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Chapter 12

Large-Scale Machine

Learning

Many algorithms are today classified as “machine learning.” These algorithms
share, with the other algorithms studied in this book, the goal of extracting
information from data. All algorithms for analysis of data are designed to
produce a useful summary of the data, from which decisions are made. Among
many examples, the frequent-itemset analysis that we did in Chapter 6 produces
information like association rules, which can then be used for planning a sales
strategy or for many other purposes.

However, algorithms called “machine learning” not only summarize our
data; they are perceived as learning a model or classifier from the data, and thus
discover something about data that will be seen in the future. For instance, the
clustering algorithms discussed in Chapter 7 produce clusters that not only tell
us something about the data being analyzed (the training set), but they allow
us to classify future data into one of the clusters that result from the clustering
algorithm. Thus, machine-learning enthusiasts often speak of clustering with
the neologism “unsupervised learning”; the term unsupervised refers to the fact
that the input data does not tell the clustering algorithm what the clusters
should be. In supervised machine learning,, which is the subject of this chapter,
the available data includes information about the correct way to classify at least
some of the data. The data classified already is called the training set.

In this chapter, we do not attempt to cover all the different approaches to
machine learning. We concentrate on methods that are suitable for very large
data and that have the potential for parallel implementation. We consider the
classical “perceptron” approach to learning a data classifier, where a hyperplane
that separates two classes is sought. Then, we look at more modern techniques
involving support-vector machines. Similar to perceptrons, these methods look
for hyperplanes that best divide the classes, so that few, if any, members of the
training set lie close to the hyperplane. We end with a discussion of nearest-
neighbor techniques, where data is classified according to the class(es) of their
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nearest neighbors in some space.

12.1 The Machine-Learning Model

In this brief section we introduce the framework for machine-learning algorithms
and give the basic definitions.

12.1.1 Training Sets

The data to which a machine-learning (often abbreviated ML) algorithm is
applied is called a training set. A training set consists of a set of pairs (x, y),
called training examples, where

• x is a vector of values, often called a feature vector. Each value, or feature,
can be categorical (values are taken from a set of discrete values, such as
{red, blue, green}) or numerical (values are integers or real numbers).

• y is the label, the classification value for x.

The objective of the ML process is to discover a function y = f(x) that
best predicts the value of y associated with each value of x. The type of y is in
principle arbitrary, but there are several common and important cases.

1. y is a real number. In this case, the ML problem is called regression.

2. y is a boolean value true-or-false, more commonly written as +1 and −1,
respectively. In this class the problem is binary classification.

3. y is a member of some finite set. The members of this set can be thought
of as “classes,” and each member represents one class. The problem is
multiclass classification.

4. y is a member of some potentially infinite set, for example, a parse tree
for x, which is interpreted as a sentence.

12.1.2 Some Illustrative Examples

Example 12.1 : Recall Fig. 7.1, repeated as Fig. 12.1, where we plotted the
height and weight of dogs in three classes: Beagles, Chihuahuas, and Dachs-
hunds. We can think of this data as a training set, provided the data includes
the variety of the dog along with each height-weight pair. Each pair (x, y) in
the training set consists of a feature vector x of the form [height, weight]. The
associated label y is the variety of the dog. An example of a training-set pair
would be ([5 inches, 2 pounds], Chihuahua).

An appropriate way to implement the decision function f would be to imag-
ine two lines, shown dashed in Fig. 12.1. The horizontal line represents a height
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Beagles

Weight

Height

Chihuahuas

Dachshunds

height = 7

weight = 3

Figure 12.1: Repeat of Fig. 7.1, indicating the heights and weights of certain
dogs

of 7 inches and separates Beagles from Chihuahuas and Dachshunds. The verti-
cal line represents a weight of 3 pounds and separates Chihuahuas from Beagles
and Dachshunds. The algorithm that implements f is:

if (height > 7) print Beagle

else if (weight < 3) print Chihuahua

else print Dachshund;

Recall that the original intent of Fig. 7.1 was to cluster points without
knowing which variety of dog they represented. That is, the label associated
with a given height-weight vector was not available. Here, we are performing
supervised learning with the same data augmented by classifications for the
training data. ✷

Example 12.2 : As an example of supervised learning, the four points (1, 2),
(2, 1), (3, 4), and (4, 3) from Fig.11.1 (repeated here as Fig. 12.2), can be thought
of as a training set, where the vectors are one-dimensional. That is, the point
(1, 2) can be thought of as a pair ([1], 2), where [1] is the one-dimensional feature
vector x, and 2 is the associated label y; the other points can be interpreted
similarly.

Suppose we want to “learn” the linear function f(x) = ax + b that best
represents the points of the training set. A natural interpretation of “best”
is that the RMSE of the value of f(x) compared with the given value of y is
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(2,1)

(3,4)

(4,3)(1,2)

Figure 12.2: Repeat of Fig. 11.1, to be used as a training set

minimized. That is, we want to minimize

4
∑

x=1

(ax+ b− yx)
2

where yx is the y-value associated with x. This sum is

(a+ b− 2)2 + (2a+ b− 1)2 + (3a+ b− 4)2 + (4a+ b− 3)2

Simplifying, the sum is 30a2 +4b2 +20ab− 56a− 20b+ 30. If we then take the
derivatives with respect to a and b and set them to 0, we get

60a+ 20b− 56 = 0
20a+ 8b− 20 = 0

The solution to these equations is a = 3/5 and b = 1. For these values the
RMSE is 3.2.

Note that the learned straight line is not the principal axis that was dis-
covered for these points in Section 11.2.1. That axis was the line with slope
1, going through the origin, i.e., the line y = x. For this line, the RMSE is
4. The difference is that PCA discussed in Section 11.2.1 minimizes the sum
of the squares of the lengths of the projections onto the chosen axis, which is
constrained to go through the origin. Here, we are minimizing the sum of the
squares of the vertical distances between the points and the line. In fact, even
had we tried to learn the line through the origin with the least RMSE, we would
not choose y = x. You can check that y = 14

15x has a lower RMSE than 4. ✷

Example 12.3 : A common application of machine learning involves a training
set where the feature vectors x are boolean-valued and of very high dimension.
We shall focus on data consisting of documents, e.g., emails, Web pages, or
newspaper articles. Each component represents a word in some large dictio-
nary. We would probably eliminate stop words (very common words) from this
dictionary, because these words tend not to tell us much about the subject mat-
ter of the document. Similarly, we might also restrict the dictionary to words
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with high TF.IDF scores (see Section 1.3.1) so the words considered would tend
to reflect the topic or substance of the document.

The training set consists of pairs, where the vector x represents the presence
or absence of each dictionary word in document. The label y could be +1 or
−1, with +1 representing that the document (an email, e.g.) is spam. Our goal
would be to train a classifier to examine future emails and decide whether or not
they are spam. We shall illustrate this use of machine learning in Example 12.4.

Alternatively, y could be chosen from some finite set of topics, e.g., “sports,”
“politics,” and so on. Again, x could represent a document, perhaps a Web
page. The goal would be to create a classifier for Web pages that assigned a
topic to each. ✷

12.1.3 Approaches to Machine Learning

There are many forms of ML algorithms, and we shall not cover them all here.
Here are the major classes of such algorithms, each of which is distinguished by
the form by which the function f is represented.

1. Decision trees were discussed briefly in Section 9.2.7. The form of f is
a tree, and each node of the tree has a function of x that determines
to which child or children the search must proceed. While we saw only
binary trees in Section 9.2.7, in general a decision tree can have any
number of children for each node. Decision trees are suitable for binary
and multiclass classification, especially when the dimension of the feature
vector is not too large (large numbers of features can lead to overfitting).

2. Perceptrons are threshold functions applied to the components of the vec-
tor x = [x1, x2, . . . , xn]. A weight wi is associated with the ith component,
for each i = 1, 2, . . . , n, and there is a threshold θ. The output is +1 if

n
∑

i=1

wixi ≥ θ

and the output is −1 otherwise. A perceptron is suitable for binary classi-
fication, even when the number of features is very large, e.g., the presence
or absence of words in a document. Perceptrons are the topic of Sec-
tion 12.2.

3. Neural nets are acyclic networks of perceptrons, with the outputs of some
perceptrons used as inputs to others. These are suitable for binary or
multiclass classification, since there can be several perceptrons used as
output, with one or more indicating each class.

4. Instance-based learning uses the entire training set to represent the func-
tion f . The calculation of the label y associated with a new feature vector
x can involve examination of the entire training set, although usually some
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preprocessing of the training set enables the computation of f(x) to pro-
ceed efficiently. We shall consider an important kind of instance-based
learning, k-nearest-neighbor, in Section 12.4. For example, 1-nearest-
neighbor classifies data by giving it the same class as that of its nearest
training example. There are k-nearest-neighbor algorithms that are ap-
propriate for any kind of classification, although we shall concentrate on
the case where y and the components of x are real numbers.

5. Support-vector machines are an advance over the algorithms traditionally
used to select the weights and threshold. The result is a classifier that
tends to be more accurate on unseen data. We discuss support-vector
machines in Section 12.3.

12.1.4 Machine-Learning Architecture

Machine-learning algorithms can be classified not only by their general algorith-
mic approach as we discussed in Section 12.1.3. but also by their underlying
architecture – the way data is handled and the way it is used to build the model.

Training and Testing

One general issue regarding the handling of data is that there is a good reason to
withhold some of the available data from the training set. The remaining data
is called the test set. The problem addressed is that many machine-learning
algorithms tend to overfit the data; they pick up on artifacts that occur in the
training set but that are atypical of the larger population of possible data. By
using the test data, and seeing how well the classifier works on that, we can tell
if the classifier is overfitting the data. If so, we can restrict the machine-learning
algorithm in some way. For instance, if we are constructing a decision tree, we
can limit the number of levels of the tree.

Test

ModelModel
Generation

Training Set Set

Error Rate

Figure 12.3: The training set helps build the model, and the test set validates
it

Figure 12.3 illustrates the train-and-test architecture. We assume all the
data is suitable for training (i.e., the class information is attached to the data),
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Generalization

We should remember that the purpose of creating a model or classifier is
not to classify the training set, but to classify the data whose class we do
not know. We want that data to be classified correctly, but often we have
no way of knowing whether or not the model does so. If the nature of
the data changes over time, for instance, if we are trying to detect spam
emails, then we need to measure the performance over time, as best we
can. For example, in the case of spam emails, we can note the rate of
reports of spam emails that were not classified as spam.

but we separate out a small fraction of the available data as the test set. We
use the remaining data to build a suitable model or classifier. Then we feed
the test data to this model. Since we know the class of each element of the
test data, we can tell how well the model does on the test data. If the error
rate on the test data is not much worse than the error rate of the model on the
training data itself, then we expect there is little, if any, overfitting, and the
model can be used. On the other hand, if the classifier performs much worse
on the test data than on the training data, we expect there is overfitting and
need to rethink the way we construct the classifier.

