
240



Chapter 7

Clustering

Clustering is the process of examining a collection of “points,” and grouping
the points into “clusters” according to some distance measure. The goal is that
points in the same cluster have a small distance from one another, while points
in different clusters are at a large distance from one another. A suggestion
of what clusters might look like was seen in Fig. 1.1Summarizationfigure.1.1.
However, there the intent was that there were three clusters around three differ-
ent road intersections, but two of the clusters blended into one another because
they were not sufficiently separated.

Our goal in this chapter is to offer methods for discovering clusters in data.
We are particularly interested in situations where the data is very large, and/or
where the space either is high-dimensional, or the space is not Euclidean at
all. We shall therefore discuss several algorithms that assume the data does
not fit in main memory. However, we begin with the basics: the two general
approaches to clustering and the methods for dealing with clusters in a non-
Euclidean space.

7.1 Introduction to Clustering Techniques

We begin by reviewing the notions of distance measures and spaces. The two
major approaches to clustering – hierarchical and point-assignment – are de-
fined. We then turn to a discussion of the “curse of dimensionality,” which
makes clustering in high-dimensional spaces difficult, but also, as we shall see,
enables some simplifications if used correctly in a clustering algorithm.

7.1.1 Points, Spaces, and Distances

A dataset suitable for clustering is a collection of points, which are objects
belonging to some space. In its most general sense, a space is just a universal
set of points, from which the points in the dataset are drawn. However, we
should be mindful of the common case of a Euclidean space (see Section 3.5.2),

241



242 CHAPTER 7. CLUSTERING

which has a number of important properties useful for clustering. In particular,
a Euclidean space’s points are vectors of real numbers. The length of the vector
is the number of dimensions of the space. The components of the vector are
commonly called coordinates of the represented points.

All spaces for which we can perform a clustering have a distance measure,
giving a distance between any two points in the space. We introduced distances
in Section 3.5. The common Euclidean distance (square root of the sums of the
squares of the differences between the coordinates of the points in each dimen-
sion) serves for all Euclidean spaces, although we also mentioned some other
options for distance measures in Euclidean spaces, including the Manhattan
distance (sum of the magnitudes of the differences in each dimension) and the
L∞-distance (maximum magnitude of the difference in any dimension).

Beagles

Weight

Height

Chihuahuas

Dachshunds

Figure 7.1: Heights and weights of dogs taken from three varieties

Example 7.1 : Classical applications of clustering often involve low-dimen-
sional Euclidean spaces. For example, Fig. 7.1 shows height and weight mea-
surements of dogs of several varieties. Without knowing which dog is of which
variety, we can see just by looking at the diagram that the dogs fall into three
clusters, and those clusters happen to correspond to three varieties. With small
amounts of data, any clustering algorithm will establish the correct clusters, and
simply plotting the points and “eyeballing” the plot will suffice as well. 2

However, modern clustering problems are not so simple. They may involve
Euclidean spaces of very high dimension or spaces that are not Euclidean at
all. For example, it is challenging to cluster documents by their topic, based on
the occurrence of common, unusual words in the documents. It is challenging
to cluster moviegoers by the type or types of movies they like.

We also considered in Section 3.5 distance measures for non-Euclidean spa-
ces. These include the Jaccard distance, cosine distance, Hamming distance,
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and edit distance. Recall that the requirements for a function on pairs of points
to be a distance measure are that

1. Distances are always nonnegative, and only the distance between a point
and itself is 0.

2. Distance is symmetric; it doesn’t matter in which order you consider the
points when computing their distance.

3. Distance measures obey the triangle inequality; the distance from x to y
to z is never less than the distance going from x to z directly.

7.1.2 Clustering Strategies

We can divide (cluster!) clustering algorithms into two groups that follow two
fundamentally different strategies.

1. Hierarchical or agglomerative algorithms start with each point in its own
cluster. Clusters are combined based on their “closeness,” using one of
many possible definitions of “close.” Combination stops when further
combination leads to clusters that are undesirable for one of several rea-
sons. For example, we may stop when we have a predetermined number of
clusters, or we may use a measure of compactness for clusters, and refuse
to construct a cluster by combining two smaller clusters if the resulting
cluster has points that are spread out over too large a region.

2. The other class of algorithms involve point assignment. Points are con-
sidered in some order, and each one is assigned to the cluster into which
it best fits. This process is normally preceded by a short phase in which
initial clusters are estimated. Variations allow occasional combining or
splitting of clusters, or may allow points to be unassigned if they are
outliers (points too far from any of the current clusters).

Algorithms for clustering can also be distinguished by:

(a) Whether the algorithm assumes a Euclidean space, or whether the al-
gorithm works for an arbitrary distance measure. We shall see that a
key distinction is that in a Euclidean space it is possible to summarize
a collection of points by their centroid – the average of the points. In a
non-Euclidean space, there is no notion of a centroid, and we are forced
to develop another way to summarize clusters.

(b) Whether the algorithm assumes that the data is small enough to fit in
main memory, or whether data must reside in secondary memory, pri-
marily. Algorithms for large amounts of data often must take shortcuts,
since it is infeasible to look at all pairs of points, for example. It is also
necessary to summarize clusters in main memory, since we cannot hold
all the points of all the clusters in main memory at the same time.
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7.1.3 The Curse of Dimensionality

High-dimensional Euclidean spaces have a number of unintuitive properties that
are sometimes referred to as the “curse of dimensionality.” Non-Euclidean
spaces usually share these anomalies as well. One manifestation of the “curse”
is that in high dimensions, almost all pairs of points are equally far away from
one another. Another manifestation is that almost any two vectors are almost
orthogonal. We shall explore each of these in turn.

