1 by removing the arc from
C to A. Thus, C becomes a dead end. In terms of random surfers, when
a surfer reaches C' they disappear at the next round. The matrix M that
describes Fig. 5.3 is

0 1/2 0 0
113 0 0 12
M=1493 0 o 12
1/3 1/2 0 0

3They are so called because the programs that crawl the Web, recording pages and links,
are often referred to as “spiders.” Once a spider enters a spider trap, it can never leave.

5.1. PAGERANK 171

Figure 5.3: C is now a dead end

Note that it is substochastic, but not stochastic, because the sum of the third
column, for C', is 0, not 1. Here is the sequence of vectors that result by starting
with the vector with each component 1/4, and repeatedly multiplying the vector
by M:

1/4 3/24 5/48 21/288 0
1/4 5/24 7/48 31/288 0
1/4 || 5/24 || 7/48 |°| 317288 || 0
1/4 5/24 7/48 31/288 0

As we see, the probability of a surfer being anywhere goes to 0, as the number
of steps increase. O

There are two approaches to dealing with dead ends.

1. We can drop the dead ends from the graph, and also drop their incoming
arcs. Doing so may create more dead ends, which also have to be dropped,
recursively. However, eventually we wind up with a strongly-connected
component, none of whose nodes are dead ends. In terms of Fig. 5.2,
recursive deletion of dead ends will remove parts of the out-component,
tendrils, and tubes, but leave the SCC and the in-component, as well as
parts of any small isolated components.*

2. We can modify the process by which random surfers are assumed to move
about the Web. This method, which we refer to as “taxation,” also solves
the problem of spider traps, so we shall defer it to Section 5.1.5.

If we use the first approach, recursive deletion of dead ends, then we solve the
remaining graph G by whatever means are appropriate, including the taxation
method if there might be spider traps in G. Then, we restore the graph, but keep

4You might suppose that the entire out-component and all the tendrils will be removed, but
remember that they can have within them smaller strongly connected components, including
spider traps, which cannot be deleted.

172 CHAPTER 5. LINK ANALYSIS

the PageRank values for the nodes of G. Nodes not in G, but with predecessors
all in G can have their PageRank computed by summing, over all predecessors
p, the PageRank of p divided by the number of successors of p in the full graph.
Now there may be other nodes, not in G, that have the PageRank of all their
predecessors computed. These may have their own PageRank computed by
the same process. Eventually, all nodes outside G will have their PageRank
computed; they can surely be computed in the order opposite to that in which

they were deleted.

Figure 5.4: A graph with two levels of dead ends

Example 5.4: Figure 5.4 is a variation on Fig. 5.3, where we have introduced
a successor F for C. But E is a dead end, and when we remove it, and the
arc entering from C, we find that C is now a dead end. After removing C, no
more nodes can be removed, since each of A, B, and D have arcs leaving. The
resulting graph is shown in Fig. 5.5.

The matrix for the graph of Fig. 5.5 is

0 1/2 0
M=|1/2 0 1
1/2 1/2 0

The rows and columns correspond to A, B, and D in that order. To get the
PageRanks for this matrix, we start with a vector with all components equal
to 1/3, and repeatedly multiply by M. The sequence of vectors we get is

1/3 1/6 3/12 5/24 2/9
13 |, 3/6 |, | 5/12 |, | 11/24 |,..., | 4/9
1/3 2/6 4/12 8/24 3/9

We now know that the PageRank of A is 2/9, the PageRank of B is 4/9,
and the PageRank of D is 3/9. We still need to compute PageRanks for C

5.1. PAGERANK 173

Figure 5.5: The reduced graph with no dead ends

and F, and we do so in the order opposite to that in which they were deleted.
Since C was last to be deleted, we know all its predecessors have PageRanks
computed. These predecessors are A and D. In Fig. 5.4, A has three successors,
so it contributes 1/3 of its PageRank to C. Page D has two successors in
Fig. 5.4, so it contributes half its PageRank to C. Thus, the PageRank of C is
Ix241x3=13/54

Now we can compute the PageRank for £. That node has only one pre-
decessor, C, and C' has only one successor. Thus, the PageRank of F is the
same as that of C'. Note that the sums of the PageRanks exceed 1, and they
no longer represent the distribution of a random surfer. Yet they do represent
decent estimates of the relative importance of the pages. O

5.1.5 Spider Traps and Taxation

As we mentioned, a spider trap is a set of nodes with no dead ends but no arcs
out. These structures can appear intentionally or unintentionally on the Web,
and they cause the PageRank calculation to place all the PageRank within the
spider traps.

Example 5.5: Consider Fig. 5.6, which is Fig. 5.1 with the arc out of C
changed to point to C' itself. That change makes C' a simple spider trap of one
node. Note that in general spider traps can have many nodes, and as we shall
see in Section 5.4, there are spider traps with millions of nodes that spammers
construct intentionally.

The transition matrix for Fig. 5.6 is

0 1/2 0 0
113 0 0 1/2
M=1493 0o 1 1/
1/3 1/2 0 0

If we perform the usual iteration to compute the PageRank of the nodes, we

174 CHAPTER 5. LINK ANALYSIS

Figure 5.6: A graph with a one-node spider trap

get
1/4 3/24 5/48 21/288 0
1/4 5/24 7/48 31/288 0
1/4 [7| 11/24 || 29/48 |’ | 205/288 | """ | 1
1/4 5/24 7/48 31/288 0

As predicted, all the PageRank is at C, since once there a random surfer can
never leave. 0O

To avoid the problem illustrated by Example 5.5, we modify the calculation
of PageRank by allowing each random surfer a small probability of teleporting
to a random page, rather than following an out-link from their current page.
The iterative step, where we compute a new vector estimate of PageRanks v’
from the current PageRank estimate v and the transition matrix M is

v =BMv + (1 - B)e/n

where [is a chosen constant, usually in the range 0.8 to 0.9, e is a vector of all
1’s with the appropriate number of components, and n is the number of nodes
in the Web graph. The term SMv represents the case where, with probability
B, the random surfer decides to follow an out-link from their present page. The
term (1 — B)e/n is a vector each of whose components has value (1 — 8)/n and
represents the introduction, with probability 1 — 3, of a new random surfer at
a random page.

Note that if the graph has no dead ends, then the probability of introducing a
new random surfer is exactly equal to the probability that the random surfer will
decide not to follow a link from their current page. In this case, it is reasonable
to visualize the surfer as deciding either to follow a link or teleport to a random
page. However, if there are dead ends, then there is a third possibility, which
is that the surfer goes nowhere. Since the term (1 — §)e/n does not depend on
the sum of the components of the vector v, there will always be some fraction

5.1. PAGERANK 175

of a surfer operating on the Web. That is, when there are dead ends, the sum
of the components of v may be less than 1, but it will never reach 0.

Example 5.6: Let us see how the new approach to computing PageRank
fares on the graph of Fig. 5.6. We shall use 5 = 0.8 in this example. Thus, the
equation for the iteration becomes

0 2/5 0 0 1/20

, 145 00 0 25 1/20
415 0 4/5 2/5 | V| 1720

415 2/5 0 0 1/20

Notice that we have incorporated the factor 5 into M by multiplying each of
its elements by 4/5. The components of the vector (1 — 8)e/n are each 1/20,
since 1 — 8 =1/5 and n = 4. Here are the first few iterations:

1/4 9,/60 41/300 543 /4500 15/148
1/4 13/60 53,/300 707 /4500 19/148
1/4 || 25/60 || 153/300 || 2543/4500 | * 7’| 95/148
1/4 13/60 53,/300 707 /4500 19/148

By being a spider trap, C' has managed to get more than half of the PageRank
for itself. However, the effect has been limited, and each of the nodes gets some
of the PageRank. O

5.1.6 Using PageRank in a Search Engine

Having seen how to calculate the PageRank vector for the portion of the Web
that a search engine has crawled, we should examine how this information is
used. Each search engine has a secret formula that decides the order in which
to show pages to the user in response to a search query consisting of one or
more search terms (words). Google is said to use over 250 different properties
of pages, from which a linear order of pages is decided.