There is nothing special about the selection of the test data. In fact, we
can repeat the train-then-test process several times using the same data, if we
divide the data into k equal-sized chunks. In turn, we let each chunk be the test
data, and use the remaining k − 1 chunks as the training data. This training
architecture is called cross-validation.

Batch Versus On-Line Learning

Often, as in Examples 12.1 and 12.2 we use a batch learning architecture. That
is, the entire training set is available at the beginning of the process, and it is
all used in whatever way the algorithm requires to produce a model once and
for all. The alternative is on-line learning, where the training set arrives in a
stream and, like any stream, cannot be revisited after it is processed. In on-line
learning, we maintain a model at all times. As new training examples arrive,
we may choose to modify the model to account for the new examples. On-line
learning has the advantages that it can

1. Deal with very large training sets, because it does not access more than
one training example at a time.

2. Adapt to changes in the population of training examples as time goes on.
For instance, Google trains its spam-email classifier this way, adapting
the classifier for spam as new kinds of spam email are sent by spammers
and indicated to be spam by the recipients.
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An enhancement of on-line learning, suitable in some cases, is active learn-

ing. Here, the classifier may receive some training examples, but it primarily
receives unclassified data, which it must classify. If the classifier is unsure of
the classification (e.g., the newly arrived example is very close to the bound-
ary), then the classifier can ask for ground truth at some significant cost. For
instance, it could send the example to Mechanical Turk and gather opinions of
real people. In this way, examples near the boundary become training examples
and can be used to modify the classifier.

Feature Selection

Sometimes, the hardest part of designing a good model or classifier is figuring
out what features to use as input to the learning algorithm. Let us reconsider
Example 12.3, where we suggested that we could classify emails as spam or not
spam by looking at the words contained in the email. In fact, we explore in
detail such a classifier in Example 12.4. As discussed in Example 12.3, it may
make sense to focus on certain words and not others; e.g., we should eliminate
stop words.

But we should also ask whether there is other information available that
would help us make a better decision about spam. For example, spam is often
generated by particular hosts, either those belonging to the spammers, or hosts
that have been coopted into a “botnet” for the purpose of generating spam.
Thus, including the originating host or originating email address into the feature
vector describing an email might enable us to design a better classifier and lower
the error rate.

Creating a Training Set

It is reasonable to ask where the label information that turns data into a train-
ing set comes from. The obvious method is to create the labels by hand, having
an expert look at each feature vector and classify it properly. Recently, crowd-
sourcing techniques have been used to label data. For example, in many appli-
cations it is possible to use Mechanical Turk to label data. Since the “Turkers”
are not necessarily reliable, it is wise to use a system that allows the question
to be asked of several different people, until a clear majority is in favor of one
label.

One often can find data on the Web that is implicitly labeled. For example,
the Open Directory (DMOZ) has millions of pages labeled by topic. That data,
used as a training set, can enable one to classify other pages or documents
according to their topic, based on the frequency of word occurrence. Another
approach to classifying by topic is to look at the Wikipedia page for a topic and
see what pages it links to. Those pages can safely be assumed to be relevant to
the given topic.

In some applications we can use the stars that people use to rate products or
services on sites like Amazon or Yelp. For example, we might want to estimate
the number of stars that would be assigned to reviews or tweets about a product,
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even if those reviews do not have star ratings. If we use star-labeled reviews
as a training set, we can deduce the words that are most commonly associated
with positive and negative reviews (called sentiment analysis). The presence of
these words in other reviews can tell us the sentiment of those reviews.

12.1.5 Exercises for Section 12.1

Exercise 12.1.1 : Redo Example 12.2 for the following different forms of f(x).

(a) Require f(x) = ax; i.e., a straight line through the origin. Is the line
y = 14

15x that we discussed in the example optimal?

(b) Require f(x) to be a quadratic, i.e., f(x) = ax2 + bx+ c.

12.2 Perceptrons

A perceptron is a linear binary classifier. Its input is a vector x = [x1, x2, . . . , xd]
with real-valued components. Associated with the perceptron is a vector of
weights w = [w1, w2, . . . , wd], also with real-valued components. Each percep-
tron has a threshold θ. The output of the perceptron is +1 if w.x > θ, and
the output is −1 if w.x < θ. The special case where w.x = θ will always be
regarded as “wrong,” in the sense that we shall describe in detail when we get
to Section 12.2.1.

The weight vector w defines a hyperplane of dimension d− 1 – the set of all
points x such that w.x = θ, as suggested in Fig. 12.4. Points on the positive
side of the hyperplane are classified +1 and those on the negative side are clas-
sified −1. A perceptron classifier works only for data that is linearly separable,
in the sense that there is some hyperplane that separates all the positive points
from all the negative points. If there are many such hyperplanes, the percep-
tron will converge to one of them, and thus will correctly classify all the training
points. If no such hyperplane exists, then the perceptron cannot converge to
any particular one. In the next section, we discuss support-vector machines,
which do not have this limitation; they will converge to some separator that,
although not a perfect classifier, will do as well as possible under the metric to
be described in Section 12.3.

12.2.1 Training a Perceptron with Zero Threshold

To train a perceptron, we examine the training set and try to find a weight
vector w and threshold θ such that all the feature vectors with y = +1 (the
positive examples) are on the positive side of the hyperplane and all those with
y = −1 (the negative examples) are on the negative side. It may or may not be
possible to do so, since there is no guarantee that any hyperplane separates all
the positive and negative examples in the training set.



448 CHAPTER 12. LARGE-SCALE MACHINE LEARNING

w

w.x = θ

Figure 12.4: A perceptron divides a space by a hyperplane into two half-spaces

We begin by assuming the threshold is 0; the simple augmentation needed
to handle an unknown threshold is discussed in Section 12.2.4. The follow-
ing method will converge to some hyperplane that separates the positive and
negative examples, provided one exists.

1. Initialize the weight vector w to all 0’s.

2. Pick a learning-rate parameter η, which is a small, positive real number.
The choice of η affects the convergence of the perceptron. If η is too small,
then convergence is slow; if it is too big, then the decision boundary will
“dance around” and again will converge slowly, if at all.

3. Consider each training example t = (x, y) in turn.

(a) Let y′ = w.x.

(b) If y′ and y have the same sign, then do nothing; t is properly classi-
fied.

(c) However, if y′ and y have different signs, or y′ = 0, replace w by
w + ηyx. That is, adjust w slightly in the direction of x.

The two-dimensional case of this transformation on w is suggested in Fig.
12.5. Notice how moving w in the direction of x moves the hyperplane that is
perpendicular to w in such a direction that it makes it more likely that x will
be on the correct side of the hyperplane, although it does not guarantee that
to be the case.

Example 12.4 : Let us consider training a perceptron to recognize spam email.
The training set consists of pairs (x, y) where x is a vector of 0’s and 1’s, with
each component xi corresponding to the presence (xi = 1) or absence (xi = 0)
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x
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x
1

w.x = 0
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w’.x = 0

η

Figure 12.5: A misclassified point x1 moves the vector w

of a particular word in the email. The value of y is +1 if the email is known
to be spam and −1 if it is known not to be spam. While the number of words
found in the training set of emails is very large, we shall use a simplified example
where there are only five words: “and,” “viagra,” “the,” “of,” and “nigeria.”
Figure 12.6 gives the training set of six vectors and their corresponding classes.

and viagra the of nigeria y
a 1 1 0 1 1 +1
b 0 0 1 1 0 −1
c 0 1 1 0 0 +1
d 1 0 0 1 0 −1
e 1 0 1 0 1 +1
f 1 0 1 1 0 −1

Figure 12.6: Training data for spam emails

In this example, we shall use learning rate η = 1/2, and we shall visit
each training example once, in the order shown in Fig. 12.6. We begin with
w = [0, 0, 0, 0, 0] and compute w.a = 0. Since 0 is not positive, we move w in
the direction of a by performing w := w + (1/2)(+1)a. The new value of w
is thus

w = [0, 0, 0, 0, 0] + [
1

2
,
1

2
, 0,

1

2
,
1

2
] = [

1

2
,
1

2
, 0,

1

2
,
1

2
]

Next, consider b. w.b = [ 12 ,
1
2 , 0,

1
2 ,

1
2 ].[0, 0, 1, 1, 0] =

1
2 . Since the associated

y for b is −1, b is misclassified. We thus assign

w := w + (1/2)(−1)b = [
1

2
,
1

2
, 0,

1

2
,
1

2
]− [0, 0,

1

2
,
1

2
, 0] = [

1

2
,
1

2
,−1

2
, 0,

1

2
]
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Pragmatics of Training on Emails

When we represent emails or other large documents as training examples,
we would not really want to construct the vector of 0’s and 1’s with a
component for every word that appears even once in the collection of
emails. Doing so would typically give us sparse vectors with millions of
components. Rather, create a table in which all the words appearing in the
emails are assigned integers 1, 2, . . ., indicating their component. When we
process an email in the training set, make a list of the components in which
the vector has 1; i.e., use the standard sparse representation for the vector.
If we eliminate stop words from the representation, or even eliminate words
with a low TF.IDF score, then we make the vectors representing emails
significantly sparser and thus compress the data even more. Only the
vector w needs to have all its components listed, since it will not be sparse
after a small number of training examples have been processed.

Training example c is next. We compute

w.c = [
1

2
,
1

2
,−1

2
, 0,

1

2
].[0, 1, 1, 0, 0] = 0

Since the associated y for c is +1, c is also misclassified. We thus assign

w := w + (1/2)(+1)c = [
1

2
,
1

2
,−1

2
, 0,

1

2
] + [0,

1

2
,
1

2
, 0, 0] = [

1

2
, 1, 0, 0,

1

2
]

Training example d is next to be considered:

w.d = [
1

2
, 1, 0, 0,

1

2
].[1, 0, 0, 1, 0] = 1

Since the associated y for d is −1, d is misclassified as well. We thus assign

w := w + (1/2)(−1)d = [
1

2
, 1, 0, 0,

1

2
]− [

1

2
, 0, 0,

1

2
, 0] = [0, 1, 0,−1

2
,
1

2
]

For training example e we compute w.e = [0, 1, 0,− 1
2 ,

1
2 ].[1, 0, 1, 0, 1] =

1
2 .