The Distribution of Distances in a High-Dimensional Space

Let us consider a d-dimensional Euclidean space. Suppose we choose n random
points in the unit cube, i.e., points [x1, x2, . . . , xd], where each xi is in the range
0 to 1. If d = 1, we are placing random points on a line of length 1. We expect
that some pairs of points will be very close, e.g., consecutive points on the
line. We also expect that some points will be very far away – those at or near
opposite ends of the line. The average distance between a pair of points is 1/3.1

Suppose that d is very large. The Euclidean distance between two random
points [x1, x2, . . . , xd] and [y1, y2, . . . , yd] is

√

√

√

√

d
∑

i=1

(xi − yi)2

Here, each xi and yi is a random variable chosen uniformly in the range 0 to
1. Since d is large, we can expect that for some i, |xi − yi| will be close to 1.
That puts a lower bound of 1 on the distance between almost any two random
points. In fact, a more careful argument can put a stronger lower bound on
the distance between all but a vanishingly small fraction of the pairs of points.
However, the maximum distance between two points is

√
d, and one can argue

that all but a vanishingly small fraction of the pairs do not have a distance
close to this upper limit. In fact, almost all points will have a distance close to
the average distance.

If there are essentially no pairs of points that are close, it is hard to build
clusters at all. There is little justification for grouping one pair of points and
not another. Of course, the data may not be random, and there may be useful
clusters, even in very high-dimensional spaces. However, the argument about
random data suggests that it will be hard to find these clusters among so many
pairs that are all at approximately the same distance.

Angles Between Vectors

Suppose again that we have three random points A, B, and C in a d-dimensional
space, where d is large. Here, we do not assume points are in the unit cube;

1You can prove this fact by evaluating a double integral, but we shall not do the math

here, as it is not central to the discussion.
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they can be anywhere in the space. What is angle ABC? We may assume that
A is the point [x1, x2, . . . , xd] and C is the point [y1, y2, . . . , yd], while B is the
origin. Recall from Section 3.5.4 that the cosine of the angle ABC is the dot
product of A and C divided by the product of the lengths of the vectors A and
C. That is, the cosine is

∑d

i=1
xiyi

√

∑d

i=1
x2

i

√

∑d

i=1
y2

i

As d grows, the denominator grows linearly in d, but the numerator is a sum
of random values, which are as likely to be positive as negative. Thus, the
expected value of the numerator is 0, and as d grows, its standard deviation
grows only as

√
d. Thus, for large d, the cosine of the angle between any two

vectors is almost certain to be close to 0, which means the angle is close to 90
degrees.

An important consequence of random vectors being orthogonal is that if we
have three random points A, B, and C, and we know the distance from A to B
is d1, while the distance from B to C is d2, we can assume the distance from A
to C is approximately

√

d2

1
+ d2

2
. That rule does not hold, even approximately,

if the number of dimensions is small. As an extreme case, if d = 1, then the
distance from A to C would necessarily be d1 + d2 if A and C were on opposite
sides of B, or |d1 − d2| if they were on the same side.

7.1.4 Exercises for Section 7.1

! Exercise 7.1.1 : Prove that if you choose two points uniformly and indepen-
dently on a line of length 1, then the expected distance between the points is
1/3.

!! Exercise 7.1.2 : If you choose two points uniformly in the unit square, what
is their expected Euclidean distance?

! Exercise 7.1.3 : Suppose we have a d-dimensional Euclidean space. Consider
vectors whose components are only +1 or −1 in each dimension. Note that
each vector has length

√
d, so the product of their lengths (denominator in

the formula for the cosine of the angle between them) is d. If we chose each
component independently, and a component is as likely to be +1 as −1, what
is the distribution of the value of the numerator of the formula (i.e., the sum
of the products of the corresponding components from each vector)? What can
you say about the expected value of the cosine of the angle between the vectors,
as d grows large?

7.2 Hierarchical Clustering

We begin by considering hierarchical clustering in a Euclidean space. This
algorithm can only be used for relatively small datasets, but even so, there
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are some efficiencies we can make by careful implementation. When the space
is non-Euclidean, there are additional problems associated with hierarchical
clustering. We therefore consider “clustroids” and the way we can represent a
cluster when there is no centroid or average point in a cluster.

7.2.1 Hierarchical Clustering in a Euclidean Space

Any hierarchical clustering algorithm works as follows. We begin with every
point in its own cluster. As time goes on, larger clusters will be constructed by
combining two smaller clusters, and we have to decide in advance:

1. How will clusters be represented?

2. How will we choose which two clusters to merge?

3. When will we stop combining clusters?

Once we have answers to these questions, the algorithm can be described suc-
cinctly as:

WHILE it is not time to stop DO

pick the best two clusters to merge;

combine those two clusters into one cluster;

END;

To begin, we shall assume the space is Euclidean. That allows us to represent
a cluster by its centroid or average of the points in the cluster. Note that
in a cluster of one point, that point is the centroid, so we can initialize the
clusters straightforwardly. We can then use the merging rule that the distance
between any two clusters is the Euclidean distance between their centroids,
and we should pick the two clusters at the shortest distance. Other ways to
define intercluster distance are possible, and we can also pick the best pair of
clusters on a basis other than their distance. We shall discuss some options in
Section 7.2.3.

Example 7.2 : Let us see how the basic hierarchical clustering would work on
the data of Fig. 7.2. These points live in a 2-dimensional Euclidean space, and
each point is named by its (x, y) coordinates. Initially, each point is in a cluster
by itself and is the centroid of that cluster. Among all the pairs of points, there
are two pairs that are closest: (10,5) and (11,4) or (11,4) and (12,3). Each is
at distance

√
2. Let us break ties arbitrarily and decide to combine (11,4) with

(12,3). The result is shown in Fig. 7.3, including the centroid of the new cluster,
which is at (11.5, 3.5).

You might think that (10,5) gets combined with the new cluster next, since it
is so close to (11,4). But our distance rule requires us to compare only cluster
centroids, and the distance from (10,5) to the centroid of the new cluster is
1.5

√
2, which is slightly greater than 2. Thus, now the two closest clusters are



7.2. HIERARCHICAL CLUSTERING 247

(4,10) (7,10)

(9,3)

(11,4)

(12,6)

(5,2)(2,2)

(3,4)

(6,8)(4,8)

(10,5)

(12,3)

Figure 7.2: Twelve points to be clustered hierarchically

those of the points (4,8) and (4,10). We combine them into one cluster with
centroid (4,9).