First, in order to be considered for the ranking at all, a page has to have at
least one of the search terms in the query. Normally, the weighting of properties
is such that unless all the search terms are present, a page has very little chance
of being in the top ten that are normally shown first to the user. Among the
qualified pages, a score is computed for each, and an important component of
this score is the PageRank of the page. Other components include the presence
or absence of search terms in prominent places, such as headers or the links to
the page itself.

5.1.7 Exercises for Section 5.1

Exercise 5.1.1: Compute the PageRank of each page in Fig. 5.7, assuming
no taxation.

176 CHAPTER 5. LINK ANALYSIS

(®)

Figure 5.7: An example graph for exercises

Exercise 5.1.2: Compute the PageRank of each page in Fig. 5.7, assuming
8 =0.8.

! Exercise 5.1.3: Suppose the Web consists of a clique (set of nodes with all
possible arcs from one to another) of n nodes and a single additional node that
is the successor of each of the n nodes in the clique. Figure 5.8 shows this graph
for the case n = 4. Determine the PageRank of each page, as a function of n
and f.

O

Figure 5.8: Example of graphs discussed in Exercise 5.1.3

!! Exercise 5.1.4: Construct, for any integer n, a Web such that, depending on
B, any of the n nodes can have the highest PageRank among those n. It is
allowed for there to be other nodes in the Web besides these n.

! Exercise 5.1.5: Show by induction on n that if the second, third, and fourth
components of a vector v are equal, and M is the transition matrix of Exam-
ple 5.1, then the second, third, and fourth components are also equal in M"™v
for any n > 0.

5.2. EFFICIENT COMPUTATION OF PAGERANK 177

(O =0 0= -~ O

Figure 5.9: A chain of dead ends

Exercise 5.1.6: Suppose we recursively eliminate dead ends from the graph,
solve the remaining graph, and estimate the PageRank for the dead-end pages
as described in Section 5.1.4. Suppose the graph is a chain of dead ends, headed
by a node with a self-loop, as suggested in Fig. 5.9. What would be the Page-
Rank assigned to each of the nodes?

Exercise 5.1.7: Repeat Exercise 5.1.6 for the tree of dead ends suggested by
Fig. 5.10. That is, there is a single node with a self-loop, which is also the root
of a complete binary tree of n levels.

(5

Figure 5.10: A tree of dead ends

OO

5.2 Efficient Computation of PageRank

To compute the PageRank for a large graph representing the Web, we have
to perform a matrix—vector multiplication on the order of 50 times, until the
vector is close to unchanged at one iteration. To a first approximation, the
MapReduce method given in Section 2.3.1 is suitable. However, we must deal
with two issues:

1. The transition matrix of the Web M is very sparse. Thus, representing
it by all its elements is highly inefficient. Rather, we want to represent
the matrix by its nonzero elements.

2. We may not be using MapReduce, or for efficiency reasons we may wish
to use a combiner (see Section 2.2.4) with the Map tasks to reduce the
amount of data that must be passed from Map tasks to Reduce tasks. In
this case, the striping approach discussed in Section 2.3.1 is not sufficient
to avoid heavy use of disk (thrashing).

We discuss the solution to these two problems in this section.

178 CHAPTER 5. LINK ANALYSIS

5.2.1 Representing Transition Matrices

The transition matrix is very sparse, since the average Web page has about 10
out-links. If, say, we are analyzing a graph of ten billion pages, then only one
in a billion entries is not 0. The proper way to represent any sparse matrix is
to list the locations of the nonzero entries and their values. If we use 4-byte
integers for coordinates of an element and an 8-byte double-precision number
for the value, then we need 16 bytes per nonzero entry. That is, the space
needed is linear in the number of nonzero entries, rather than quadratic in the
side of the matrix.

However, for a transition matrix of the Web, there is one further compression
that we can do. If we list the nonzero entries by column, then we know what
each nonzero entry is; it is 1 divided by the out-degree of the page. We can
thus represent a column by one integer for the out-degree, and one integer
per nonzero entry in that column, giving the row number where that entry
is located. Thus, we need slightly more than 4 bytes per nonzero entry to
represent a transition matrix.

Example 5.7: Let us reprise the example Web graph from Fig. 5.1, whose
transition matrix is

0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0

M =

Recall that the rows and columns represent nodes A, B, C, and D, in that
order. In Fig. 5.11 is a compact representation of this matrix.’

Source | Degree | Destinations
A 3 B,C, D
B 2 A, D
c 1 A
D 2 B, C

Figure 5.11: Represent a transition matrix by the out-degree of each node and
the list of its successors

For instance, the entry for A has degree 3 and a list of three successors.
From that row of Fig. 5.11 we can deduce that the column for A in matrix M
has 0 in the row for A (since it is not on the list of destinations) and 1/3 in
the rows for B, C', and D. We know that the value is 1/3 because the degree
column in Fig. 5.11 tells us there are three links out of A. O

5Because M is not sparse, this representation is not very useful for M. However, the
example illustrates the process of representing matrices in general, and the sparser the matrix
is, the more this representation will save.

5.2. EFFICIENT COMPUTATION OF PAGERANK 179

5.2.2 PageRank Iteration Using MapReduce

One iteration of the PageRank algorithm involves taking an estimated Page-
Rank vector v and computing the next estimate v’ by

v =BMv + (1 - B)e/n

Recall § is a constant slightly less than 1, e is a vector of all 1’s, and n is the
number of nodes in the graph that transition matrix M represents.

If n is small enough that each Map task can store the full vector v in main
memory and also have room in main memory for the result vector v/, then there
is little more here than a matrix—vector multiplication. The additional steps
are to multiply each component of Mv by constant 5 and to add (1 — 8)/n to
each component.

However, it is likely, given the size of the Web today, that v is much too
large to fit in main memory. As we discussed in Section 2.3.1, the method
of striping, where we break M into vertical stripes (see Fig. 2.4) and break v
into corresponding horizontal stripes, will allow us to execute the MapReduce
process efficiently, with no more of v at any one Map task than can conveniently
fit in main memory.

5.2.3 Use of Combiners to Consolidate the Result Vector

There are two reasons the method of Section 5.2.2 might not be adequate.

1. We might wish to add terms for v}, the ith component of the result vector
v, at the Map tasks. This improvement is the same as using a combiner,
since the Reduce function simply adds terms with a common key. Recall
that for a MapReduce implementation of matrix—vector multiplication,
the key is the value of 7 for which a term m;;v; is intended.

2. We might not be using MapReduce at all, but rather executing the iter-
ation step at a single machine or a collection of machines.

We shall assume that we are trying to implement a combiner in conjunction
with a Map task; the second case uses essentially the same idea.

Suppose that we are using the stripe method to partition a matrix and
vector that do not fit in main memory. Then a vertical stripe from the matrix
M and a horizontal stripe from the vector v will contribute to all components
of the result vector v’. Since that vector is the same length as v, it will not
fit in main memory either. Moreover, as M is stored column-by-column for
efficiency reasons, a column can affect any of the components of v/. As a result,
it is unlikely that when we need to add a term to some component v/, that
component will already be in main memory. Thus, most terms will require
that a page be brought into main memory to add it to the proper component.
That situation, called thrashing, takes orders of magnitude too much time to
be feasible.

180 CHAPTER 5. LINK ANALYSIS

An alternative strategy is based on partitioning the matrix into k2 blocks,
while the vectors are still partitioned into k stripes. A picture, showing the
division for k = 4, is in Fig. 5.12. Note that we have not shown the multiplica-
tion of the matrix by 8 or the addition of (1 — 3)e/n, because these steps are
straightforward, regardless of the strategy we use.