Since the associated y for e is +1, e is classified correctly, and no change to w

is made. Similarly, for f we compute

w.f = [0, 1, 0,−1

2
,
1

2
].[1, 0, 1, 1, 0] = −1

2

so f is correctly classified. If we check a through d, we find that this w cor-
rectly classifies them as well. Thus, we have converged to a perceptron that
classifies all the training set examples correctly. It also makes a certain amount
of sense: it says that “viagra” and “nigeria” are indicative of spam, while “of”
is indicative of nonspam. It considers “and” and “the” neutral,” although we
would probably prefer to give “and,” “of,” and “the” the same weight. ✷
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12.2.2 Convergence of Perceptrons

As we mentioned at the beginning of this section, if the data points are linearly
separable, then the perceptron algorithm will converge to a separator. However,
if the data is not linearly separable, then the algorithm will eventually repeat a
weight vector and loop infinitely. Unfortunately, it is often hard to tell, during
the running of the algorithm, which of these two cases applies. When the data
is large, it is not feasible to remember all previous weight vectors to see whether
we are repeating a vector, and even if we could, the period of repetition would
most likely be so large that we would want to terminate the algorithm long
before we repeated.

A second issue regarding termination is that even if the training data is
linearly separable, the entire dataset might not be linearly separable. The
consequence is that there might not be any value in running the algorithm
for a very large number of rounds, in the hope of converging to a separator.
We therefore need a strategy for deciding when to terminate the perceptron
algorithm, assuming convergence has not occurred. Here are some common
tests for termination.

1. Terminate after a fixed number of rounds.

2. Terminate when the number of misclassified training points stops chang-
ing.

3. Withhold a test set from the training data, and after each round, run the
perceptron on the test data. Terminate the algorithm when the number
of errors on the test set stops changing.

Another technique that will aid convergence is to lower the training rate as
the number of rounds increases. For example, we could allow the training rate
η to start at some initial η0 and lower it to η0/(1 + ct) after the tth round,
where c is some small constant.

12.2.3 The Winnow Algorithm

There are many other rules one could use to adjust weights for a perceptron. Not
all possible algorithms are guaranteed to converge, even if there is a hyperplane
separating positive and negative examples. One that does converge is called
Winnow, and that rule will be described here. Winnow assumes that the feature
vectors consist of 0’s and 1’s, and the labels are +1 or −1. Unlike the basic
perceptron algorithm, which can produce positive or negative components in
the weight vector w, Winnow produces only positive weights.

The general Winnow Algorithm allows for a variety of parameters to be
selected, and we shall only consider one simple variant. However, all variants
have in common the idea that there is a positive threshold θ. If w is the
current weight vector, and x is the feature vector in the training set that we
are currently considering, we compute w.x and compare it with θ. If the dot



452 CHAPTER 12. LARGE-SCALE MACHINE LEARNING

product is too low, and the class for x is +1, then we have to raise the weights of
w in those components where x has 1. We multiply these weights by a number
greater than 1. The larger this number, the greater the training rate, so we
want to pick a number that is not too close to 1 (or convergence will be too
slow) but also not too large (or the weight vector may oscillate). Similarly, if
w.x ≥ θ, but the class of x is −1, then we want to lower the weights of w in
those components where x is 1. We multiply those weights by a number greater
than 0 but less than 1. Again, we want to pick a number that is not too close
to 1 but also not too small, to avoid slow convergence or oscillation.

We shall give the details of the algorithm using the factors 2 and 1/2, for
the cases where we want to raise weights and lower weights, respectively. Start
the Winnow Algorithm with a weight vector w = [w1, w2, . . . , wd] all of whose
components are 1, and let the threshold θ equal d, the number of dimensions of
the vectors in the training examples. Let (x, y) be the next training example
to be considered, where x = [x1, x2, . . . , xd].

1. If w.x > θ and y = +1, or w.x < θ and y = −1, then the example is
correctly classified, so no change to w is made.

2. If w.x ≤ θ, but y = +1, then the weights for the components where x has
1 are too low as a group. Double each of the corresponding components
of w. That is, if xi = 1 then set wi := 2wi.

3. If w.x ≥ θ, but y = −1, then the weights for the components where x has
1 are too high as a group. Halve each of the corresponding components
of w. That is, if xi = 1 then set wi := wi/2.

Example 12.5 : Let us reconsider the training data from Fig. 12.6. Initialize
w = [1, 1, 1, 1, 1] and let θ = 5. First, consider feature vector a = [1, 1, 0, 1, 1].
w.a = 4, which is less than θ. Since the associated label for a is +1, this
example is misclassified. When a +1-labeled example is misclassified, we must
double all the components where the example has 1; in this case, all but the
third component of a is 1. Thus, the new value of w is [2, 2, 1, 2, 2].

Next, we consider training example b = [0, 0, 1, 1, 0]. w.b = 3, which is less
than θ. However, the associated label for b is −1, so no change to w is needed.

For c = [0, 1, 1, 0, 0] we find w.c = 3 < θ, while the associated label is +1.
Thus, we double the components of w where the corresponding components of
c are 1. These components are the second and third, so the new value of w is
[2, 4, 2, 2, 2].

The next two training examples, d and e require no change, since they are
correctly classified. However, there is a problem with f = [1, 0, 1, 1, 0], since
w.f = 6 > θ, while the associated label for f is −1. Thus, we must divide the
first, third, and fourth components of w by 2, since these are the components
where f has 1. The new value of w is [1, 4, 1, 1, 2].

We still have not converged. It turns out we must consider each of the
training examples a through f again. At the end of this process, the algorithm
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x y w.x OK? and viagra the of nigeria
1 1 1 1 1

a +1 4 no 2 2 1 2 2
b −1 3 yes
c +1 3 no 2 4 2 2 2
d −1 4 yes
e +1 6 yes
f −1 6 no 1 4 1 1 2
a +1 8 yes
b −1 2 yes
c +1 5 no 1 8 2 1 2
d −1 2 yes
e +1 5 no 2 8 4 1 4
f −1 7 no 1 8 2 1

2 4

Figure 12.7: Sequence of updates to w performed by the Winnow Algorithm
on the training set of Fig. 12.6

has converged to a weight vector w = [1, 8, 2, 12 , 4], which with threshold θ = 5
correctly classifies all of the training examples in Fig. 12.6. The details of
the twelve steps to convergence are shown in Fig. 12.7. This figure gives the
associated label y and the computed dot product of w and the given feature
vector. The last five columns are the five components of w after processing
each training example. ✷

12.2.4 Allowing the Threshold to Vary

Suppose now that the choice of threshold 0, as in Section 12.2.1, or threshold d,
as in Section 12.2.3 is not desirable, or that we don’t know the best threshold
to use. At the cost of adding another dimension to the feature vectors, we can
treat θ as one of the components of the weight vector w. That is:

1. Replace the vector of weights w = [w1, w2, . . . , wd] by

w′ = [w1, w2, . . . , wd, θ]

2. Replace every feature vector x = [x1, x2, . . . , xd] by

x′ = [x1, x2, . . . , xd,−1]

Then, for the new training set and weight vector, we can treat the threshold
as 0 and use the algorithm of Section 12.2.1. The justification is that w′.x′ ≥ 0
is equivalent to

∑d
i=1 wixi+θ×−1 = w.x−θ ≥ 0, which in turn is equivalent to

w.x ≥ θ. The latter is the condition for a positive response from a perceptron
with threshold θ.
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We can also apply the Winnow Algorithm to the modified data. Winnow
requires all feature vectors to have 0’s and 1’s, as components. However, we can
allow a −1 in the feature vector component for θ if we treat it in the manner
opposite to the way we treat components that are 1. That is, if the training
example is positive, and we need to increase the other weights, we instead divide
the component for the threshold by 2. And if the training example is negative,
and we need to decrease the other weights we multiply the threshold component
by 2.

Example 12.6 : Let us modify the training set of Fig. 12.6 to incorporate a
sixth “word” that represents the negative −θ of the threshold. The new data
is shown in Fig. 12.8.

and viagra the of nigeria θ y
a 1 1 0 1 1 −1 +1
b 0 0 1 1 0 −1 −1
c 0 1 1 0 0 −1 +1
d 1 0 0 1 0 −1 −1
e 1 0 1 0 1 −1 +1
f 1 0 1 1 0 −1 −1

Figure 12.8: Training data for spam emails, with a sixth component representing
the negative of the threshold

We begin with a weight vector w with six 1’s, as shown in the first line
of Fig. 12.9. When we compute w.a = 3, using the first feature vector a, we
are happy because the training example is positive, and so is the dot product.
However, for the second training example, we compute w.b = 1. Since the
example is negative and the dot product is positive, we must adjust the weights.
Since b has 1’s in the third and fourth components, the 1’s in the corresponding
components of w are replaced by 1/2. The last component, corresponding to θ,
must be doubled. These adjustments give the new weight vector [1, 1, 12 ,

1
2 , 1, 2]

shown in the third line of Fig. 12.9.

x y w.x OK? and viagra the of nigeria θ
1 1 1 1 1 1

a +1 3 yes
b −1 1 no 1 1 1

2
1
2 1 2

c +1 − 1
2 no 1 2 1 1

2 1 1
d −1 1

2 no 1
2 2 1 1

4 1 2

Figure 12.9: Sequence of updates to w performed by the Winnow Algorithm
on the training set of Fig. 12.8

The feature vector c is a positive example, but w.c = − 1
2 . Thus, we must
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double the second and third components of w, because c has 1 in the cor-
responding components, and we must halve the last component of w, which
corresponds to θ. The resulting w = [1, 2, 1, 12 , 1, 1] is shown in the fourth line
of Fig. 12.9. Next, d is a negative example. Since w.d = 1

2 , we must again
adjust weights. We halve the weights in the first and fourth components and
double the last component, yielding w = [ 12 , 2, 1,

1
4 , 1, 2]. Now, all positive ex-

amples have a positive dot product with the weight vector, and all negative
examples have a negative dot product, so there are no further changes to the
weights.

The designed perceptron has a threshold of 2. It has weights 2 and 1 for
“viagra” and “nigeria” and smaller weights for “and” and “of.” It also has
weight 1 for “the,” which suggests that “the” is as indicative of spam as “nige-
ria,” something we doubt is true. Nevertheless, this perceptron does classify all
examples correctly. ✷

12.2.5 Multiclass Perceptrons

There are several ways in which the basic idea of the perceptron can be ex-
tended. We shall discuss transformations that enable hyperplanes to serve for
more complex boundaries in the next section. Here, we look at how perceptrons
can be used to classify data into many classes.

Suppose we are given a training set with labels in k different classes. Start
by training a perceptron for each class; these perceptrons should each have the
same threshold θ. That is, for class i treat a training example (x, i) as a positive
example, and all examples (x, j), where j 6= i, as a negative example. Suppose
that the weight vector of the perceptron for class i is determined to be wi after
training.