At this point, the two closest centroids are (10,5) and (11.5, 3.5), so we
combine these two clusters. The result is a cluster of three points (10,5), (11,4),
and (12,3). The centroid of this cluster is (11,4), which happens to be one of
the points of the cluster, but that situation is coincidental. The state of the
clusters is shown in Fig. 7.4.

Now, there are several pairs of centroids that are at distance
√

5, and these
are the closest centroids. We show in Fig. 7.5 the result of picking three of
these:

1. (6,8) is combined with the cluster of two elements having centroid (4,9).

2. (2,2) is combined with (3,4).

3. (9,3) is combined with the cluster of three elements having centroid (11,4).

We can proceed to combine clusters further. We shall discuss alternative stop-
ping rules next. 2

There are several approaches we might use to stopping the clustering pro-
cess.

1. We could be told, or have a belief, about how many clusters there are in
the data. For example, if we are told that the data about dogs is taken
from Chihuahuas, Dachshunds, and Beagles, then we know to stop when
there are three clusters left.

2. We could stop combining when at some point the best combination of
existing clusters produces a cluster that is inadequate. We shall discuss
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(4,10) (7,10)

(9,3)

(11,4)

(12,6)

(5,2)(2,2)

(3,4)

(6,8)(4,8)

(10,5)

(12,3)

(11.5,3.5)

Figure 7.3: Combining the first two points into a cluster

various tests for the adequacy of a cluster in Section 7.2.3, but for an
example, we could insist that any cluster have an average distance between
the centroid and its points no greater than some limit. This approach is
only sensible if we have a reason to believe that no cluster extends over
too much of the space.

3. We could continue clustering until there is only one cluster. However,
it is meaningless to return a single cluster consisting of all the points.
Rather, we return the tree representing the way in which all the points
were combined. This form of answer makes good sense in some applica-
tions, such as one in which the points are genomes of different species,
and the distance measure reflects the difference in the genome.2 Then,
the tree represents the evolution of these species, that is, the likely order
in which two species branched from a common ancestor.

Example 7.3 : If we complete the clustering of the data of Fig. 7.2, the tree
describing how clusters were grouped is the tree shown in Fig. 7.6. 2

7.2.2 Efficiency of Hierarchical Clustering

The basic algorithm for hierarchical clustering is not very efficient. At each
step, we must compute the distances between each pair of clusters, in order to
find the best merger. The initial step takes O(n2) time, but subsequent steps
take time proportional to (n− 1)2, (n− 2)2, . . .. The sum of squares up to n is
O(n3), so this algorithm is cubic. Thus, it cannot be run except for fairly small
numbers of points.

2This space would not be Euclidean, of course, but the principles regarding hierarchical

clustering carry over, with some modifications, to non-Euclidean clustering.
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(7,10)

(9,3)

(11,4)

(12,6)

(5,2)(2,2)

(3,4)

(6,8)

(12,3)

(4,8)

(4,10)

(4,9)

(10,5)

Figure 7.4: Clustering after two additional steps

However, there is a somewhat more efficient implementation of which we
should be aware.

1. We start, as we must, by computing the distances between all pairs of
points, and this step is O(n2).

2. Form the pairs and their distances into a priority queue, so we can always
find the smallest distance in one step. This operation is also O(n2).

3. When we decide to merge two clusters C and D, we remove all entries
in the priority queue involving one of these two clusters; that requires
work O(n log n) since there are at most 2n deletions to be performed, and
priority-queue deletion can be performed in O(log n) time.

4. We then compute all the distances between the new cluster and the re-
maining clusters. This work is also O(n log n), as there are at most n
entries to be inserted into the priority queue, and insertion into a priority
queue can also be done in O(log n) time.

Since the last two steps are executed at most n times, and the first two steps are
executed only once, the overall running time of this algorithm is O(n2 log n).
That is better than O(n3), but it still puts a strong limit on how large n can
be before it becomes infeasible to use this clustering approach.

7.2.3 Alternative Rules for Controlling Hierarchical

Clustering

We have seen one rule for picking the best clusters to merge: find the pair with
the smallest distance between their centroids. Some other options are:
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(7,10)

(9,3)

(11,4)

(12,6)

(5,2)(2,2)

(3,4)

(12,3)

(4,8)

(4,10)

(4,9)

(10,5)

(2.5, 3)

(6,8)

(4.7, 8.7)

(10.5, 3.8)

Figure 7.5: Three more steps of the hierarchical clustering

1. Take the distance between two clusters to be the minimum of the distances
between any two points, one chosen from each cluster. For example, in
Fig. 7.3 we would next chose to cluster the point (10,5) with the cluster of
two points, since (10,5) has distance

√
2, and no other pair of unclustered

points is that close. Note that in Example 7.2, we did make this combi-
nation eventually, but not until we had combined another pair of points.
In general, it is possible that this rule will result in an entirely different
clustering from that obtained using the distance-of-centroids rule.

2. Take the distance between two clusters to be the average distance of all
pairs of points, one from each cluster.

(2,2)    (3,4)    (5,2)    (4,8)    (4,10)    (6,8)    (7,10)    (11,4)    (12,3)    (10,5)    (9,3)    (12,6)

Figure 7.6: Tree showing the complete grouping of the points of Fig. 7.2
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3. The radius of a cluster is the maximum distance between all the points
and the centroid. Combine the two clusters whose resulting cluster has
the lowest radius. A slight modification is to combine the clusters whose
result has the lowest average distance between a point and the centroid.
Another modification is to use the sum of the squares of the distances
between the points and the centroid. In some algorithms, we shall find
these variant definitions of “radius” referred to as “the radius.”

4. The diameter of a cluster is the maximum distance between any two
points of the cluster. Note that the radius and diameter of a cluster
are not related directly, as they are in a circle, but there is a tendency
for them to be proportional. We may choose to merge those clusters
whose resulting cluster has the smallest diameter. Variants of this rule,
analogous to the rule for radius, are possible.