A" \"
1 Mg | Mpp| Mg My, 1

V.2 vV,
2 Moy | Mgy Mpa Moy 2

V.2 V.
3 May | Mgy Mgl Mgy 3

Vv Vv
4 My | Mag| Mzl Myy 4

Figure 5.12: Partitioning a matrix into square blocks

In this method, we use k* Map tasks. Each task gets one square of the
matrix M, say M;;, and one stripe of the vector v, which must be v;. Notice
that each stripe of the vector is sent to k different Map tasks; v; is sent to the
task handling M;; for each of the k possible values of i. Thus, v is transmitted
over the network k times. However, each piece of the matrix is sent only once.
Since the size of the matrix, properly encoded as described in Section 5.2.1, can
be expected to be several times the size of the vector, the transmission cost is
not too much greater than the minimum possible. And because we are doing
considerable combining at the Map tasks, we save as data is passed from the
Map tasks to the Reduce tasks.

The advantage of this approach is that we can keep both the jth stripe of
v and the ith stripe of v/ in main memory as we process M;;. Note that all
terms generated from M;; and v; contribute to v} and no other stripe of v’.

5.2.4 Representing Blocks of the Transition Matrix

Since we are representing transition matrices in the special way described in
Section 5.2.1, we need to consider how the blocks of Fig. 5.12 are represented.
Unfortunately, the space required for a column of blocks (a “stripe” as we called
it earlier) is greater than the space needed for the stripe as a whole, but not
too much greater.

For each block, we need data about all those columns that have at least one
nonzero entry within the block. If k£, the number of stripes in each dimension,
is large, then most columns will have nothing in most blocks of its stripe. For
a given block, we not only have to list those rows that have a nonzero entry for
that column, but we must repeat the out-degree for the node represented by
the column. Consequently, it is possible that the out-degree will be repeated as
many times as the out-degree itself. That observation bounds from above the

5.2. EFFICIENT COMPUTATION OF PAGERANK 181

space needed to store the blocks of a stripe at twice the space needed to store
the stripe as a whole.

A B C D

o o0 ® »

Figure 5.13: A four-node graph is divided into four 2-by-2 blocks

Example 5.8: Let us suppose the matrix from Example 5.7 is partitioned into
blocks, with £ = 2. That is, the upper-left quadrant represents links from A or
B to A or B, the upper-right quadrant represents links from C or D to A or
B, and so on. It turns out that in this small example, the only entry that we
can avoid is the entry for C' in Mas, because C' has no arcs to either C' or D.
The tables representing each of the four blocks are shown in Fig. 5.14.

If we examine Fig. 5.14(a), we see the representation of the upper-left quad-
rant. Notice that the degrees for A and B are the same as in Fig. 5.11, because
we need to know the entire number of successors, not the number of successors
within the relevant block. However, each successor of A or B is represented
in Fig. 5.14(a) or Fig. 5.14(c), but not both. Notice also that in Fig. 5.14(d),
there is no entry for C', because there are no successors of C' within the lower
half of the matrix (rows C and D). O

5.2.5 Other Efficient Approaches to PageRank Iteration

The algorithm discussed in Section 5.2.3 is not the only option. We shall discuss
several other approaches that use fewer processors. These algorithms share with
the algorithm of Section 5.2.3 the good property that the matrix M is read only
once, although the vector v is read k£ times, where the parameter k is chosen
so that 1/kth of the vectors v and v’ can be held in main memory. Recall that
the algorithm of Section 5.2.3 uses k2 processors, assuming all Map tasks are
executed in parallel at different processors.

We can assign all the blocks in one row of blocks to a single Map task, and
thus reduce the number of Map tasks to k. For instance, in Fig. 5.12, M,
Mo, M3, and M4 would be assigned to a single Map task. If we represent the
blocks as in Fig. 5.14, we can read the blocks in a row of blocks one-at-a-time,
so the matrix does not consume a significant amount of main-memory. At the
same time that we read M;;, we must read the vector stripe v;. As a result,
each of the & Map tasks reads the entire vector v, along with 1/kth of the
matrix.

182 CHAPTER 5. LINK ANALYSIS

Source | Degree | Destinations

A 3 B
B 2 A

(a) Representation of M;; connecting A and B to A and B

Source | Degree | Destinations

c 1 A
D 2 B

(b) Representation of Mjs connecting C' and D to A and B

Source | Degree | Destinations
A 3 c,D
B 2 D

(c) Representation of Ma; connecting A and B to C' and D

Source | Degree | Destinations
D 2 c

(d) Representation of Mas connecting C' and D to C' and D

Figure 5.14: Sparse representation of the blocks of a matrix

The work reading M and v is thus the same as for the algorithm of Sec-
tion 5.2.3, but the advantage of this approach is that each Map task can combine
all the terms for the portion v} for which it is exclusively responsible. In other
words, the Reduce tasks have nothing to do but to concatenate the pieces of v/
received from the k Map tasks.

We can extend this idea to an environment in which MapReduce is not used.
Suppose we have a single processor, with M and v stored on its disk, using the
same sparse representation for M that we have discussed. We can first simulate
the first Map task, the one that uses blocks M7, through M, and all of v to
compute vj. Then we simulate the second Map task, reading Ms; through Mo
and all of v to compute v}, and so on. As for the previous algorithms, we thus
read M once and v k times. We can make k as small as possible, subject to the
constraint that there is enough main memory to store 1/kth of v and 1/kth of
v’, along with as small a portion of M as we can read from disk (typically, one
disk block).

5.3. TOPIC-SENSITIVE PAGERANK 183

5.2.6 Exercises for Section 5.2

Exercise 5.2.1: Suppose we wish to store an n x n Boolean matrix (0 and
1 elements only). We could represent it by the bits themselves, or we could
represent the matrix by listing the positions of the 1’s as pairs of integers, each
integer requiring [log, n] bits. The former is suitable for dense matrices; the
latter is suitable for sparse matrices. How sparse must the matrix be (i.e., what
fraction of the elements should be 1’s) for the sparse representation to save
space?

Exercise 5.2.2: Using the method of Section 5.2.1, represent the transition
matrices of the following graphs:

(a) Figure 5.4.

(b) Figure 5.7.

Exercise 5.2.3: Using the method of Section 5.2.4, represent the transition
matrices of the graph of Fig. 5.3, assuming blocks have side 2.

Exercise 5.2.4: Consider a Web graph that is a chain, like Fig. 5.9, with
n nodes. As a function of k£, which you may assume divides n, describe the
representation of the transition matrix for this graph, using the method of
Section 5.2.4

5.3 Topic-Sensitive PageRank

There are several improvements we can make to PageRank. One, to be studied
in this section, is that we can weight certain pages more heavily because of their
topic. The mechanism for enforcing this weighting is to alter the way random
surfers behave, having them prefer to land on a page that is known to cover the
chosen topic. In the next section, we shall see how the topic-sensitive idea can
also be applied to negate the effects of a new kind of spam, called “‘link spam,”
that has developed to try to fool the PageRank algorithm.

5.3.1 Motivation for Topic-Sensitive Page Rank

Different people have different interests, and sometimes distinct interests are
expressed using the same term in a query. The canonical example is the search
query jaguar, which might refer to the animal, the automobile, a version of the
MAC operating system, or even an ancient game console. If a search engine
can deduce that the user is interested in automobiles, for example, then it can
do a better job of returning relevant pages to the user.

Ideally, each user would have a private PageRank vector that gives the
importance of each page to that user. It is not feasible to store a vector of
length many billions for each of a billion users, so we need to do something

184 CHAPTER 5. LINK ANALYSIS

simpler. The topic-sensitive PageRank approach creates one vector for each of
some small number of topics, biasing the PageRank to favor pages of that topic.
We then endeavour to classify users according to the degree of their interest in
each of the selected topics. While we surely lose some accuracy, the benefit is
that we store only a short vector for each user, rather than an enormous vector
for each user.