Given a new vector x to classify, we compute wi.x for all i = 1, 2, . . . , k. We
take the class of x to be the value of i for which wi.x is the maximum, provided
that value is at least θ. Otherwise, x is assumed not to belong to any of the k
classes.

For example, suppose we want to classify Web pages into a number of topics,
such as sports, politics, medicine, and so on. We can represent Web pages by a
vector with 1 for each word present in the page and 0 for words not present (of
course we would only visualize the pages that way; we wouldn’t construct the
vectors in reality). Each topic has certain words that tend to indicate that topic.
For instance, sports pages would be full of words like “win,” “goal,” “played,”
and so on. The weight vector for that topic would give higher weights to the
words that characterize that topic.

A new page could be classified as belonging to the topic that gives the
highest score when the dot product of the page’s vector and the weight vectors
for the topics are computed. An alternative interpretation of the situation is
to classify a page as belonging to all those topics for which the dot product
is above some threshold (presumably a threshold higher than the θ used for
training).
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12.2.6 Transforming the Training Set

While a perceptron must use a linear function to separate two classes, it is
always possible to transform the vectors of a training set before applying a
perceptron-based algorithm to separate the classes. An example should give
the basic idea.

Figure 12.10: Transforming from rectangular to polar coordinates turns this
training set into one with a separating hyperplane

Example 12.7 : In Fig. 12.10 we see a plot of places to visit from my home.
The horizontal and vertical coordinates represent latitude and longitude of
places. Some of the places have been classified into “day trips” – places close
enough to visit in one day – and “excursions,” which require more than a day
to visit. These are the circles and squares, respectively. Evidently, there is no
straight line that separates day trips from excursions. However, if we replace
the Cartesian coordinates by polar coordinates, then in the transformed space of
polar coordinates, the dashed circle shown in Fig. 12.10 becomes a hyperplane.
Formally, we transform the vector x = [x1, x2] into [

√

x2
1 + x2

2, arctan(x2/x1)].
In fact, we can also do dimensionality reduction of the data. The angle of

the point is irrelevant, and only the radius
√

x2
1 + x2

2 matters. Thus, we can
turn the point vectors into one-component vectors giving the distance of the
point from the origin. Associated with the small distances will be the class
label “day trip,” while the larger distances will all be associated with the label
“excursion.” Training the perceptron is extremely easy. ✷
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12.2.7 Problems With Perceptrons

Despite the extensions discussed above, there are some limitations to the ability
of perceptrons to classify some data. The biggest problem is that sometimes
the data is inherently not separable by a hyperplane. An example is shown in
Fig. 12.11. In this example, points of the two classes mix near the boundary so
that any line through the points will have points of both classes on at least one
of the sides.

Figure 12.11: A training set may not allow the existence of any separating
hyperplane

One might argue that, based on the observations of Section 12.2.6 it should
be possible to find some function on the points that would transform them to
another space where they were linearly separable. That might be the case,
but if so, it would probably be an example of overfitting, the situation where
the classifier works very well on the training set, because it has been carefully
designed to handle each training example correctly. However, because the clas-
sifier is exploiting details of the training set that do not apply to other examples
that must be classified in the future, the classifier will not perform well on new
data.

Another problem is illustrated in Fig. 12.12. Usually, if classes can be sep-
arated by one hyperplane, then there are many different hyperplanes that will
separate the points. However, not all hyperplanes are equally good. For in-
stance, if we choose the hyperplane that is furthest clockwise, then the point
indicated by “?” will be classified as a circle, even though we intuitively see it as
closer to the squares. When we meet support-vector machines in Section 12.3,
we shall see that there is a way to insist that the hyperplane chosen be the one
that in a sense divides the space most fairly.

Yet another problem is illustrated by Fig. 12.13. Most rules for training
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?

Figure 12.12: Generally, more that one hyperplane can separate the classes if
they can be separated at all

a perceptron stop as soon as there are no misclassified points. As a result,
the chosen hyperplane will be one that just manages to classify some of the
points correctly. For instance, the upper line in Fig. 12.13 has just managed
to accommodate two of the squares, and the lower line has just managed to
accommodate one of the circles. If either of these lines represent the final
weight vector, then the weights are biased toward one of the classes. That
is, they correctly classify the points in the training set, but the upper line
would classify new squares that are just below it as circles, while the lower line
would classify circles just above it as squares. Again, a more equitable choice
of separating hyperplane will be shown in Section 12.3.

12.2.8 Parallel Implementation of Perceptrons

The training of a perceptron is an inherently sequential process. If the num-
ber of dimensions of the vectors involved is huge, then we might obtain some
parallelism by computing dot products in parallel. However, as we discussed in
connection with Example 12.4, high-dimensional vectors are likely to be sparse
and can be represented more succinctly than would be expected from their
length.

In order to get significant parallelism, we have to modify the perceptron
algorithm slightly, so that many training examples are used with the same esti-
mated weight vector w. As an example, let us formulate the parallel algorithm
as a MapReduce job.

The Map Function: Each Map task is given a chunk of training examples,
and each Map task knows the current weight vector w. The Map task computes
w.x for each feature vector x = [x1, x2, . . . , xk] in its chunk and compares that
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Figure 12.13: Perceptrons converge as soon as the separating hyperplane reaches
the region between classes

dot product with the label y, which is +1 or −1, associated with x. If the signs
agree, no key-value pairs are produced for this training example. However, if
the signs disagree, then for each nonzero component xi of x the key-value pair
(i, ηyxi) is produced; here, η is the learning-rate constant used to train this
perceptron. Notice that ηyxi is the increment we would like to add to the
current ith component of w, and if xi = 0, then there is no need to produce a
key-value pair. However, in the interests of parallelism, we defer that change
until we can accumulate many changes in the Reduce phase.
The Reduce Function: For each key i, the Reduce task that handles key i
adds all the associated increments and then adds that sum to the ith component
of w.

Probably, these changes will not be enough to train the perceptron. If any
changes to w occur, then we need to start a new MapReduce job that does the
same thing, perhaps with different chunks from the training set. However, even
if the entire training set was used on the first round, it can be used again, since
its effect on w will be different if w has changed.

12.2.9 Exercises for Section 12.2

Exercise 12.2.1 : Modify the training set of Fig. 12.6 so that example b also
includes the word “nigeria” (yet remains a negative example – perhaps someone
telling about their trip to Nigeria). Find a weight vector that separates the
positive and negative examples, using:

(a) The basic training method of Section 12.2.1.

(b) The Winnow method of Section 12.2.3.
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Perceptrons on Streaming Data

While we have viewed the training set as stored data, available for repeated
use on any number of passes, Perceptrons can also be used in a stream
setting. That is, we may suppose there is an infinite sequence of training
examples, but that each may be used only once. Detecting email spam is
a good example of a training stream. Users report spam emails and also
report emails that were classified as spam but are not. Each email, as it
arrives, is treated as a training example, and modifies the current weight
vector, presumably by a very small amount.

If the training set is a stream, we never really converge, and in fact
the data points may well not be linearly separable. However, at all times,
we have an approximation to the best possible separator. Moreover, if the
examples in the stream evolve over time, as would be the case for email
spam, then we have an approximation that values recent examples more
than examples from the distant past, much like the exponentially decaying
windows technique from Section 4.7.

(c) The basic method with a variable threshold, as suggested in Section 12.2.4.

(d) The Winnow method with a variable threshold, as suggested in Section
12.2.4.

! Exercise 12.2.2 : For the following training set:

([1, 2],+1) ([2, 1],+1)
([2, 3],−1) ([3, 2],−1)

describe all the vectors w and thresholds θ such that the hyperplane (really a
line) defined by w.x − θ = 0 separates the points correctly.

! Exercise 12.2.3 : Suppose the following four examples constitute a training
set:

([1, 2],−1) ([2, 3],+1)
([2, 1],+1) ([3, 2],−1)

(a) What happens when you attempt to train a perceptron to classify these
points using 0 as the threshold?

!! (b) Is it possible to change the threshold and obtain a perceptron that cor-
rectly classifies these points?

(c) Suggest a transformation using quadratic polynomials that will transform
these points so they become linearly separable.
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12.3 Support-Vector Machines

We can view a support-vector machine, or SVM, as an improvement on the
perceptron that is designed to address the problems mentioned in Section 12.2.7.
An SVM selects one particular hyperplane that not only separates the points in
the two classes, but does so in a way that maximizes the margin – the distance
between the hyperplane and the closest points of the training set.

12.3.1 The Mechanics of an SVM

The goal of an SVM is to select a hyperplane w.x + b = 01 that maximizes
the distance γ between the hyperplane and any point of the training set. The
idea is suggested by Fig. 12.14. There, we see the points of two classes and a
hyperplane dividing them.

Support
vectors

γ
γ

w.x + b = 0

Figure 12.14: An SVM selects the hyperplane with the greatest possible margin
γ between the hyperplane and the training points

Intuitively, we are more certain of the class of points that are far from the
separating hyperplane than we are of points near to that hyperplane. Thus, it
is desirable that all the training points be as far from the hyperplane as possible
(but on the correct side of that hyperplane, of course). An added advantage
of choosing the separating hyperplane to have as large a margin as possible is
that there may be points closer to the hyperplane in the full data set but not
in the training set. If so, we have a better chance that these points will be
classified properly than if we chose a hyperplane that separated the training
points but allowed some points to be very close to the hyperplane itself. In that
case, there is a fair chance that a new point that was near a training point that

1Constant b in this formulation of a hyperplane is the same as the negative of the threshold

θ in our treatment of perceptrons in Section 12.2.
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was also near the hyperplane would be misclassified. This issue was discussed
in Section 12.2.7 in connection with Fig. 12.13.

We also see in Fig. 12.14 two parallel hyperplanes at distance γ from the
central hyperplane w.x + b = 0, and these each touch one or more of the
support vectors. The latter are the points that actually constrain the dividing
hyperplane, in the sense that they are all at distance γ from the hyperplane.
In most cases, a d-dimensional set of points has d + 1 support vectors, as is
the case in Fig. 12.14. However, there can be more support vectors if too many
points happen to lie on the parallel hyperplanes. We shall see an example based
on the points of Fig. 11.1, where it turns out that all four points are support
vectors, even though two-dimensional data normally has three.

A tentative statement of our goal is:

• Given a training set (x1, y1), (x2, y2), . . . , (xn, yn), maximize γ (by varying
w and b) subject to the constraint that for all i = 1, 2, . . . , n,

yi(w.xi + b) ≥ γ

Notice that yi, which must be +1 or−1, determines which side of the hyperplane
the point xi must be on, so the ≥ relationship to γ is always correct. However, it
may be easier to express this condition as two cases: if y = +1, then w.x+b ≥ γ,
and if y = −1, then w.x+ b ≤ −γ.