Example 7.4 : Let us consider the cluster consisting of the five points at the
right of Fig. 7.2. The centroid of these five points is (10.8, 4.2). There is a tie
for the two furthest points from the centroid: (9,3) and (12,6), both at distance√

4.68 = 2.16. Thus, the radius is 2.16. For the diameter, we find the two
points in the cluster having the greatest distance. These are again (9,3) and
(12,6). Their distance is

√
18 = 4.24, so that is the diameter. Notice that the

diameter is not exactly twice the radius, although it is close in this case. The
reason is that the centroid is not on the line between (9,3) and (12,6). 2

We also have options in determining when to stop the merging process. We
already mentioned “stop when we have k clusters” for some predetermined k.
Here are some other options.

1. Stop if the diameter of the cluster that results from the best merger ex-
ceeds a threshold. We can also base this rule on the radius, or on any of
the variants of the radius mentioned above.

2. Stop if the density of the cluster that results from the best merger is
below some threshold. The density can be defined in many different ways.
Roughly, it should be the number of cluster points per unit volume of the
cluster. That ratio can be estimated by the number of points divided by
some power of the diameter or radius of the cluster. The correct power
could be the number of dimensions of the space. Sometimes, 1 or 2 is
chosen as the power, regardless of the number of dimensions.

3. Stop when there is evidence that the next pair of clusters to be combined
yields a bad cluster. For example, we could track the average diameter
of all the current clusters. As long as we are combining points that truly
belong in a cluster, this average will rise gradually. However, if we combine
two clusters that really don’t deserve to be combined, then the average
diameter will take a sudden jump.
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Example 7.5 : Let us reconsider Fig. 7.2. It has three natural clusters. We
computed the diameter of the largest – the five points at the right – in Ex-
ample 7.4; it is 4.24. The diameter of the 3-node cluster at the lower left is
3, the distance between (2,2) and (5,2). The diameter of the 4-node cluster at
the upper left is

√
13 = 3.61. The average diameter, 3.62, was reached starting

from 0 after nine mergers, so the rise is evidently slow: about 0.4 per merger.
If we are forced to merge two of these natural clusters, the best we can do

is merge the two at the left. The diameter of this cluster is
√

89 = 9.43; that is
the distance between the two points (2,2) and (7,10). Now, the average of the
diameters is (9.43 + 4.24)/2 = 6.84. This average has jumped almost as much
in one step as in all nine previous steps. That comparison indicates that the
last merger was inadvisable, and we should roll it back and stop. 2

7.2.4 Hierarchical Clustering in Non-Euclidean Spaces

When the space is non-Euclidean, we need to use some distance measure that
is computed from points, such as Jaccard, cosine, or edit distance. That is, we
cannot base distances on “location” of points. The algorithm of Section 7.2.1
requires distances between points to be computed, but presumably we have a
way to compute those distances. A problem arises when we need to represent
a cluster, because we cannot replace a collection of points by their centroid.

Example 7.6 : The problem arises for any of the non-Euclidean distances we
have discussed, but to be concrete, suppose we are using edit distance, and we
decide to merge the strings abcd and aecdb. These have edit distance 3 and
might well be merged. However, there is no string that represents their average,
or that could be thought of as lying naturally between them. We could take
one of the strings that we might pass through when transforming one string to
the other by single insertions or deletions, such as aebcd, but there are many
such options. Moreover, when clusters are formed from more than two strings,
the notion of “on the path between” stops making sense. 2

Given that we cannot combine points in a cluster when the space is non-
Euclidean, our only choice is to pick one of the points of the cluster itself to
represent the cluster. Ideally, this point is close to all the points of the cluster,
so it in some sense lies in the “center.” We call the representative point the
clustroid. We can select the clustroid in various ways, each designed to, in some
sense, minimize the distances between the clustroid and the other points in
the cluster. Common choices include selecting as the clustroid the point that
minimizes:

1. The sum of the distances to the other points in the cluster.

2. The maximum distance to another point in the cluster.

3. The sum of the squares of the distances to the other points in the cluster.
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Example 7.7 : Suppose we are using edit distance, and a cluster consists of
the four points abcd, aecdb, abecb, and ecdab. Their distances are found in
the following table:

ecdab abecb aecdb

abcd 5 3 3
aecdb 2 2
abecb 4

If we apply the three criteria for being the centroid to each of the four points
of the cluster, we find:

Point Sum Max Sum-Sq
abcd 11 5 43
aecdb 7 3 17
abecb 9 4 29
ecdab 11 5 45

We can see from these measurements that whichever of the three criteria we
choose, aecdb will be selected as the clustroid. In general, different criteria
could yield different clustroids. 2

The options for measuring the distance between clusters that were outlined
in Section 7.2.3 can be applied in a non-Euclidean setting, provided we use the
clustroid in place of the centroid. For example, we can merge the two clusters
whose clustroids are closest. We could also use the average or minimum distance
between all pairs of points from the clusters.

Other suggested criteria involved measuring the density of a cluster, based
on the radius or diameter. Both these notions make sense in the non-Euclidean
environment. The diameter is still the maximum distance between any two
points in the cluster. The radius can be defined using the clustroid in place of
the centroid. Moreover, it makes sense to use the same sort of evaluation for
the radius as we used to select the clustroid in the first place. For example,
if we take the clustroid to be the point with the smallest sum of squares of
distances to the other nodes, then define the radius to be that sum of squares
(or its square root).

Finally, Section 7.2.3 also discussed criteria for stopping the merging of
clusters. None of these criteria made direct use of the centroid, except through
the notion of radius, and we have already observed that “radius” makes good
sense in non-Euclidean spaces. Thus, there is no substantial change in the
options for stopping criteria when we move from Euclidean to non-Euclidean
spaces.