Example 5.9: One useful topic set is the 16 top-level categories (sports, med-
icine, etc.) of the Open Directory (DMOZ).5 We could create 16 PageRank
vectors, one for each topic. If we could determine that the user is interested
in one of these topics, perhaps by the content of the pages they have recently
viewed, then we could use the PageRank vector for that topic when deciding
on the ranking of pages. O

5.3.2 Biased Random Walks

Suppose we have identified some pages that represent a topic such as “sports.”
To create a topic-sensitive PageRank for sports, we can arrange that the random
surfers are introduced only to a random sports page, rather than to a random
page of any kind. The consequence of this choice is that random surfers are
likely to be at an identified sports page, or a page reachable along a short path
from one of these known sports pages. Our intuition is that pages linked to
by sports pages are themselves likely to be about sports. The pages they link
to are also likely to be about sports, although the probability of being about
sports surely decreases as the distance from an identified sports page increases.

The mathematical formulation for the iteration that yields topic-sensitive
PageRank is similar to the equation we used for general PageRank. The only
difference is how we add the new surfers. Suppose S is a set of integers consisting
of the row/column numbers for the pages we have identified as belonging to a
certain topic (called the teleport set). Let es be a vector that has 1 in the
components in S and 0 in other components. Then the topic-sensitive Page-
Rank for S is the limit of the iteration

v = BMv + (1 - B)es/|S|

Here, as usual, M is the transition matrix of the Web, and |S] is the size of set

S.

Example 5.10: Let us reconsider the original Web graph we used in Fig. 5.1,
which we reproduce as Fig. 5.15. Suppose we use S = 0.8. Then the transition
matrix for this graph, multiplied by 3, is

0 2/5 4/5 0
4/15 0 0 2/5
4/15 0 0 2/5
4/15 2/5 0 0

BM =

6This directory, found at www.dmoz.org, is a collection of human-classified Web pages.

5.3. TOPIC-SENSITIVE PAGERANK 185

Figure 5.15: Repeat of example Web graph

Suppose that our topic is represented by the teleport set S = {B, D}. Then
the vector (1 — B)eg/|S| has 1/10 for its second and fourth components and 0
for the other two components. The reason is that 1 — 8 = 1/5, the size of S is
2, and eg has 1 in the components for B and D and 0 in the components for A
and C. Thus, the equation that must be iterated is

0 2/5 4/5 0 0

, a5 00 00 25 1/10
415 0 0 25|V o

415 2/5 0 0 1/10

Here are the first few iterations of this equation. We have also started with
the surfers only at the pages in the teleport set. Although the initial distribution
has no effect on the limit, it may help the computation to converge faster.

0/2 2/10 42/150 62/250 54/210
1/2 3/10 41/150 71/250 59/210
0/2 || 2/10 || 26/150 || 46/250 | "7 | 38/210
1/2 3/10 41/150 71/250 59/210

Notice that because of the concentration of surfers at B and D, these nodes get
a higher PageRank than they did in Example 5.2. In that example, A was the
node of highest PageRank. O

5.3.3 Using Topic-Sensitive PageRank

In order to integrate topic-sensitive PageRank into a search engine, we must:

1. Decide on the topics for which we shall create specialized PageRank vec-
tors.

2. Pick a teleport set for each of these topics, and use that set to compute
the topic-sensitive PageRank vector for that topic.

186 CHAPTER 5. LINK ANALYSIS

3. Find a way of determining the topic or set of topics that are most relevant
for a particular search query.

4. Use the PageRank vectors for that topic or topics in the ordering of the
responses to the search query.

We have mentioned one way of selecting the topic set: use the top-level topics
of the Open Directory. Other approaches are possible, but there is probably a
need for human classification of at least some pages.

The third step is probably the trickiest, and several methods have been
proposed. Some possibilities:

(a) Allow the user to select a topic from a menu.

(b) Infer the topic(s) by the words that appear in the Web pages recently
searched by the user, or recent queries issued by the user. We need to
discuss how one goes from a collection of words to a topic, and we shall
do so in Section 5.3.4

(c) Infer the topic(s) by information about the user, e.g., their bookmarks or
their stated interests on Facebook.

5.3.4 Inferring Topics from Words

The question of classifying documents by topic is a subject that has been studied
for decades, and we shall not go into great detail here. Suffice it to say that
topics are characterized by words that appear surprisingly often in documents
on that topic. For example, neither fullback nor measles appear very often in
documents on the Web. But fullback will appear far more often than average
in pages about sports, and measles will appear far more often than average in
pages about medicine.

If we examine the entire Web, or a large, random sample of the Web, we
can get the background frequency of each word. Suppose we then go to a large
sample of pages known to be about a certain topic, say the pages classified
under sports by the Open Directory. Examine the frequencies of words in the
sports sample, and identify the words that appear significantly more frequently
in the sports sample than in the background. In making this judgment, we
must be careful to avoid some extremely rare word that appears in the sports
sample with relatively higher frequency. This word is probably a misspelling
that happened to appear only in one or a few of the sports pages. Thus, we
probably want to put a floor on the number of times a word appears, before it
can be considered characteristic of a topic.

Once we have identified a large collection of words that appear much more
frequently in the sports sample than in the background, and we do the same
for all the topics on our list, we can examine other pages and classify them by
topic. Here is a simple approach. Suppose that S1,S55,...,Sy are the sets of
words that have been determined to be characteristic of each of the topics on

5.4. LINK SPAM 187

our list. Let P be the set of words that appear in a given page P. Compute
the Jaccard similarity (recall Section 3.1.1) between P and each of the S;’s.
Classify the page as that topic with the highest Jaccard similarity. Note that
all Jaccard similarities may be very low, especially if the sizes of the sets .S; are
small. Thus, it is important to pick reasonably large sets .S; to make sure that
we cover all aspects of the topic represented by the set.

We can use this method, or a number of variants, to classify the pages the
user has most recently retrieved. We could say the user is interested in the topic
into which the largest number of these pages fall. Or we could blend the topic-
sensitive PageRank vectors in proportion to the fraction of these pages that
fall into each topic, thus constructing a single PageRank vector that reflects
the user’s current blend of interests. We could also use the same procedure on
the pages that the user currently has bookmarked, or combine the bookmarked
pages with the recently viewed pages.

5.3.5 Exercises for Section 5.3

Exercise 5.3.1: Compute the topic-sensitive PageRank for the graph of Fig.
5.15, assuming the teleport set is:

(a) A only.
(b) A and C.

5.4 Link Spam

When it became apparent that PageRank and other techniques used by Google
made term spam ineffective, spammers turned to methods designed to fool
the PageRank algorithm into overvaluing certain pages. The techniques for
artificially increasing the PageRank of a page are collectively called link spam.
In this section we shall first examine how spammers create link spam, and
then see several methods for decreasing the effectiveness of these spamming
techniques, including TrustRank and measurement of spam mass.

5.4.1 Architecture of a Spam Farm

A collection of pages whose purpose is to increase the PageRank of a certain
page or pages is called a spam farm. Figure 5.16 shows the simplest form of
spam farm. From the point of view of the spammer, the Web is divided into
three parts:

1. Inaccessible pages: the pages that the spammer cannot affect. Most of
the Web is in this part.

2. Accessible pages: those pages that, while they are not controlled by the
spammer, can be affected by the spammer.

188 CHAPTER 5. LINK ANALYSIS

3. Own pages: the pages that the spammer owns and controls.

Own
Pages

Accessible

) Pages
Inaccessible

Pages

Figure 5.16: The Web from the point of view of the link spammer

The spam farm consists of the spammer’s own pages, organized in a special
way as seen on the right, and some links from the accessible pages to the
spammer’s pages. Without some links from the outside, the spam farm would
be useless, since it would not even be crawled by a typical search engine.

Concerning the accessible pages, it might seem surprising that one can af-
fect a page without owning it. However, today there are many sites, such as
blogs or newspapers that invite others to post their comments on the site. In
order to get as much PageRank flowing to his own pages from outside, the
spammer posts many comments such as “I agree. Please see my article at
www.mySpamFarm.com.”