Unfortunately, this formulation doesn’t really work properly. The problem
is that by increasing w and b, we can always allow a larger value of γ. For
example, suppose that w and b satisfy the constraint above. If we replace w

by 2w and b by 2b, we observe that for all i, yi
(

(2w).xi + 2b
)

≥ 2γ. Thus, 2w
and 2b is always a better choice that w and b, so there is no best choice and no
maximum γ.

12.3.2 Normalizing the Hyperplane

The solution to the problem that we described intuitively above is to normalize
the weight vector w. That is, the unit of measure perpendicular to the sepa-
rating hyperplane is the unit vector w/‖w‖. Recall that ‖w‖ is the Frobenius
norm, or the square root of the sum of the squares of the components of w. We
shall require that w be such that the parallel hyperplanes that just touch the
support vectors are described by the equations w.x+b = +1 and w.x+b = −1,
as suggested by Fig. 12.15.

Our goal becomes to maximize γ, which is now the multiple of the unit
vector w/‖w‖ between the separating hyperplane and the parallel hyperplanes
through the support vectors. Consider one of the support vectors, say x2 shown
in Fig. 12.15. Let x1 be the projection of x2 onto the far hyperplane, also as
suggested by Fig. 12.15. Note that x1 need not be a support vector or even a
point of the training set. The distance from x2 to x1 in units of w/‖w‖ is 2γ.
That is,
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w.x + b = +1
γ

γ
w.x + b = 0

w.x

+ b = 0

+ b = −1

w ||/ || w

1

2
x

x

Figure 12.15: Normalizing the weight vector for an SVM

x1 = x2 + 2γ
w

‖w‖ (12.1)

Since x1 is on the hyperplane defined by w.x + b = +1, we know that
w.x1 + b = 1. If we substitute for x1 using Equation 12.1, we get

w.
(

x2 + 2γ
w

‖w‖
)

+ b = 1

Regrouping terms, we see

w.x2 + b+ 2γ
w.w

‖w‖ = 1 (12.2)

But the first two terms of Equation 12.2, w.x2 + b, sum to −1, since we know
that x2 is on the hyperplane w.x + b = −1. If we move this −1 from left to
right in Equation 12.2 and then divide through by 2, we conclude that

γ
w.w

‖w‖ = 1 (12.3)

Notice also that w.w is the sum of the squares of the components of w.
That is, w.w = ‖w‖2. We conclude from Equation 12.3 that γ = 1/‖w‖.

This equivalence gives us a way to reformulate the optimization problem
originally stated in Section 12.3.1. Instead of maximizing γ, we want to mini-
mize ‖w‖, which is the inverse of γ if we insist on normalizing the scale of w.
That is:

• Given a training set (x1, y1), (x2, y2), . . . , (xn, yn), minimize ‖w‖ (by vary-
ing w and b) subject to the constraint that for all i = 1, 2, . . . , n,

yi(w.xi + b) ≥ 1
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Example 12.8 : Let us consider the four points of Fig. 11.1, supposing that
they alternate as positive and negative examples. That is, the training set
consists of

([1, 2],+1) ([2, 1],−1)
([3, 4],+1) ([4, 3],−1)

Let w = [u, v]. Our goal is to minimize
√
u2 + v2 subject to the constraints

we derive from the four training examples. For the first, where x1 = [1, 2] and
y1 = +1, the constraint is (+1)(u + 2v + b) = u + 2v + b ≥ 1. For the second,
where x2 = [2, 1] and y2 = −1, the constraint is (−1)(2u + v + b) ≥ 1, or
2u + v + b ≤ −1. The last two points are analogously handled, and the four
constraints we derive are:

u+ 2v + b ≥ 1 2u+ v + b ≤ −1
3u+ 4v + b ≥ 1 4u+ 3v + b ≤ −1

We shall cover in detail the subject of how one optimizes with constraints;
the subject is broad and many packages are available for you to use. Sec-
tion 12.3.4 discusses one method – gradient descent – in connection with a
more general application of SVM, where there is no separating hyperplane. An
illustration of how this method works will appear in Example 12.9.

In this simple example, the solution is easy to see: b = 0 and w = [u, v] =
[−1,+1]. It happens that all four constraints are satisfied exactly; i.e., each
of the four points is a support vector. That case is unusual, since when the
data is two-dimensional, we expect only three support vectors. However, the
fact that the positive and negative examples lie on parallel lines allows all four
constraints to be satisfied exactly. ✷

12.3.3 Finding Optimal Approximate Separators

We shall now consider finding an optimal hyperplane in the more general case,
where no matter which hyperplane we chose, there will be some points on the
wrong side, and perhaps some points that are on the correct side, but too close
to the separating hyperplane itself, so the margin requirement is not met. A
typical situation is shown in Fig. 12.16. We see two points that are misclassified;
they are on the wrong side of the separating hyperplane w.x+ b = 0. We also
see two points that, while they are classified correctly, are too close to the
separating hyperplane. We shall call all these points bad points.

Each bad point incurs a penalty when we evaluate a possible hyperplane.
The amount of the penalty, in units to be determined as part of the optimization
process, is shown by the arrow leading to the bad point from the hyperplane
on the wrong side of which the bad point lies. That is, the arrows measure the
distance from the hyperplane w.x + b = 1 or w.x + b = −1. The former is
the baseline for training examples that are supposed to be above the separating
hyperplane (because the label y is +1), and the latter is the baseline for points
that are supposed to be below (because y = −1).
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w.x + b = −1

w.x + b = +1

w.x + b = 0

Misclassified

Too close
to boundary

Figure 12.16: Points that are misclassified or are too close to the separating
hyperplane incur a penalty; the amount of the penalty is proportional to the
length of the arrow leading to that point

We have many options regarding the exact formula that we wish to mini-
mize. Intuitively, we want ‖w‖ to be as small as possible, as we discussed in
Section 12.3.2. But we also want the penalties associated with the bad points
to be as small as possible. The most common form of a tradeoff is expressed
by a formula that involves the term ‖w‖2/2 and another term that involves a
constant times the sum of the penalties.

To see why minimizing the term ‖w‖2/2 makes sense, note that minimizing
‖w‖ is the same as minimizing any monotone function of ‖w‖, so it is at least an
option to choose a formula in which we try to minimize ‖w‖2/2. It turns out to
be desirable because its derivative with respect to any component of w is that
component. That is, if w = [w1, w2, . . . , wd], then ‖w‖2/2 is 1

2

∑n
i=1 w

2
i , so its

partial derivative ∂/∂wi is wi. This situation makes sense because, as we shall
see, the derivative of the penalty term with respect to wi is a constant times each
xi, the corresponding component of each feature vector whose training example
incurs a penalty. That in turn means that the vector w and the vectors of the
training set are commensurate in the units of their components.

Thus, we shall consider how to minimize the particular function

f(w, b) =
1

2

d
∑

j=1

w2
i + C

n
∑

i=1

max
{

0, 1− yi
(

d
∑

j=1

wjxij + b
)

}

(12.4)

The first term encourages small w, while the second term, involving the con-
stant C that must be chosen properly, represents the penalty for bad points
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in a manner to be explained below. We assume there are n training exam-
ples (xi, yi) for i = 1, 2, . . . , n, and xi = [xi1, xi2, . . . , xid]. Also, as before,

w = [w1, w2, . . . , wd]. Note that the two summations
∑d

j=1 express the dot
product of vectors.

The constant C, called the regularization parameter, reflects how important
misclassification is. Pick a large C if you really do not want to misclassify
points, but you would accept a narrow margin. Pick a small C if you are OK
with some misclassified points, but want most of the points to be far away from
the boundary (i.e., the margin is large).

We must explain the penalty function (second term) in Equation 12.4. The
summation over i has one term

L(xi, yi) = max
{

0, 1− yi
(

d
∑

j=1

wjxij + b
)

}

for each training example xi. The quantity L is a hinge function, suggested in
Fig. 12.17, and we call its value the hinge loss. Let zi = yi(

∑d
j=1 wjxij + b).

When zi is 1 or more, the value of L is 0. But for smaller values of zi, L rises
linearly as zi decreases.

−2 −1 0 1 2 3
0

1

2

max{0, 1−z }

z = y
i

w .
i

x( + b )

Figure 12.17: The hinge function decreases linearly for z ≤ 1 and then remains
0

Since we shall have need to take the derivative with respect to each wj of
L(xi, yi), note that the derivative of the hinge function is discontinuous. It is
−yixij for zi < 1 and 0 for zi > 1. That is, if yi = +1 (i.e., the ith training
example is positive), then

∂L

∂wj
= if

d
∑

j=1

wjxij + b ≥ 1 then 0 else − xij
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Moreover, if yi = −1 (i.e., the ith training example is negative), then

∂L

∂wj
= if

d
∑

j=1

wjxij + b ≤ −1 then 0 else xij

The two cases can be summarized as one, if we include the value of yi, as:

∂L

∂wj
= if yi(

d
∑

j=1

wjxij + b) ≥ 1 then 0 else − yixij (12.5)

12.3.4 SVM Solutions by Gradient Descent

A common approach to solving Equation 12.4 is to use quadratic programming.
For large-scale data, another approach, gradient descent has an advantage. We
can allow the data to reside on disk, rather than keeping it all in memory, which
is normally required for quadratic solvers. To implement gradient descent, we
compute the derivative of the equation with respect to b and each component
wj of the vector w. Since we want to minimize f(w, b), we move b and the
components wj in the direction opposite to the direction of the gradient. The
amount we move each component is proportional to the derivative with respect
to that component.

Our first step is to use the trick of Section 12.2.4 to make b part of the
weight vector w. Notice that b is really the negative of a threshold on the dot
product w.x, so we can append a (d + 1)st component b to w and append an
extra component with value +1 to every feature vector in the training set (not
−1 as we did in Section 12.2.4).

We must choose a constant η to be the fraction of the gradient that we move
w in each round. That is, we assign

wj := wj − η
∂f

∂wj

for all j = 1, 2, . . . , d+ 1.
The derivative ∂f

∂wj
of the first term in Equation 12.4, 1

2

∑d
j=1 w

2
i , is easy;

it is wj . However, the second term involves the hinge function, so it is harder
to express. We shall use an if-then expression to describe these derivatives, as
in Equation 12.5. That is:

∂f

∂wj
= wj + C

n
∑

i=1

(

if yi(
d

∑

j=1

wjxij + b) ≥ 1 then 0 else − yixij

)

(12.6)

Note that this formula gives us a partial derivative with respect to each compo-
nent of w, including wd+1, which is b, as well as to the weights w1, w2, . . . , wd.
We continue to use b instead of the equivalent wd+1 in the if-then condition to
remind us of the form in which the desired hyperplane is described.