7.2.5 Exercises for Section 7.2

Exercise 7.2.1 : Perform a hierarchical clustering of the one-dimensional set
of points 1, 4, 9, 16, 25, 36, 49, 64, 81, assuming clusters are represented by
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their centroid (average), and at each step the clusters with the closest centroids
are merged.

Exercise 7.2.2 : How would the clustering of Example 7.2 change if we used
for the distance between two clusters:

(a) The minimum of the distances between any two points, one from each
cluster.

(b) The average of the distances between pairs of points, one from each of the
two clusters.

Exercise 7.2.3 : Repeat the clustering of Example 7.2 if we choose to merge
the two clusters whose resulting cluster has:

(a) The smallest radius.

(b) The smallest diameter.

Exercise 7.2.4 : Compute the density of each of the three clusters in Fig. 7.2,
if “density” is defined to be the number of points divided by

(a) The square of the radius.

(b) The diameter (not squared).

What are the densities, according to (a) and (b), of the clusters that result from
the merger of any two of these three clusters. Does the difference in densities
suggest the clusters should or should not be merged?

Exercise 7.2.5 : We can select clustroids for clusters, even if the space is
Euclidean. Consider the three natural clusters in Fig. 7.2, and compute the
clustroids of each, assuming the criterion for selecting the clustroid is the point
with the minimum sum of distances to the other point in the cluster.

! Exercise 7.2.6 : Consider the space of strings with edit distance as the distance
measure. Give an example of a set of strings such that if we choose the clustroid
by minimizing the sum of the distances to the other points we get one point
as the clustroid, but if we choose the clustroid by minimizing the maximum
distance to the other points, another point becomes the clustroid.

7.3 K-means Algorithms

In this section we begin the study of point-assignment algorithms. The best
known family of clustering algorithms of this type is called k-means. They
assume a Euclidean space, and they also assume the number of clusters, k,
is known in advance. It is, however, possible to deduce k by trial and error.
After an introduction to the family of k-means algorithms, we shall focus on a
particular algorithm, called BFR after its authors, that enables us to execute
k-means on data that is too large to fit in main memory.
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7.3.1 K-Means Basics

A k-means algorithm is outlined in Fig. 7.7. There are several ways to select
the initial k points that represent the clusters, and we shall discuss them in
Section 7.3.2. The heart of the algorithm is the for-loop, in which we consider
each point other than the k selected points and assign it to the closest cluster,
where “closest” means closest to the centroid of the cluster. Note that the
centroid of a cluster can migrate as points are assigned to it. However, since
only points near the cluster are likely to be assigned, the centroid tends not to
move too much.

Initially choose k points that are likely to be in

different clusters;

Make these points the centroids of their clusters;

FOR each remaining point p DO

find the centroid to which p is closest;

Add p to the cluster of that centroid;

Adjust the centroid of that cluster to account for p;

END;

Figure 7.7: Outline of k-means algorithms

An optional step at the end is to fix the centroids of the clusters and to
reassign each point, including the k initial points, to the k clusters. Usually,
a point p will be assigned to the same cluster in which it was placed on the
first pass. However, there are cases where the centroid of p’s original cluster
moved quite far from p after p was placed there, and p is assigned to a different
cluster on the second pass. In fact, even some of the original k points could
wind up being reassigned. As these examples are unusual, we shall not dwell
on the subject.

7.3.2 Initializing Clusters for K-Means

We want to pick points that have a good chance of lying in different clusters.
There are two approaches.

1. Pick points that are as far away from one another as possible.

2. Cluster a sample of the data, perhaps hierarchically, so there are k clus-
ters. Pick a point from each cluster, perhaps that point closest to the
centroid of the cluster.

The second approach requires little elaboration. For the first approach,
there are variations. One good choice is:

Pick the first point at random;
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WHILE there are fewer than k points DO

Add the point whose minimum distance from the selected

points is as large as possible;

END;

Example 7.8 : Let us consider the twelve points of Fig. 7.2, which we repro-
duce here as Fig. 7.8. In the worst case, our initial choice of a point is near the
center, say (6,8). The furthest point from (6,8) is (12,3), so that point is chosen
next.

(4,10) (7,10)

(9,3)

(11,4)

(12,6)

(5,2)(2,2)

(3,4)

(6,8)(4,8)

(10,5)

(12,3)

Figure 7.8: Repeat of Fig. 7.2

Among the remaining ten points, the one whose minimum distance to either
(6,8) or (12,3) is a maximum is (2,2). That point has distance

√
52 = 7.21 from

(6,8) and distance
√

101 = 10.05 to (12,3); thus its “score” is 7.21. You can
check easily that any other point is less than distance 7.21 from at least one of
(6,8) and (12,3). Our selection of three starting points is thus (6,8), (12,3), and
(2,2). Notice that these three belong to different clusters.

Had we started with a different point, say (10,5), we would get a different
set of three initial points. In this case, the starting points would be (10,5),
(2,2), and (4,10). Again, these points belong to the three different clusters. 2

7.3.3 Picking the Right Value of k

We may not know the correct value of k to use in a k-means clustering. How-
ever, if we can measure the quality of the clustering for various values of k, we
can usually guess what the right value of k is. Recall the discussion in Sec-
tion 7.2.3, especially Example 7.5, where we observed that if we take a measure
of appropriateness for clusters, such as average radius or diameter, that value
will grow slowly, as long as the number of clusters we assume remains at or
above the true number of clusters. However, as soon as we try to form fewer
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clusters than there really are, the measure will rise precipitously. The idea is
expressed by the diagram of Fig. 7.9.

Average
Diameter

Number of Clusters

Correct value of k

Figure 7.9: Average diameter or another measure of diffuseness rises quickly as
soon as the number of clusters falls below the true number present in the data

If we have no idea what the correct value of k is, we can find a good value
in a number of clustering operations that grows only logarithmically with the
true number. Begin by running the k-means algorithm for k = 1, 2, 4, 8, . . . .
Eventually, you will find two values v and 2v between which there is very little
decrease in the average diameter, or whatever measure of cluster cohesion you
are using. We may conclude that the value of k that is justified by the data lies
between v/2 and v. If you use a binary search (discussed below) in that range,
you can find the best value for k in another log

2
v clustering operations, for a

total of 2 log
2
v clusterings. Since the true value of k is at least v/2, we have

used a number of clusterings that is logarithmic in k.