In the spam farm, there is one page t, the target page, at which the spammer
attempts to place as much PageRank as possible. There are a large number
m of supporting pages, that accumulate the portion of the PageRank that is
distributed equally to all pages (the fraction 1 — 3 of the PageRank that repre-
sents surfers going to a random page). The supporting pages also prevent the
PageRank of ¢ from being lost, to the extent possible, since some will be taxed
away at each round. Notice that ¢ has a link to every supporting page, and
every supporting page links only to ¢.

5.4. LINK SPAM 189

5.4.2 Analysis of a Spam Farm

Suppose that PageRank is computed using a taxation parameter 3, typically
around 0.85. That is, 8 is the fraction of a page’s PageRank that gets dis-
tributed to its successors at the next round. Let there be n pages on the Web
in total, and let some of them be a spam farm of the form suggested in Fig. 5.16,
with a target page t and m supporting pages. Let x be the amount of PageRank
contributed by the accessible pages. That is, x is the sum, over all accessible
pages p with a link to ¢, of the PageRank of p times 3, divided by the number
of successors of p. Finally, let y be the unknown PageRank of ¢. We shall solve
for y.
First, the PageRank of each supporting page is

By/m+ (1 —B)/n

The first term represents the contribution from ¢. The PageRank y of ¢ is taxed,
so only By is distributed to t’s successors. That PageRank is divided equally
among the m supporting pages. The second term is the supporting page’s share
of the fraction 1 — 8 of the PageRank that is divided equally among all pages
on the Web.

Now, let us compute the PageRank y of target page t. Its PageRank comes
from three sources:

1. Contribution z from outside, as we have assumed.

2. B times the PageRank of every supporting page; that is,
B(By/m + (1~ B)/n)

3. (1—)/n, the share of the fraction 1 — § of the PageRank that belongs to
t. This amount is negligible and will be dropped to simplify the analysis.

Thus, from (1) and (2) above, we can write

y:erﬂm(%wL%) :erﬂQerﬂ(lfﬂ)%

We may solve the above equation for y, yielding

€z + m
= — C—
Y 1-— 2 n

where ¢ = 3(1 — B)/(1 — B?) = B/(1 + B).

Example 5.11: If we choose 8 = 0.85, then 1/(1 — %) = 3.6, and ¢ =
B/(1+ B) = 0.46. That is, the structure has amplified the external PageRank
contribution by 360%, and also obtained an amount of PageRank that is 46%
of the fraction of the Web, m/n, that is in the spam farm. O

190 CHAPTER 5. LINK ANALYSIS

5.4.3 Combating Link Spam

It has become essential for search engines to detect and eliminate link spam,
just as it was necessary in the previous decade to eliminate term spam. There
are two approaches to link spam. One is to look for structures such as the
spam farm in Fig. 5.16, where one page links to a very large number of pages,
each of which links back to it. Search engines surely search for such structures
and eliminate those pages from their index. That causes spammers to develop
different structures that have essentially the same effect of capturing PageRank
for a target page or pages. There is essentially no end to variations of Fig. 5.16,
so this war between the spammers and the search engines will likely go on for
a long time.

However, there is another approach to eliminating link spam that doesn’t
rely on locating the spam farms. Rather, a search engine can modify its defini-
tion of PageRank to lower the rank of link-spam pages automatically. We shall
consider two different formulas:

1. TrustRank, a variation of topic-sensitive PageRank designed to lower the
score of spam pages.

2. Spam mass, a calculation that identifies the pages that are likely to be
spam and allows the search engine to eliminate those pages or to lower
their PageRank strongly.

5.4.4 TrustRank

TrustRank is topic-sensitive PageRank, where the “topic” is a set of pages be-
lieved to be trustworthy (not spam). The theory is that while a spam page
might easily be made to link to a trustworthy page, it is unlikely that a trust-
worthy page would link to a spam page. The borderline area is a site with
blogs or other opportunities for spammers to create links, as was discussed in
Section 5.4.1. These pages cannot be considered trustworthy, even if their own
content is highly reliable, as would be the case for a reputable newspaper that
allowed readers to post comments.

To implement TrustRank, we need to develop a suitable teleport set of
trustworthy pages. Two approaches that have been tried are:

1. Let humans examine a set of pages and decide which of them are trust-
worthy. For example, we might pick the pages of highest PageRank to
examine, on the theory that, while link spam can raise a page’s rank from
the bottom to the middle of the pack, it is essentially impossible to give
a spam page a PageRank near the top of the list.

2. Pick a domain whose membership is controlled, on the assumption that it
is hard for a spammer to get their pages into these domains. For example,
we could pick the .edu domain, since university pages are unlikely to be
spam farms. We could likewise pick .mil, or .gov. However, the problem

5.4. LINK SPAM 191

with these specific choices is that they are almost exclusively US sites. To
get a good distribution of trustworthy Web pages, we should include the
analogous sites from foreign countries, e.g., ac.il, or edu.sg.

It is likely that search engines today implement a strategy of the second type
routinely, so that what we think of as PageRank really is a form of TrustRank.

5.4.5 Spam Mass

The idea behind spam mass is that we measure for each page the fraction of its
PageRank that comes from spam. We do so by computing both the ordinary
PageRank and the TrustRank based on some teleport set of trustworthy pages.
Suppose page p has PageRank r and TrustRank ¢. Then the spam mass of p is
(r—t)/r. A negative or small positive spam mass means that p is probably not
a spam page, while a spam mass close to 1 suggests that the page probably is
spam. It is possible to eliminate pages with a high spam mass from the index
of Web pages used by a search engine, thus eliminating a great deal of the link
spam without having to identify particular structures that spam farmers use.

Example 5.12: Let us consider both the PageRank and topic-sensitive Page-
Rank that were computed for the graph of Fig. 5.1 in Examples 5.2 and 5.10,
respectively. In the latter case, the teleport set was nodes B and D, so let
us assume those are the trusted pages. Figure 5.17 tabulates the PageRank,
TrustRank, and spam mass for each of the four nodes.

Node PageRank TrustRank Spam Mass

A 3/9 54/210 0.229
B 2/9 59/210 -0.264
C 2/9 38/210 0.186
D 2/9 59/210 -0.264

Figure 5.17: Calculation of spam mass

In this simple example, the only conclusion is that the nodes B and D, which
were a priori determined not to be spam, have negative spam mass and are
therefore not spam. The other two nodes, A and C, each have a positive spam
mass, since their PageRanks are higher than their TrustRanks. For instance,
the spam mass of A is computed by taking the difference 3/9 — 54/210 = 8/105
and dividing 8/105 by the PageRank 3/9 to get 8/35 or about 0.229. However,
their spam mass is still closer to 0 than to 1, so it is probable that they are not
spam. O

5.4.6 Exercises for Section 5.4

Exercise 5.4.1: In Section 5.4.2 we analyzed the spam farm of Fig. 5.16, where
every supporting page links back to the target page. Repeat the analysis for a

o=

192 CHAPTER 5. LINK ANALYSIS

spam farm in which:

(a) Each supporting page links to itself instead of to the target page.
(b) Each supporting page links nowhere.

(c) Each supporting page links both to itself and to the target page.

Exercise 5.4.2: For the original Web graph of Fig. 5.1, assuming only B is a
trusted page:

(a) Compute the TrustRank of each page.

(b) Compute the spam mass of each page.

Exercise 5.4.3: Suppose two spam farmers agree to link their spam farms.
How would you link the pages in order to increase as much as possible the
PageRank of each spam farm’s target page? Is there an advantage to linking
spam farms?

5.5 Hubs and Authorities

An idea called “hubs and authorities’ was proposed shortly after PageRank was
first implemented. The algorithm for computing hubs and authorities bears
some resemblance to the computation of PageRank, since it also deals with the
iterative computation of a fixedpoint involving repeated matrix—vector multi-
plication. However, there are also significant differences between the two ideas,
and neither can substitute for the other.