To execute the gradient-descent algorithm on a training set, we pick:
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1. Values for the parameters C and η.

2. Initial values for w, including the (d+ 1)st component b.

Then, we repeatedly:

(a) Compute the partial derivatives of f(w, b) with respect to the wj ’s.

(b) Adjust the values of w by subtracting η ∂f
∂wj

from each wj .

Example 12.9 : Figure 12.18 shows six points, three positive and three nega-
tive. We expect that the best separating line will be horizontal, and the only
question is whether or not the separating hyperplane and the scale of w allows
the point (2, 2) to be misclassified or to lie too close to the boundary. Initially,
we shall choose w = [0, 1], a vertical vector with a scale of 1, and we shall
choose b = −2. As a result, we see in Fig. 12.18 that the point (2, 2) lies on the
initial hyperplane and the three negative points are right at the margin. The
parameter values we shall choose for gradient descent are C = 0.1, and η = 0.2.

w

hyperplane

Margin

Margin

Initial

(1,4)

(2,2)

(1,1) (2,1) (3,1)

(3,4)

Figure 12.18: Six points for a gradient-descent example

We begin by incorporating b as the third component of w, and for notational
convenience, we shall use u and v as the first two components, rather than the
customary w1 and w2. That is, we take w = [u, v, b]. We also expand the two-
dimensional points of the training set with a third component that is always 1.
That is, the training set becomes

([1, 4, 1],+1) ([2, 2, 1],+1) ([3, 4, 1],+1)
([1, 1, 1],−1) ([2, 1, 1],−1) ([3, 1, 1],−1)

In Fig. 12.19 we tabulate the if-then conditions and the resulting contri-
butions to the summations over i in Equation 12.6. The summation must be



12.3. SUPPORT-VECTOR MACHINES 469

for u for v for b
if u+ 4v + b ≥ +1 then 0 else −1 −4 −1
if 2u+ 2v + b ≥ +1 then 0 else −2 −2 −1
if 3u+ 4v + b ≥ +1 then 0 else −3 −4 −1
if u+ v + b ≤ −1 then 0 else +1 +1 +1
if 2u+ v + b ≤ −1 then 0 else +2 +1 +1
if 3u+ v + b ≤ −1 then 0 else +3 +1 +1

Figure 12.19: Sum each of these terms and multiply by C to get the contribution
of bad points to the derivatives of f with respect to u, v, and b

multiplied by C and added to u, v, or b, as appropriate, to implement Equa-
tion 12.6.

The truth or falsehood of each of the six conditions in Fig. 12.19 determines
the contribution of the terms in the summations over i in Equation 12.6. We
shall represent the status of each condition by a sequence of x’s and o’s, with x
representing a condition that does not hold and o representing one that does.
The first few iterations of gradient descent are shown in Fig. 12.20.

w = [u, v] b Bad ∂/∂u ∂/∂v ∂/∂b
(1) [0.000, 1.000] −2.000 oxoooo −0.200 0.800 −2.100
(2) [0.040, 0.840] −1.580 oxoxxx 0.440 0.940 −1.380
(3) [−0.048, 0.652] −1.304 oxoxxx 0.352 0.752 −1.104
(4) [−0.118, 0.502] −1.083 xxxxxx −0.118 −0.198 −1.083
(5) [−0.094, 0.542] −0.866 oxoxxx 0.306 0.642 −0.666
(6) [−0.155, 0.414] −0.733 xxxxxx

Figure 12.20: Beginning of the process of gradient descent

Consider line (1). It shows the initial value of w = [0, 1]. Recall that we use
u and v for the components of w, so u = 0 and v = 1. We also see the initial
value of b = −2. We must use these values of u and v to evaluate the conditions
in Fig. 12.19. The first of the conditions in Fig. 12.19 is u+ 4v + b ≥ +1. The
left side is 0 + 4 + (−2) = 2, so the condition is satisfied. However, the second
condition, 2u + 2v + b ≥ +1 fails. The left side is 0 + 2 + (−2) = 0. The fact
that the sum is 0 means the second point (2, 2) is exactly on the separating
hyperplane, and not outside the margin. The third condition is satisfied, since
0 + 4+ (−2) = 2 ≥ +1. The last three conditions are also satisfied, and in fact
are satisfied exactly. For instance, the fourth condition is u+ v + b ≤ −1. The
left side is 0+1+(−2) = −1. Thus, the pattern oxoooo represents the outcome
of these six conditions, as we see in the first line of Fig. 12.20.

We use these conditions to compute the partial derivatives. For ∂f/∂u, we
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use u in place of wj in Equation 12.6. This expression thus becomes

u+ C
(

0 + (−2) + 0 + 0 + 0 + 0
)

= 0 +
1

10
(−2) = −0.2

The sum multiplying C can be explained this way. For each of the six conditions
of Fig. 12.19, take 0 if the condition is satisfied, and take the value in the
column labeled “for u” if it is not satisfied. Similarly, for v in place of wj we
get ∂f/∂v = 1 + 1

10

(

0 + (−2) + 0 + 0 + 0 + 0
)

= 0.8. Finally, for b we get

∂f/∂b = −2 + 1
10

(

0 + (−1) + 0 + 0 + 0 + 0
)

= −2.1.
We can now compute the new w and b that appear on line (2) of Fig. 12.20.

Since we chose η = 1/5, the new value of u is 0 − 1
5 (−0.2) = −0.04, the new

value of v is 1− 1
5 (0.8) = 0.84, and the new value of b is −2− 1

5 (−2.1) = −1.58.
To compute the derivatives shown in line (2) of Fig. 12.20 we must first check

the conditions of Fig. 12.19. While the outcomes of the first three conditions
have not changed, the last three are no longer satisfied. For example, the
fourth condition is u+ v + b ≤ −1, but 0.04 + 0.84 + (−1.58) = −0.7, which is
not less than −1. Thus, the pattern of bad points becomes oxoxxx. We now
have more nonzero terms in the expressions for the derivatives. For example
∂f/∂u = 0.04 + 1

10

(

0 + (−2) + 0 + 1 + 2 + 3
)

= 0.44.
The values of w and b in line (3) are computed from the derivatives of

line (2) in the same way as they were computed in line (2). The new values
do not change the pattern of bad points; it is still oxoxxx. However, when we
repeat the process for line (4), we find that all six conditions are unsatisfied.
For instance, the first condition, u + 4v + b ≥ +1 is not satisfied, because
(−0.118 + 4 × 0.502 + (−1.083) = 0.807, which is less than 1. In effect, the
first point has become too close to the separating hyperplane, even though it is
properly classified.

We can see that in line (5) of Fig. 12.20, the problems with the first and
third points are corrected, and we go back to pattern oxoxxx of bad points.
However, at line (6), the points have again become too close to the separating
hyperplane, so we revert to the xxxxxx pattern of bad points. You are invited
to continue the sequence of updates to w and b for several more iterations.

One might wonder why the gradient-descent process seems to be converging
on a solution where at least some of the points are inside the margin, when
there is an obvious hyperplane (horizontal, at height 1.5) with a margin of 1/2,
that separates the positive and negative points. The reason is that when we
picked C = 0.1 we were saying that we really don’t care too much whether
there are points inside the margins, or even if points are misclassified. We were
saying also that what was important was a large margin (which corresponds to
a small ‖w‖), even if some points violated that same margin. ✷

12.3.5 Stochastic Gradient Descent

The gradient-descent algorithm described in Section 12.3.4 is often called batch

gradient descent, because at each round, all the training examples are consid-
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ered as a “batch.” While it is effective on small datasets, it can be too time-
consuming to execute on a large dataset, where we must visit every training
example, often many times before convergence.

An alternative, called stochastic gradient descent, considers one training ex-
ample, or a few training examples at a time and adjusts the current estimate of
the error function (w in the SVM example) in the direction indicated by only
the small set of training examples considered. Additional rounds are possible,
using other sets of training examples; these can be selected randomly or accord-
ing to some fixed strategy. Note that it is normal that some members of the
training set are never used in a stochastic gradient descent algorithm.

Example 12.10 : Recall the UV-decomposition algorithm discussed in Sec-
tion 9.4.3. This algorithm was described as an example of batch gradient de-
scent. We can regard each of the nonblank entries in the matrix M we are
trying to approximate by the product UV as a training example, and the error
function is the root-mean-square error between the product of the current ma-
trices U and V and the matrix M , considering only those elements where M is
nonblank.

However, if M has a very large number of nonblank entries, as would be the
case if M represented, say, purchases of items by Amazon customers or movies
that Netflix customers had rated, then it is not practical to make repeated
passes over the entire set of nonblank entries of M when adjusting the entries
in U and V . A stochastic gradient descent would look at a single nonblank
entry of M and compute the change to each element of U and V that would
make the product UV agree with that element of M . We would not make that
change to the elements of U and V completely, but rather choose some learning
rate η less than 1 and change each element of U and V by the fraction η of the
amount that would be necessary to make UV equal M in the chosen entry. ✷

12.3.6 Parallel Implementation of SVM

One approach to parallelism for SVM is analogous to what we suggested for
perceptrons in Section 12.2.8. You can start with the current w and b, and
in parallel do several iterations based on each training example. Then average
the changes for each of the examples to create a new w and b. If we distribute
w and b to each mapper, then the Map tasks can do as many iterations as we
wish to do in one round, and we need use the Reduce tasks only to average the
results. One iteration of MapReduce is needed for each round.

A second approach is to follow the prescription given here, but implement
the computation of the second term in Equation 12.4 in parallel. The contribu-
tion from each training example can then be summed. This approach requires
one round of MapReduce for each iteration of gradient descent.
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12.3.7 Exercises for Section 12.3

Exercise 12.3.1 : Continue the iterations of Fig. 12.20 for three more itera-
tions.

Exercise 12.3.2 : The following training set obeys the rule that the positive
examples all have vectors whose components sum to 10 or more, while the sum
is less than 10 for the negative examples.

([3, 4, 5],+1) ([2, 7, 2],+1) ([5, 5, 5],+1)
([1, 2, 3],−1) ([3, 3, 2],−1) ([2, 4, 1],−1)

(a) Which of these six vectors are the support vectors?

! (b) Suggest a vector w and constant b such that the hyperplane defined by
w.x + b = 0 is a good separator for the positive and negative examples.
Make sure that the scale ofw is such that all points are outside the margin;
that is, for each training example (x, y), you have y(w.x + b) ≥ +1.