Since the notion of “not much change” is imprecise, we cannot say exactly
how much change is too much. However, the binary search can be conducted
as follows, assuming the notion of “not much change” is made precise by some
formula. We know that there is too much change between v/2 and v, or else
we would not have gone on to run a clustering for 2v clusters. Suppose at some
point we have narrowed the range of k to between x and y. Let z = (x + y)/2.
Run a clustering with z as the target number of clusters. If there is not too
much change between z and y, then the true value of k lies between x and z.
So recursively narrow that range to find the correct value of k. On the other
hand, if there is too much change between z and y, then use binary search in
the range between z and y instead.

7.3.4 The Algorithm of Bradley, Fayyad, and Reina

This algorithm, which we shall refer to as BFR after its authors, is a variant of
k-means that is designed to cluster data in a high-dimensional Euclidean space.
It makes a very strong assumption about the shape of clusters: they must
be normally distributed about a centroid. The mean and standard deviation
for a cluster may differ for different dimensions, but the dimensions must be
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independent. For instance, in two dimensions a cluster may be cigar-shaped,
but the cigar must not be rotated off of the axes. Figure 7.10 makes the point.

OK OK Not OK

Figure 7.10: The clusters in data for which the BFR algorithm may be used
can have standard deviations that differ along different axes, but the axes of
the cluster must align with the axes of the space

The BFR Algorithm begins by selecting k points, using one of the methods
discussed in Section 7.3.2. Then, the points of the data file are read in chunks.
These might be chunks from a distributed file system or a conventional file
might be partitioned into chunks of the appropriate size. Each chunk must
consist of few enough points that they can be processed in main memory. Also
stored in main memory are summaries of the k clusters and some other data,
so the entire memory is not available to store a chunk. The main-memory data
other than the chunk from the input consists of three types of objects:

1. The Discard Set : These are simple summaries of the clusters themselves.
We shall address the form of cluster summarization shortly. Note that
the cluster summaries are not “discarded”; they are in fact essential.
However, the points that the summary represents are discarded and have
no representation in main memory other than through this summary.

2. The Compressed Set : These are summaries, similar to the cluster sum-
maries, but for sets of points that have been found close to one another,
but not close to any cluster. The points represented by the compressed
set are also discarded, in the sense that they do not appear explicitly in
main memory. We call the represented sets of points miniclusters.

3. The Retained Set : Certain points can neither be assigned to a cluster nor
are they sufficiently close to any other points that we can represent them
by a compressed set. These points are held in main memory exactly as
they appear in the input file.

The picture in Fig. 7.11 suggests how the points processed so far are represented.

The discard and compressed sets are represented by 2d + 1 values, if the
data is d-dimensional. These numbers are:

(a) The number of points represented, N .
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A cluster.  Its points
are in the discard set.

Its centroid

Compressed sets

Points in the
retained set

Figure 7.11: Points in the discard, compressed, and retained sets

(b) The sum of the components of all the points in each dimension. This data
is a vector SUM of length d, and the component in the ith dimension is
SUMi.

(c) The sum of the squares of the components of all the points in each di-
mension. This data is a vector SUMSQ of length d, and its component in
the ith dimension is SUMSQi.

Our real goal is to represent a set of points by their count, their centroid and
the standard deviation in each dimension. However, these 2d +1 values give us
those statistics. N is the count. The centroid’s coordinate in the ith dimension
is the SUMi/N , that is the sum in that dimension divided by the number of
points. The variance in the ith dimension is SUMSQi/N − (SUMi/N)2. We can
compute the standard deviation in each dimension, since it is the square root
of the variance.

Example 7.9 : Suppose a cluster consists of the points (5, 1), (6,−2), and
(7, 0). Then N = 3, SUM = [18,−1], and SUMSQ = [110, 5]. The centroid is
SUM/N , or [6,−1/3]. The variance in the first dimension is 110/3− (18/3)2 =
0.667, so the standard deviation is

√
0.667 = 0.816. In the second dimension,

the variance is 5/3 − (−1/3)2 = 1.56, so the standard deviation is 1.25. 2

7.3.5 Processing Data in the BFR Algorithm

We shall now outline what happens when we process a chunk of points.
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Benefits of the N , SUM, SUMSQ Representation

There is a significant advantage to representing sets of points as it is done
in the BFR Algorithm, rather than by storing N , the centroid, and the
standard deviation in each dimension. Consider what we need to do when
we add a new point to a cluster. N is increased by 1, of course. But we
can also add the vector representing the location of the point to SUM to
get the new SUM, and we can add the squares of the components of the
vector to SUMSQ to get the new SUMSQ. Had we used the centroid in place
of SUM, then we could not adjust the centroid to account for the new point
without doing some calculation involving N , and the recomputation of the
standard deviations would be far more complex as well. Similarly, if we
want to combine two sets, we just add corresponding values of N , SUM,
and SUMSQ, while if we used the centroid and standard deviations as a
representation, the calculation would be far more complex.

1. First, all points that are sufficiently close to the centroid of a cluster are
added to that cluster. As described in the box on benefits, it is simple
to add the information about the point to the N , SUM, and SUMSQ that
represent the cluster. We then discard the point. The question of what
“sufficiently close” means will be addressed shortly.

2. For the points that are not sufficiently close to any centroid, we clus-
ter them, along with the points in the retained set. Any main-memory
clustering algorithm can be used, such as the hierarchical methods dis-
cussed in Section 7.2. We must use some criterion for deciding when it is
reasonable to combine two points into a cluster or two clusters into one.
Section 7.2.3 covered the ways we might make this decision. Clusters of
more than one point are summarized and added to the compressed set.
Singleton clusters become the retained set of points.