This hubs-and-authorities algorithm, sometimes called HITS (hyperlink-
induced topic search), was originally intended not as a preprocessing step before
handling search queries, as PageRank is, but as a step to be done along with
the processing of a search query, to rank only the responses to that query. We
shall, however, describe it as a technique for analyzing the entire Web, or the
portion crawled by a search engine. There is reason to believe that something
like this approach is, in fact, used by the Ask search engine.

5.5.1 The Intuition Behind HITS

While PageRank assumes a one-dimensional notion of importance for pages,
HITS views important pages as having two flavors of importance.

1. Certain pages are valuable because they provide information about a
topic. These pages are called authorities.

2. Other pages are valuable not because they provide information about any
topic, but because they tell you where to go to find out about that topic.
These pages are called hubs.

5.5. HUBS AND AUTHORITIES 193

Example 5.13: A typical department at a university maintains a Web page
listing all the courses offered by the department, with links to a page for each
course, telling about the course — the instructor, the text, an outline of the
course content, and so on. If you want to know about a certain course, you
need the page for that course; the departmental course list will not do. The
course page is an authority for that course. However, if you want to find out
what courses the department is offering, it is not helpful to search for each
courses’ page; you need the page with the course list first. This page is a hub
for information about courses. 0O

Just as PageRank uses the recursive definition of importance that “a page
is important if important pages link to it,” HITS uses a mutually recursive
definition of two concepts: “a page is a good hub if it links to good authorities,
and a page is a good authority if it is linked to by good hubs.”

5.5.2 Formalizing Hubbiness and Authority

To formalize the above intuition, we shall assign two scores to each Web page.
One score represents the hubbiness of a page — that is, the degree to which it
is a good hub, and the second score represents the degree to which the page
is a good authority. Assuming that pages are enumerated, we represent these
scores by vectors h and a. The ith component of h gives the hubbiness of the
ith page, and the ith component of a gives the authority of the same page.

While importance is divided among the successors of a page, as expressed by
the transition matrix of the Web, the normal way to describe the computation
of hubbiness and authority is to add the authority of successors to estimate
hubbiness and to add hubbiness of predecessors to estimate authority. If that
is all we did, then the hubbiness and authority values would typically grow
beyond bounds. Thus, we normally scale the values of the vectors h and a so
that the largest component is 1. An alternative is to scale so that the sum of
components is 1.

To describe the iterative computation of h and a formally, we use the link
matriz of the Web, L. If we have n pages, then L is an n xn matrix, and L;; =1
if there is a link from page ¢ to page j, and L;; = 0 if not. We shall also have
need for LT, the transpose of L. That is, L;fj = 1 if there is a link from page
j to page ¢, and L;Fj = 0 otherwise. Notice that LT is similar to the matrix M
that we used for PageRank, but where L™ has 1, M has a fraction — 1 divided
by the number of out-links from the page represented by that column.

Example 5.14: For a running example, we shall use the Web of Fig. 5.4,
which we reproduce here as Fig. 5.18. An important observation is that dead
ends or spider traps do not prevent the HITS iteration from converging to a
meaningful pair of vectors. Thus, we can work with Fig. 5.18 directly, with
no “taxation” or alteration of the graph needed. The link matrix L and its
transpose are shown in Fig. 5.19. O

194 CHAPTER 5. LINK ANALYSIS

Figure 5.18: Sample data used for HITS examples

01 110 0100 0
100 10 1 0010
L=|100 0 01 LT=|1 0 0 1 0
01100 1 1000
00000 0010 0

Figure 5.19: The link matrix for the Web of Fig. 5.18 and its transpose

The fact that the hubbiness of a page is proportional to the sum of the
authority of its successors is expressed by the equation h = ALa, where A is
an unknown constant representing the scaling factor needed. Likewise, the fact
that the authority of a page is proportional to the sum of the hubbinesses of
its predecessors is expressed by a = uLTh, where y is another scaling constant.
These equations allow us to compute the hubbiness and authority indepen-
dently, by substituting one equation in the other, as:

e h=\uLLTh.
e a=) \uLTLa.
However, since LLT and L™ L are not as sparse as L and LT, we are usually

better off computing h and a in a true mutual recursion. That is, start with h
a vector of all 1’s.

1. Compute a = L™h and then scale so the largest component is 1.

2. Next, compute h = La and scale again.

5.5. HUBS AND AUTHORITIES 195

Now, we have a new h and can repeat steps (1) and (2) until at some iteration
the changes to the two vectors are sufficiently small that we can stop and accept
the current values as the limit.

1 1 1/2 3 1
1 2 1 3/2 1/2
1 2 1 1/2 1/6
1 2 1 2 2/3
1 1 1/2 0 0
h LTh a La h
1/2 3/10 29/10 1

5/3 1 6/5 12/29

5/3 1 1/10 1/29

3/2 9/10 2 20/29

1/6 1/10 0 0

L™h a La h

Figure 5.20: First two iterations of the HITS algorithm

Example 5.15: Let us perform the first two iterations of the HITS algorithm
on the Web of Fig. 5.18. In Fig. 5.20 we see the succession of vectors computed.
The first column is the initial h, all 1’s. In the second column, we have estimated
the relative authority of pages by computing LTh, thus giving each page the
sum of the hubbinesses of its predecessors. The third column gives us the first
estimate of a. It is computed by scaling the second column; in this case we
have divided each component by 2, since that is the largest value in the second
column.

The fourth column is La. That is, we have estimated the hubbiness of each
page by summing the estimate of the authorities of each of its successors. Then,
the fifth column scales the fourth column. In this case, we divide by 3, since
that is the largest value in the fourth column. Columns six through nine repeat
the process outlined in our explanations for columns two through five, but with
the better estimate of hubbiness given by the fifth column.

The limit of this process may not be obvious, but it can be computed by a
simple program. The limits are:

1 0.2087

0.3583 1

h = 0 a= 1
0.7165 0.7913

0 0

196 CHAPTER 5. LINK ANALYSIS

This result makes sense. First, we notice that the hubbiness of E is surely 0,
since it leads nowhere. The hubbiness of C' depends only on the authority of E
and vice versa, so it should not surprise us that both are 0. A is the greatest
hub, since it links to the three biggest authorities, B, C', and D. Also, B and
C are the greatest authorities, since they are linked to by the two biggest hubs,
A and D.

For Web-sized graphs, the only way of computing the solution to the hubs-
and-authorities equations is iteratively. However, for this tiny example, we
can compute the solution by solving equations. We shall use the equations
h = \uLLTh. First, LLT is

31020
1 2000
LL™=]0 0 1 0 0
2 0 0 20
00000

Let v = 1/(Ap) and let the components of h for nodes A through E be a through
e, respectively. Then the equations for h can be written

va=3a+b+2d vb=a-+2b
vc=c vd = 2a + 2d
ve=20

The equation for b tells us b = a/(v — 2) and the equation for d tells us d =
2a/(v —2). If we substitute these expressions for b and d in the equation for a,
we get va = a(3+5/(v—2)). From this equation, since a is a factor of both sides,
we are left with a quadratic equation for v which simplifies to 2 —5v 41 = 0.
The positive root is v = (5 + 1/21)/2 = 4.791. Now that we know v is neither
0 or 1, the equations for ¢ and e tell us immediately that ¢ = e = 0.

Finally, if we recognize that a is the largest component of h and set a = 1,
we get b = 0.3583 and d = 0.7165. Along with ¢ = e = 0, these values give us
the limiting value of h. The value of a can be computed from h by multiplying
by LT and scaling. O

5.5.3 Exercises for Section 5.5

Exercise 5.5.1: Compute the hubbiness and authority of each of the nodes in
our original Web graph of Fig. 5.1.

! Exercise 5.5.2: Suppose our graph is a chain of n nodes, as was suggested by
Fig. 5.9. Compute the hubs and authorities vectors, as a function of n.