! (c) Starting with your answer to part (b), use gradient descent to find the
optimum w and b. Note that if you start with a separating hyperplane,
and you scale w properly, then the second term of Equation 12.4 will
always be 0, which simplifies your work considerably.

! Exercise 12.3.3 : The following training set obeys the rule that the positive
examples all have vectors whose components have an odd sum, while the sum
is even for the negative examples.

([1, 2],+1) ([3, 4],+1) ([5, 2],+1)
([2, 4],−1) ([3, 1],−1) ([7, 3],−1)

(a) Suggest a starting vector w and constant b that classifies at least three of
the points correctly.

!! (b) Starting with your answer to (a), use gradient descent to find the optimum
w and b.

12.4 Learning from Nearest Neighbors

In this section we consider several examples of “learning,” where the entire
training set is stored, perhaps, preprocessed in some useful way, and then used
to classify future examples or to compute the value of the label that is most
likely associated with the example. The feature vector of each training example
is treated as a data point in some space. When a new point arrives and must
be classified, we find the training example or examples that are closest to the
new point, according to the distance measure for that space. The estimated
label is then computed by combining the closest examples in some way.
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12.4.1 The Framework for Nearest-Neighbor Calculations

The training set is first preprocessed and stored. The decisions take place when
a new example, called the query example arrives and must be classified.

There are several decisions we must make in order to design a nearest-
neighbor-based algorithm that will classify query examples. We enumerate
them here.

1. What distance measure do we use?

2. How many of the nearest neighbors do we look at?

3. How do we weight the nearest neighbors? Normally, we provide a function
(the kernel function) of the distance between the query example and its
nearest neighbors in the training set, and use this function to weight the
neighbors.

4. How do we define the label to associate with the query? This label is some
function of the labels of the nearest neighbors, perhaps weighted by the
kernel function, or perhaps not. If there is no weighting, then the kernel
function need not be specified.

12.4.2 Learning with One Nearest Neighbor

The simplest cases of nearest-neighbor learning are when we choose only the
one neighbor that is nearest the query example. In that case, there is no use
for weighting the neighbors, so the kernel function is omitted. There is also
typically only one possible choice for the labeling function: take the label of the
query to be the same as the label of the nearest neighbor.

Example 12.11 : Figure 12.21 shows some of the examples of dogs that last
appeared in Fig. 12.1. We have dropped most of the examples for simplicity,
leaving only three Chihuahuas, two Dachshunds, and two Beagles. Since the
height-weight vectors describing the dogs are two-dimensional, there is a simple
and efficient way to construct a Voronoi diagram for the points, in which the
perpendicular bisectors of the lines between each pair of points is constructed.
Each point gets a region around it, containing all the points to which it is
the nearest. These regions are always convex, although they may be open to
infinity in one direction.2 It is also a surprising fact that, even though there are
O(n2) perpendicular bisectors for n points, the Voronoi diagram can be found
in O(n log n) time.

In Fig. 12.21 we see the Voronoi diagram for the seven points. The bound-
aries that separate dogs of different breeds are shown solid, while the boundaries

2While the region belonging to any one point is convex, the union of the regions for two or

more points might not be convex. Thus, in Fig. 12.21 we see that the region for all Dachshunds

and the region for all Beagles are not convex. That is, there are points p1 and p2 that are

both classified Dachshunds, but the midpoint of the line between p1 and p2 is classified as a

Beagle, and vice versa.
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Beagles

Dachshunds

Chihuahuas

Figure 12.21: Voronoi diagram for the three breeds of dogs

between dogs of the same breed are shown dashed. Suppose a query example
q is provided. Note that q is a point in the space of Fig. 12.21. We find the
region into which q falls, and give q the label of the training example to which
that region belongs. Note that it is not too hard to find the region of q. We
have to determine to which side of certain lines q falls. This process is the same
as we used in Sections 12.2 and 12.3 to compare a vector x with a hyperplane
perpendicular to a vector w. In fact, if the lines that actually form parts of the
Voronoi diagram are preprocessed properly, we can make the determination in
O(log n) comparisons; it is not necessary to compare q with all of the O(n log n)
lines that form part of the diagram. ✷

12.4.3 Learning One-Dimensional Functions

Another simple and useful case of nearest-neighbor learning has one-dimensional
data. In this situation, the training examples are of the form ([x], y), and we
shall write them as (x, y), identifying a one-dimensional vector with its lone
component. In effect, the training set is a collection of samples of the value
of a function y = f(x) for certain values of x, and we must interpolate the
function f at all points. There are many rules that could be used, and we shall
only outline some of the popular approaches. As discussed in Section 12.4.1,
the approaches vary in the number of neighbors they use, whether or not the
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neighbors are weighted, and if so, how the weight varies with distance.
Suppose we use a method with k nearest neighbors, and x is the query point.

Let x1, x2, . . . , xk be the k nearest neighbors of x, and let the weight associated
with training point (xi, yi) be wi. Then the estimate of the label y for x is
∑k

i=1 wiyi/
∑k

i=1 wi. Note that this expression gives the weighted average of
the labels of the k nearest neighbors.

Example 12.12 : We shall illustrate four simple rules, using the training set
(1, 1), (2, 2), (3, 4), (4, 8), (5, 4), (6, 2), and (7, 1). These points represent a
function that has a peak at x = 4 and decays exponentially on both sides.
Note that this training set has values of x that are evenly spaced. There is no
requirement that the points have any regular pattern. Some possible ways to
interpolate values are:

1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) One nearest neighbor (b) Average of two nearest neighbors

Figure 12.22: Results of applying the first two rules in Example 12.12

1. Nearest Neighbor. Use only the one nearest neighbor. There is no need
for a weighting. Just take the value of any f(x) to be the label y associ-
ated with the training-set point nearest to query point x. The result of
using this rule on the example training set described above is shown in
Fig. 12.22(a).

2. Average of the Two Nearest Neighbors. Choose 2 as the number of nearest
neighbors to use. The weights of these two are each 1/2, regardless of how
far they are from the query point x. The result of this rule on the example
training set is in Fig. 12.22(b).

3. Weighted Average of the Two Nearest Neighbors. We again choose two
nearest neighbors, but we weight them in inverse proportion to their dis-
tance from the query point. Suppose the two neighbors nearest to query
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point x are x1 and x2. Suppose first that x1 < x < x2. Then the weight
of x1, the inverse of its distance from x, is 1/(x− x1), and the weight of
x2 is 1/(x2 − x). The weighted average of the labels is

( y1
x− x1

+
y2

x2 − x

)

/
( 1

x− x1
+

1

x2 − x

)

which, when we multiply numerator and denominator by (x−x1)(x2−x),
simplifies to

y1(x2 − x) + y2(x − x1)

x2 − x1

This expression is the linear interpolation of the two nearest neighbors, as
shown in Fig. 12.23(a). When both nearest neighbors are on the same side
of the query x, the same weights make sense, and the resulting estimate is
an extrapolation. We see extrapolation in Fig. 12.23(a) in the range x = 0
to x = 1. In general, when points are unevenly spaced, we can find query
points in the interior where both neighbors are on one side.

4. Average of Three Nearest Neighbors. We can average any number of the
nearest neighbors to estimate the label of a query point. Figure 12.23(b)
shows what happens on our example training set when the three nearest
neighbors are used.

✷

1 2 3 4 5 6 7 1 2 3 4 5 6 7

(a) Weighted average of two neighbors (b) Average of three neighbors

Figure 12.23: Results of applying the last two rules in Example 12.12
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12.4.4 Kernel Regression

A way to construct a continuous function that represents the data of a training
set well is to consider all points in the training set, but weight the points using a
kernel function that decays with distance. A popular choice is to use a normal
distribution (or “bell curve”), so the weight of a training point x when the

query is q is e−(x−q)2/σ2

. Here σ is the standard deviation of the distribution
and the query q is the mean. Roughly, points within distance σ of q are heavily
weighted, and those further away have little weight. The advantage of using
a kernel function that is itself continuous and that is defined for all points in
the training set is to be sure that the resulting function learned from the data
is itself continuous (see Exercise 12.4.6 for a discussion of the problem when a
simpler weighting is used).

Example 12.13 : Let us use the seven training examples of Example 12.12.
To make calculation simpler, we shall not use the normal distribution as the
kernel function, but rather another continuous function of distance, namely
w = 1/(x− q)2. That is, weights decay as the square of the distance. Suppose
the query q is 3.5. The weights w1, w2, . . . w7 of the seven training examples
(xi, yi) = (i, 8/2|i−4|) for i = 1, 2, . . . , 7 are shown in Fig. 12.24.

(1) xi 1 2 3 4 5 6 7
(2) yi 1 2 4 8 4 2 1
(3) wi 4/25 4/9 4 4 4/9 4/25 4/49
(4) wiyi 4/25 8/9 16 32 16/9 8/25 4/49

Figure 12.24: Weights of points when the query is q = 3.5

Lines (1) and (2) of Fig. 12.24 give the seven training points. The weight
of each when the query is q = 3.5 is given in line (3). For instance, for x1 = 1,
the weight w1 = 1/(1− 3.5)2 = 1/(−2.5)2 = 4/25. Then, line (4) shows each yi
weighted by the weight from line (3). For instance, the column for x2 has value
8/9 because w2y2 = 2× (4/9).

To compute the label for the query q = 3.5 we sum the weighted values
of the labels in the training set, as given by line (4) of Fig. 12.24; this sum is
51.23. We then divide by the sum of the weights in line (3). This sum is 9.29,
so the ratio is 51.23/9.29 = 5.51. That estimate of the value of the label for
q = 3.5 seems intuitively reasonable, since q lies midway between two points
with labels 4 and 8. ✷

12.4.5 Dealing with High-Dimensional Euclidean Data

We saw in Section 12.4.2 that the two-dimensional case of Euclidean data is
fairly easy. There are several large-scale data structures that have been de-
veloped for finding near neighbors when the number of dimensions grows, and
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Problems in the Limit for Example 12.13

Suppose q is exactly equal to one of the training examples x. If we use
the normal distribution as the kernel function, there is no problem with
the weight of x; it is 1. However, with the kernel function discussed in
Example 12.13, the weight of x is 1/(x−q)2 = ∞. Fortunately, this weight
appears in both the numerator and denominator of the expression that
estimates the label of q. It can be shown that in the limit as q approaches
x, the label of x dominates all the other terms in both numerator and
denominator, so the estimated label of q is the same as the label of x.
That makes excellent sense, since q = x in the limit.

the training set is large. We shall not cover these structures here, because the
subject could fill a book by itself, and there are many places available to learn
about these techniques, collectively called multidimensional index structures.
The references for this chapter give some of these sources for information about
such structures as kd-Trees, R-Trees, and Quad Trees.