3. We now have miniclusters derived from our attempt to cluster new points
and the old retained set, and we have the miniclusters from the old com-
pressed set. Although none of these miniclusters can be merged with one
of the k clusters, they might merge with one another. The criterion for
merger may again be chosen according to the discussion in Section 7.2.3.
Note that the form of representation for compressed sets (N , SUM, and
SUMSQ) makes it easy to compute statistics such as the variance for the
combination of two miniclusters that we consider merging.

4. Points that are assigned to a cluster or a minicluster, i.e., those that
are not in the retained set, are written out, with their assignment, to
secondary memory.
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Finally, if this is the last chunk of input data, we need to do something
with the compressed and retained sets. We can treat them as outliers, and
never cluster them at all. Or, we can assign each point in the retained set to
the cluster of the nearest centroid. We can combine each minicluster with the
cluster whose centroid is closest to the centroid of the minicluster.

An important decision that must be examined is how we decide whether a
new point p is close enough to one of the k clusters that it makes sense to add
p to the cluster. Two approaches have been suggested.

(a) Add p to a cluster if it not only has the centroid closest to p, but it is
very unlikely that, after all the points have been processed, some other
cluster centroid will be found to be nearer to p. This decision is a complex
statistical calculation. It must assume that points are ordered randomly,
and that we know how many points will be processed in the future. Its
advantage is that if we find one centroid to be significantly closer to p
than any other, we can add p to that cluster and be done with it, even if
p is very far from all centroids.

(b) We can measure the probability that, if p belongs to a cluster, it would
be found as far as it is from the centroid of that cluster. This calculation
makes use of the fact that we believe each cluster to consist of normally
distributed points with the axes of the distribution aligned with the axes
of the space. It allows us to make the calculation through the Mahalanobis

distance of the point, which we shall describe next.

The Mahalanobis distance is essentially the distance between a point and
the centroid of a cluster, normalized by the standard deviation of the cluster
in each dimension. Since the BFR Algorithm assumes the axes of the cluster
align with the axes of the space, the computation of Mahalanobis distance is
especially simple. Let p = [p1, p2, . . . , pd] be a point and c = [c1, c2, . . . , cd] the
centroid of a cluster. Let σi be the standard deviation of points in the cluster
in the ith dimension. Then the Mahalanobis distance between p and c is

√

√

√

√

d
∑

i=1

(pi − ci

σi

)2

That is, we normalize the difference between p and c in the ith dimension by
dividing by the standard deviation of the cluster in that dimension. The rest of
the formula combines the normalized distances in each dimension in the normal
way for a Euclidean space.

To assign point p to a cluster, we compute the Mahalanobis distance between
p and each of the cluster centroids. We choose that cluster whose centroid has
the least Mahalanobis distance, and we add p to that cluster provided the
Mahalanobis distance is less than a threshold. For instance, suppose we pick
four as the threshold. If data is normally distributed, then the probability of
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a value as far as four standard deviations from the mean is less than one in a
million. Thus, if the points in the cluster are really normally distributed, then
the probability that we will fail to include a point that truly belongs is less
than 10−6. And such a point is likely to be assigned to that cluster eventually
anyway, as long as it does not wind up closer to some other centroid as centroids
migrate in response to points added to their cluster.

7.3.6 Exercises for Section 7.3

Exercise 7.3.1 : For the points of Fig. 7.8, if we select three starting points
using the method of Section 7.3.2, and the first point we choose is (3,4), which
other points are selected.

!! Exercise 7.3.2 : Prove that no matter what point we start with in Fig. 7.8, if
we select three starting points by the method of Section 7.3.2 we obtain points in
each of the three clusters. Hint : You could solve this exhaustively by begining
with each of the twelve points in turn. However, a more generally applicable
solution is to consider the diameters of the three clusters and also consider
the minimum intercluster distance, that is, the minimum distance between two
points chosen from two different clusters. Can you prove a general theorem
based on these two parameters of a set of points?

! Exercise 7.3.3 : Give an example of a dataset and a selection of k initial
centroids such that when the points are reassigned to their nearest centroid at
the end, at least one of the initial k points is reassigned to a different cluster.

Exercise 7.3.4 : For the three clusters of Fig. 7.8:

(a) Compute the representation of the cluster as in the BFR Algorithm. That
is, compute N , SUM, and SUMSQ.

(b) Compute the variance and standard deviation of each cluster in each of
the two dimensions.

Exercise 7.3.5 : Suppose a cluster of three-dimensional points has standard
deviations of 2, 3, and 5, in the three dimensions, in that order. Compute the
Mahalanobis distance between the origin (0, 0, 0) and the point (1,−3, 4).

7.4 The CURE Algorithm

We now turn to another large-scale-clustering algorithm in the point-assignment
class. This algorithm, called CURE (Clustering Using REpresentatives), as-
sumes a Euclidean space. However, it does not assume anything about the
shape of clusters; they need not be normally distributed, and can even have
strange bends, S-shapes, or even rings. Instead of representing clusters by their
centroid, it uses a collection of representative points, as the name implies.
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Figure 7.12: Two clusters, one surrounding the other

Example 7.10 : Figure 7.12 is an illustration of two clusters. The inner clus-
ter is an ordinary circle, while the second is a ring around the circle. This
arrangement is not completely pathological. A creature from another galaxy
might look at our solar system and observe that the objects cluster into an inner
circle (the planets) and an outer ring (the Kuyper belt), with little in between.
2

7.4.1 Initialization in CURE

We begin the CURE algorithm by:

1. Take a small sample of the data and cluster it in main memory. In prin-
ciple, any clustering method could be used, but as CURE is designed to
handle oddly shaped clusters, it is often advisable to use a hierarchical
method in which clusters are merged when they have a close pair of points.
This issue is discussed in more detail in Example 7.11 below.

2. Select a small set of points from each cluster to be representative points.
These points should be chosen to be as far from one another as possible,
using the method described in Section 7.3.2.