5.6 Summary of Chapter 5

4 Term Spam: Early search engines were unable to deliver relevant results
because they were vulnerable to term spam — the introduction into Web
pages of words that misrepresented what the page was about.

5.6. SUMMARY OF CHAPTER 5 197

4+ The Google Solution to Term Spam: Google was able to counteract term
spam by two techniques. First was the PageRank algorithm for deter-
mining the relative importance of pages on the Web. The second was a
strategy of believing what other pages said about a given page, in or near
their links to that page, rather than believing only what the page said
about itself.

4 PageRank: PageRank is an algorithm that assigns a real number, called
its PageRank, to each page on the Web. The PageRank of a page is a
measure of how important the page is, or how likely it is to be a good
response to a search query. In its simplest form, PageRank is a solution
to the recursive equation “a page is important if important pages link to
it.”

4 Transition Matrix of the Web: We represent links in the Web by a matrix
whose ith row and ith column represent the ith page of the Web. If there
are one or more links from page j to page i, then the entry in row i and
column j is 1/k, where k is the number of pages to which page j links.
Other entries of the transition matrix are 0.

4+ Computing PageRank on Strongly Connected Web Graphs: For strongly
connected Web graphs (those where any node can reach any other node),
PageRank is the principal eigenvector of the transition matrix. We can
compute PageRank by starting with any nonzero vector and repeatedly
multiplying the current vector by the transition matrix, to get a better
estimate.” After about 50 iterations, the estimate will be very close to
the limit, which is the true PageRank.

4 The Random Surfer Model: Calculation of PageRank can be thought of
as simulating the behavior of many random surfers, who each start at a
random page and at any step move, at random, to one of the pages to
which their current page links. The limiting probability of a surfer being
at a given page is the PageRank of that page. The intuition is that people
tend to create links to the pages they think are useful, so random surfers
will tend to be at a useful page.

4 Dead Ends: A dead end is a Web page with no links out. The presence of
dead ends will cause the PageRank of some or all of the pages to go to 0
in the iterative computation, including pages that are not dead ends. We
can eliminate all dead ends before undertaking a PageRank calculation
by recursively dropping nodes with no arcs out. Note that dropping one
node can cause another, which linked only to it, to become a dead end,
so the process must be recursive.

"Technically, the condition for this method to work is more restricted than simply “strongly
connected.” However, the other necessary conditions will surely be met by any large strongly
connected component of the Web that was not artificially constructed.

198

CHAPTER 5. LINK ANALYSIS

4 Spider Traps: A spider trap is a set of nodes that, while they may link to

each other, have no links out to other nodes. In an iterative calculation
of PageRank, the presence of spider traps cause all the PageRank to be
captured within that set of nodes.

Tazation Schemes: To counter the effect of spider traps (and of dead ends,
if we do not eliminate them), PageRank is normally computed in a way
that modifies the simple iterative multiplication by the transition matrix.
A parameter (8 is chosen, typically around 0.85. Given an estimate of the
PageRank, the next estimate is computed by multiplying the estimate by
B times the transition matrix, and then adding (1 — 3)/n to the estimate
for each page, where n is the total number of pages.

Taxation and Random Surfers: The calculation of PageRank using taxa-
tion parameter 8 can be thought of as giving each random surfer a prob-
ability 1 — 8 of leaving the Web, and introducing an equivalent number
of surfers randomly throughout the Web.

Efficient Representation of Transition Matrices: Since a transition matrix
is very sparse (almost all entries are 0), it saves both time and space
to represent it by listing its nonzero entries. However, in addition to
being sparse, the nonzero entries have a special property: they are all the
same in any given column; the value of each nonzero entry is the inverse
of the number of nonzero entries in that column. Thus, the preferred
representation is column-by-column, where the representation of a column
is the number of nonzero entries, followed by a list of the rows where those
entries occur.

Very Large-Scale Matrixz—Vector Multiplication: For Web-sized graphs, it
may not be feasible to store the entire PageRank estimate vector in the
main memory of one machine. Thus, we can break the vector into k
segments and break the transition matrix into k? squares, called blocks,
assigning each square to one machine. The vector segments are each sent
to k machines, so there is a small additional cost in replicating the vector.

Representing Blocks of a Transition Matriz: When we divide a transition
matrix into square blocks, the columns are divided into k segments. To
represent a segment of a column, nothing is needed if there are no nonzero
entries in that segment. However, if there are one or more nonzero entries,
then we need to represent the segment of the column by the total number
of nonzero entries in the column (so we can tell what value the nonzero
entries have) followed by a list of the rows with nonzero entries.

Topic-Sensitive PageRank: If we know the queryer is interested in a cer-
tain topic, then it makes sense to bias the PageRank in favor of pages
on that topic. To compute this form of PageRank, we identify a set of
pages known to be on that topic, and we use it as a “teleport set.” The

5.6.

SUMMARY OF CHAPTER 5 199

PageRank calculation is modified so that only the pages in the teleport
set are given a share of the tax, rather than distributing the tax among
all pages on the Web.

Creating Teleport Sets: For topic-sensitive PageRank to work, we need to
identify pages that are very likely to be about a given topic. One approach
is to start with the pages that the open directory (DMOZ) identifies with
that topic. Another is to identify words known to be associated with the
topic, and select for the teleport set those pages that have an unusually
high number of occurrences of such words.

Link Spam: To fool the PageRank algorithm, unscrupulous actors have
created spam farms. These are collections of pages whose purpose is to
concentrate high PageRank on a particular target page.

Structure of a Spam Farm: Typically, a spam farm consists of a target
page and very many supporting pages. The target page links to all the
supporting pages, and the supporting pages link only to the target page.
In addition, it is essential that some links from outside the spam farm be
created. For example, the spammer might introduce links to their target
page by writing comments in other people’s blogs or discussion groups.

TrustRank: One way to ameliorate the effect of link spam is to compute
a topic-sensitive PageRank called TrustRank, where the teleport set is a
collection of trusted pages. For example, the home pages of universities
could serve as the trusted set. This technique avoids sharing the tax in
the PageRank calculation with the large numbers of supporting pages in
spam farms and thus preferentially reduces their PageRank.

Spam Mass: To identify spam farms, we can compute both the conven-
tional PageRank and the TrustRank for all pages. Those pages that have
much lower TrustRank than PageRank are likely to be part of a spam
farm.

Hubs and Authorities: While PageRank gives a one-dimensional view
of the importance of pages, an algorithm called HITS tries to measure
two different aspects of importance. Authorities are those pages that
contain valuable information. Hubs are pages that, while they do not
themselves contain the information, link to places where the information
can be found.

Recursive Formulation of the HITS Algorithm: Calculation of the hubs
and authorities scores for pages depends on solving the recursive equa-
tions: “a hub links to many authorities, and an authority is linked to
by many hubs.” The solution to these equations is essentially an iter-
ated matrix—vector multiplication, just like PageRank’s. However, the
existence of dead ends or spider traps does not affect the solution to the

200 CHAPTER 5. LINK ANALYSIS

HITS equations in the way they do for PageRank, so no taxation scheme
is necessary.

5.7 References for Chapter 5

The PageRank algorithm was first expressed in [1]. The experiments on the
structure of the Web, which we used to justify the existence of dead ends and
spider traps, were described in [2]. The block-stripe method for performing the
PageRank iteration is taken from [5].

Topic-sensitive PageRank is taken from [6]. TrustRank is described in [4],
and the idea of spam mass is taken from [3].

The HITS (hubs and authorities) idea was described in [7].

1. S. Brin and L. Page, “Anatomy of a large-scale hypertextual web search
engine,” Proc. 7th Intl. World-Wide-Web Conference, pp. 107-117, 1998.

2. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, and J. Weiner, “Graph structure in the web,” Com-
puter Networks 33:1-6, pp. 309-320, 2000.