Unfortunately, for high-dimensional data, there is little that can be done to
avoid searching a large portion of the data. This fact is another manifestation
of the “curse of dimensionality” from Section 7.1.3. Two ways to deal with the
“curse” are the following:

1. VA Files. Since we must look at a large fraction of the data anyway in
order to find the nearest neighbors of a query point, we could avoid a
complex data structure altogether. Accept that we must scan the entire
file, but do so in a two-stage manner. First, a summary of the file is
created, using only a small number of bits that approximate the values of
each component of each training vector. For example, if we use only the
high-order (1/4)th of the bits in numerical components, then we can create
a file that is (1/4)th the size of the full dataset. However, by scanning
this file we can construct a list of candidates that might be among the k
nearest neighbors of the query q, and this list may be a small fraction of
the entire dataset. We then look up only these candidates in the complete
file, in order to determine which k are nearest to q.

2. Dimensionality Reduction. We may treat the vectors of the training set
as a matrix, where the rows are the vectors of the training example, and
the columns correspond to the components of these vectors. Apply one of
the dimensionality-reduction techniques of Chapter 11, to compress the
vectors to a small number of dimensions, small enough that the techniques
for multidimensional indexing can be used. Of course, when processing
a query vector q, the same transformation must be applied to q before
searching for q’s nearest neighbors.
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12.4.6 Dealing with Non-Euclidean Distances

To this point, we have assumed that the distance measure is Euclidean. How-
ever, most of the techniques can be adapted naturally to an arbitrary distance
function d. For instance, in Section 12.4.4 we talked about using a normal dis-
tribution as a kernel function. Since we were thinking about a one-dimensional
training set in a Euclidean space, we wrote the exponent as −(x−q)2. However,
for any distance function d, we can use as the weight of a point x at distance
d(x, q) from the query point q the value of

e−
(

d(x−q)
)

2

/σ2

Note that this expression makes sense if the data is in some high-dimensional
Euclidean space and d is the usual Euclidean distance or Manhattan distance or
any other distance discussed in Section 3.5.2. It also makes sense if d is Jaccard
distance or any other distance measure.

However, for Jaccard distance and the other distance measures we consid-
ered in Section 3.5 we also have the option to use locality-sensitive hashing,
the subject of Chapter 3. Recall these methods are only approximate, and they
could yield false negatives – training examples that were near neighbors to a
query but that do not show up in a search.

If we are willing to accept such errors occasionally, we can build the buckets
for the training set and keep them as the representation of the training set.
These buckets are designed so we can retrieve all (or almost all, since there can
be false negatives) training-set points that are have a minimum similarity to a
given query q. Equivalently, one of the buckets to which the query hashes will
contain all those points within some maximum distance of q. We hope that as
many nearest neighbors of q as our method requires will be found among those
buckets.

Yet if different queries have radically different distances to their nearest
neighbors, all is not lost. We can pick several distances d1 < d2 < d3 < · · · .
Build the buckets for locality-sensitive hashing using each of these distances.
For a query q, start with the buckets for distance d1. If we find enough near
neighbors, we are done. Otherwise, repeat the search using the buckets for d2,
and so on, until enough nearest neighbors are found.

12.4.7 Exercises for Section 12.4

Exercise 12.4.1 : Suppose we modified Example 12.11 to look at the two
nearest neighbors of a query point q. Classify q with the common label if those
two neighbors have the same label, and leave q unclassified if the labels of the
neighbors are different.

(a) Sketch the boundaries of the regions for the three dog breeds on Fig. 12.21.

! (b) Would the boundaries always consist of straight line segments for any
training data?
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Exercise 12.4.2 : Suppose we have the following training set

([1, 2],+1) ([2, 1],−1)
([3, 4],−1) ([4, 3],+1)

which is the training set used in Example 12.9. If we use nearest-neighbor
learning with the single nearest neighbor as the estimate of the label of a query
point, which query points are labeled +1?

Exercise 12.4.3 : Consider the one-dimensional training set

(1, 1), (2, 2), (4, 3), (8, 4), (16, 5), (32, 6)

Describe the function f(q), the label that is returned in response to the query
q, when the interpolation used is:

(a) The label of the nearest neighbor.

(b) The average of the labels of the two nearest neighbors.

! (c) The average, weighted by distance, of the two nearest neighbors.

(d) The (unweighted) average of the three nearest neighbors.

! Exercise 12.4.4 : Apply the kernel function of Example 12.13 to the data of
Exercise 12.4.3. For queries q in the range 2 < q < 4, what is the label of q?

Exercise 12.4.5 : What is the function that estimates the label of query points
using the data of Example 12.12 and the average of the four nearest neighbors?

!! Exercise 12.4.6 : Simple weighting functions such as those in Example 12.12
need not define a continuous function. We can see that the constructed functions
in Fig. 12.22 and Fig. 12.23(b) are not continuous, but Fig. 12.23(a) is. Does the
weighted average of two nearest neighbors always give a continuous function?

12.5 Comparison of Learning Methods

Each of the methods discussed in this chapter and elsewhere has its advantages.
In this closing section, we shall consider:

• Does the method deal with categorical features or only with numerical
features?

• Does the method deal effectively with high-dimensional feature vectors?

• Is the model that the method constructs intuitively understandable?
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Perceptrons and Support-Vector Machines: These methods can handle
millions of features, but they only make sense if the features are numerical.
They only are effective if there is a linear separator, or at least a hyperplane
that approximately separates the classes. However, we can separate points by
a nonlinear boundary if we first transform the points to make the separator
be linear. The model is expressed by a vector, the normal to the separating
hyperplane. Since this vector is often of very high dimension, it can be very
hard to interpret the model.

Nearest-Neighbor Classification and Regression: Here, the model is the
training set itself, so we expect it to be intuitively understandable. The ap-
proach can deal with multidimensional data, although the larger the number of
dimensions, the sparser the training set will be, and therefore the less likely it
is that we shall find a training point very close to the point we need to classify.
That is, the “curse of dimensionality” makes nearest-neighbor methods ques-
tionable in high dimensions. These methods are really only useful for numerical
features, although one could allow categorical features with a small number of
values. For instance, a binary categorical feature like {male, female} could
have the values replaced by 0 and 1, so there was no distance in this dimension
between individuals of the same gender and distance 1 between other pairs of
individuals. However, three or more values cannot be assigned numbers that are
equidistant. Finally, nearest-neighbor methods have many parameters to set,
including the distance measure we use (e.g., cosine or Euclidean), the number of
neighbors to choose, and the kernel function to use. Different choices result in
different classification, and in many cases it is not obvious which choices yield
the best results.

Decision Trees: We have not discussed this commonly used method in this
chapter, although it was introduced briefly in Section 9.2.7. Unlike the methods
of this chapter, decision trees are useful for both categorical and numerical
features. The models produced are generally quite understandable, since each
decision is represented by one node of the tree. However, this approach is only
useful for low-dimension feature vectors. The reason is that building decision
trees with many levels leads to overfitting, where below the top levels, the
decisions are based on peculiarities of small fractions of the training set, rather
than fundamental properties of the data. But if a decision tree has few levels,
then it cannot even mention more than a small number of features. As a result,
the best use of decision trees is often to create an ensemble of many, low-depth
trees and combine their decision in some way.

12.6 Summary of Chapter 12

✦ Training Sets : A training set consists of a feature vector, each component
of which is a feature, and a label indicating the class to which the object
represented by the feature vector belongs. Features can be categorical –
belonging to an enumerated list of values – or numerical.
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✦ Test Sets and Overfitting: When training some classifier on a training set,
it is useful to remove some of the training set and use the removed data
as a test set. After producing a model or classifier without using the test
set, we can run the classifier on the test set to see how well it does. If the
classifier does not perform as well on the test set as on the training set
used, then we have overfit the training set by conforming to peculiarities
of the training-set data which is not present in the data as a whole.

✦ Batch Versus On-Line Learning: In batch learning, the training set is
available at any time and can be used in repeated passes. On-line learning
uses a stream of training examples, each of which can be used only once.

✦ Perceptrons : This machine-learning method assumes the training set has
only two class labels, positive and negative. Perceptrons work when there
is a hyperplane that separates the feature vectors of the positive examples
from those of the negative examples. We converge to that hyperplane by
adjusting our estimate of the hyperplane by a fraction – the learning rate –
of the direction that is the average of the currently misclassified points.

✦ The Winnow Algorithm: This algorithm is a variant of the perceptron
algorithm that requires components of the feature vectors to be 0 or 1.
Training examples are examined in a round-robin fashion, and if the cur-
rent classification of a training example is incorrect, the components of
the estimated separator where the feature vector has 1 are adjusted up or
down, in the direction that will make it more likely this training example
is correctly classified in the next round.

✦ Nonlinear Separators : When the training points do not have a linear func-
tion that separates two classes, it may still be possible to use a perceptron
to classify them. We must find a function we can use to transform the
points so that in the transformed space, the separator is a hyperplane.

✦ Support-Vector Machines : The SVM improves upon perceptrons by find-
ing a separating hyperplane that not only separates the positive and nega-
tive points, but does so in a way that maximizes the margin – the distance
perpendicular to the hyperplane to the nearest points. The points that
lie exactly at this minimum distance are the support vectors. Alterna-
tively, the SVM can be designed to allow points that are too close to the
hyperplane, or even on the wrong side of the hyperplane, but minimize
the error due to such misplaced points.

✦ Solving the SVM Equations : We can set up a function of the vector that
is normal to the hyperplane, the length of the vector (which determines
the margin), and the penalty for points on the wrong side of the margins.
The regularization parameter determines the relative importance of a wide
margin and a small penalty. The equations can be solved by several
methods, including gradient descent and quadratic programming.
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✦ Nearest-Neighbor Learning: In this approach to machine learning, the
entire training set is used as the model. For each (“query”) point to be
classified, we search for its k nearest neighbors in the training set. The
classification of the query point is some function of the labels of these k
neighbors. The simplest case is when k = 1, in which case we can take
the label of the query point to be the label of the nearest neighbor.

✦ Regression: A common case of nearest-neighbor learning, called regres-
sion, occurs when the there is only one feature vector, and it, as well as
the label, are real numbers; i.e., the data defines a real-valued function of
one variable. To estimate the label, i.e., the value of the function, for an
unlabeled data point, we can perform some computation involving the k
nearest neighbors. Examples include averaging the neighbors or taking a
weighted average, where the weight of a neighbor is some decreasing func-
tion of its distance from the point whose label we are trying to determine.
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