3. Z. Gyongi, P. Berkhin, H. Garcia-Molina, and J. Pedersen, “Link spam
detection based on mass estimation,” Proc. 32nd Intl. Conf. on Very Large
Databases, pp. 439-450, 2006.

4. 7. Gyongi, H. Garcia-Molina, and J. Pedersen, “Combating link spam
with trustrank,” Proc. 30th Intl. Conf. on Very Large Databases, pp. 576—
587, 2004.

5. T.H. Haveliwala, “Efficient computation of PageRank,” Stanford Univ.
Dept. of Computer Science technical report, Sept., 1999. Available as

http://infolab.stanford.edu/ taherh/papers/efficient-pr.pdf

6. T.H. Haveliwala, “Topic-sensitive PageRank,” Proc. 11th Intl. World-
Wide-Web Conference, pp. 517-526, 2002

7. J.M. Kleinberg, “Authoritative sources in a hyperlinked environment,” J.
ACM 46:5, pp. 604632, 1999.

Chapter 6

Frequent Itemsets

We turn in this chapter to one of the major families of techniques for character-
izing data: the discovery of frequent itemsets. This problem is often viewed as
the discovery of “association rules,” although the latter is a more complex char-
acterization of data, whose discovery depends fundamentally on the discovery
of frequent itemsets.

To begin, we introduce the “market-basket” model of data, which is essen-

tially a many-many relationship between two kinds of elements, called “items”
and “baskets,” but with some assumptions about the shape of the data. The
frequent-itemsets problem is that of finding sets of items that appear in (are
related to) many of the same baskets.

The problem of finding frequent itemsets differs from the similarity search
discussed in Chapter 3. Here we are interested in the absolute number of baskets
that contain a particular set of items. In Chapter 3 we wanted items that have
a large fraction of their baskets in common, even if the absolute number of
baskets is small.

The difference leads to a new class of algorithms for finding frequent item-
sets. We begin with the A-Priori Algorithm, which works by eliminating most
large sets as candidates by looking first at smaller sets and recognizing that a
large set cannot be frequent unless all its subsets are. We then consider various
improvements to the basic A-Priori idea, concentrating on very large data sets
that stress the available main memory.

Next, we consider approximate algorithms that work faster but are not
guaranteed to find all frequent itemsets. Also in this class of algorithms are
those that exploit parallelism, including the parallelism we can obtain through
a MapReduce formulation. Finally, we discuss briefly how to find frequent
itemsets in a data stream.

201

202 CHAPTER 6. FREQUENT ITEMSETS

6.1 The Market-Basket Model

The market-basket model of data is used to describe a common form of many-
many relationship between two kinds of objects. On the one hand, we have
items, and on the other we have baskets, sometimes called “transactions.”
Each basket consists of a set of items (an itemset), and usually we assume that
the number of items in a basket is small — much smaller than the total number
of items. The number of baskets is usually assumed to be very large, bigger
than what can fit in main memory. The data is assumed to be represented in a
file consisting of a sequence of baskets. In terms of the distributed file system
described in Section 2.1, the baskets are the objects of the file, and each basket
is of type “set of items.”

6.1.1 Definition of Frequent Itemsets

Intuitively, a set of items that appears in many baskets is said to be “frequent.”
To be formal, we assume there is a number s, called the support threshold. If
I is a set of items, the support for I is the number of baskets for which I is a
subset. We say [is frequent if its support is s or more.

Example 6.1: In Fig. 6.1 are sets of words. Each set is a basket, and the
words are items. We took these sets by Googling cat dog and taking snippets
from the highest-ranked pages. Do not be concerned if a word appears twice
in a basket, as baskets are sets, and in principle items can appear only once.
Also, ignore capitalization.

1. {Cat, and, dog, bites}

2. {Yahoo, news, claims, a, cat, mated, with, a, dog, and, produced, viable,
offspring }

3. {Cat, killer, likely, is, a, big, dog}

4. {Professional, free, advice, on, dog, training, puppy, training}
5. {Cat, and, kitten, training, and, behavior}

6. {Dog, &, Cat, provides, dog, training, in, Eugene, Oregon}

7. {“Dog, and, cat”, is, a, slang, term, used, by, police, officers, for, a, male—
female, relationship}

8. {Shop, for, your, show, dog, grooming, and, pet, supplies}

Figure 6.1: Here are eight baskets, each consisting of items that are words

Since the empty set is a subset of any set, the support for () is 8. However,
we shall not generally concern ourselves with the empty set, since it tells us

6.1. THE MARKET-BASKET MODEL 203

nothing.

Among the singleton sets, obviously {cat} and {dog} are quite frequent.
“Dog” appears in all but basket (5), so its support is 7, while “cat” appears in
all but (4) and (8), so its support is 6. The word “and” is also quite frequent;
it appears in (1), (2), (5), (7), and (8), so its support is 5. The words “a” and
“training” appear in three sets, while “for” and “is” appear in two each. No
other word appears more than once.

Suppose that we set our threshold at s = 3. Then there are five frequent
singleton itemsets: {dog}, {cat}, {and}, {a}, and {training}.

Now, let us look at the doubletons. A doubleton cannot be frequent unless
both items in the set are frequent by themselves. Thus, there are only ten
possible frequent doubletons. Fig. 6.2 is a table indicating which baskets contain
which doubletons.

|| training | a | and | cat |
dog || 4,6 2,3,7]11,2,7,8[1,2,3,6,7 |
cat || 5,6 2,3,711,2,5,7
and || 5 2,7
a none

Figure 6.2: Occurrences of doubletons

For example, we see from the table of Fig. 6.2 that doubleton {dog, training}
appears only in baskets (4) and (6). Therefore, its support is 2, and it is not
frequent. There are five frequent doubletons if s = 3; they are

{dog, a} {dog, and} {dog, cat}
{cat, a} {cat, and}

Each appears at least three times; for instance, {dog, cat} appears five times.

Next, let us see if there are frequent triples. In order to be a frequent triple,
each pair of elements in the set must be a frequent doubleton. For example,
{dog, a, and} cannot be a frequent itemset, because if it were, then surely {a,
and} would be frequent, but it is not. The triple {dog, cat, and} might be
frequent, because each of its doubleton subsets is frequent. Unfortunately, the
three words appear together only in baskets (1) and (2), so it is not a frequent
triple. The triple {dog, cat, a} might be frequent, since its doubletons are all
frequent. In fact, all three words do appear in baskets (2), (3), and (7), so
it is a frequent triple. No other triple of words is even a candidate for being
a frequent triple, since for no other triple of words are its three doubleton
subsets frequent. As there is only one frequent triple, there can be no frequent
quadruples or larger sets. O

204 CHAPTER 6. FREQUENT ITEMSETS

On-Line versus Brick-and-Mortar Retailing

We suggested in Section 3.1.3 that an on-line retailer would use similarity
measures for items to find pairs of items that, while they might not be
bought by many customers, had a significant fraction of their customers
in common. An on-line retailer could then advertise one item of the pair
to the few customers who had bought the other item of the pair. This
methodology makes no sense for a bricks-and-mortar retailer, because un-
less lots of people buy an item, it cannot be cost effective to advertise a
sale on the item. Thus, the techniques of Chapter 3 are not often useful
for brick-and-mortar retailers.

Conversely, the on-line retailer has little need for the analysis we dis-
cuss in this chapter, since it is designed to search for itemsets that appear
frequently. If the on-line retailer was limited to frequent itemsets, they
would miss all the opportunities that are present in the “long tail” to
select advertisements for each customer individually.

6.1.2 Applications of Frequent Itemsets

The original application of the market-basket model was in the analysis of true
market baskets. That is, supermarkets and chain stores record the contents
of every market basket (physical shopping cart) brought to the register for
checkout. Here the “items” are the different products that the store sells, and
the “baskets” are the sets of items in a single market basket. A major chain
might sell 100,000 different items and collect data about millions of market
baskets.

By finding frequent itemsets, a retailer can learn what is commonly bought
together. Especially important are pa