3. Move each of the representative points a fixed fraction of the distance
between its location and the centroid of its cluster. Perhaps 20% is a
good fraction to choose. Note that this step requires a Euclidean space,
since otherwise, there might not be any notion of a line between two
points.

Example 7.11 : We could use a hierarchical clustering algorithm on a sample
of the data from Fig. 7.12. If we took as the distance between clusters the
shortest distance between any pair of points, one from each cluster, then we
would correctly find the two clusters. That is, pieces of the ring would stick
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together, and pieces of the inner circle would stick together, but pieces of ring
would always be far away from the pieces of the circle. Note that if we used the
rule that the distance between clusters was the distance between their centroids,
then we might not get the intuitively correct result. The reason is that the
centroids of both clusters are in the center of the diagram.

Figure 7.13: Select representative points from each cluster, as far from one
another as possible

For the second step, we pick the representative points. If the sample from
which the clusters are constructed is large enough, we can count on a cluster’s
sample points at greatest distance from one another lying on the boundary of
the cluster. Figure 7.13 suggests what our initial selection of sample points
might look like.

Finally, we move the representative points a fixed fraction of the distance
from their true location toward the centroid of the cluster. Note that in Fig. 7.13
both clusters have their centroid in the same place: the center of the inner circle.
Thus, the representative points from the circle move inside the cluster, as was
intended. Points on the outer edge of the ring also move into their cluster, but
points on the ring’s inner edge move outside the cluster. The final locations of
the representative points from Fig. 7.13 are suggested by Fig. 7.14. 2

7.4.2 Completion of the CURE Algorithm

The next phase of CURE is to merge two clusters if they have a pair of rep-
resentative points, one from each cluster, that are sufficiently close. The user
may pick the distance that defines “close.” This merging step can repeat, until
there are no more sufficiently close clusters.

Example 7.12 : The situation of Fig. 7.14 serves as a useful illustration. There
is some argument that the ring and circle should really be merged, because their
centroids are the same. For instance, if the gap between the ring and circle were
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Figure 7.14: Moving the representative points 20% of the distance to the clus-
ter’s centroid

much smaller, it might well be argued that combining the points of the ring and
circle into a single cluster reflected the true state of affairs. For instance, the
rings of Saturn have narrow gaps between them, but it is reasonable to visualize
the rings as a single object, rather than several concentric objects. In the case
of Fig. 7.14 the choice of

1. The fraction of the distance to the centroid that we move the representa-
tive points and

2. The choice of how far apart representative points of two clusters need to
be to avoid merger

together determine whether we regard Fig. 7.12 as one cluster or two. 2

The last step of CURE is point assignment. Each point p is brought from
secondary storage and compared with the representative points. We assign p
to the cluster of the representative point that is closest to p.

Example 7.13 : In our running example, points within the ring will surely
be closer to one of the ring’s representative points than to any representative
point of the circle. Likewise, points within the circle will surely be closest to a
representative point of the circle. An outlier – a point not within the ring or
the circle – will be assigned to the ring if it is outside the ring. If the outlier is
between the ring and the circle, it will be assigned to one or the other, somewhat
favoring the ring because its representative points have been moved toward the
circle. 2

7.4.3 Exercises for Section 7.4

Exercise 7.4.1 : Consider two clusters that are a circle and a surrounding ring,
as in the running example of this section. Suppose:
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i. The radius of the circle is c.

ii. The inner and outer circles forming the ring have radii i and o, respec-
tively.

iii. All representative points for the two clusters are on the boundaries of the
clusters.

iv. Representative points are moved 20% of the distance from their initial
position toward the centroid of their cluster.

v. Clusters are merged if, after repositioning, there are representative points
from the two clusters at distance d or less.

In terms of d, c, i, and o, under what circumstances will the ring and circle be
merged into a single cluster?

7.5 Clustering in Non-Euclidean Spaces

We shall next consider an algorithm that handles non-main-memory data, but
does not require a Euclidean space. The algorithm, which we shall refer to as
GRGPF for its authors (V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and
J. French), takes ideas from both hierarchical and point-assignment approaches.
Like CURE, it represents clusters by sample points in main memory. However,
it also tries to organize the clusters hierarchically, in a tree, so a new point can
be assigned to the appropriate cluster by passing it down the tree. Leaves of
the tree hold summaries of some clusters, and interior nodes hold subsets of the
information describing the clusters reachable through that node. An attempt
is made to group clusters by their distance from one another, so the clusters at
a leaf are close, and the clusters reachable from one interior node are relatively
close as well.

7.5.1 Representing Clusters in the GRGPF Algorithm

As we assign points to clusters, the clusters can grow large. Most of the points
in a cluster are stored on disk, and are not used in guiding the assignment of
points, although they can be retrieved. The representation of a cluster in main
memory consists of several features. Before listing these features, if p is any
point in a cluster, let ROWSUM(p) be the sum of the squares of the distances
from p to each of the other points in the cluster. Note that, although we are not
in a Euclidean space, there is some distance measure d that applies to points,
or else it is not possible to cluster points at all. The following features form the
representation of a cluster.

1. N , the number of points in the cluster.
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2. The clustroid of the cluster, which is defined specifically to be the point
in the cluster that minimizes the sum of the squares of the distances to
the other points; that is, the clustroid is the point in the cluster with the
smallest ROWSUM.

3. The rowsum of the clustroid of the cluster.

4. For some chosen constant k, the k points of the cluster that are closest to
the clustroid, and their rowsums. These points are part of the represen-
tation in case the addition of points to the cluster causes the clustroid to
change. The assumption is made that the new clustroid would be one of
these k points near the old clustroid.

5. The k points of the cluster that are furthest from the clustroid and their
rowsums. These points are part of the representation so that we can
consider whether two clusters are close enough to merge. The assumption
is made that if two clusters are close, then a pair of points distant from
their respective clustroids would be close.

7.5.2 Initializing the Cluster Tree

The clusters are organized into a tree, and the nodes of the tree may be very
large, perhaps disk blocks or pages, as would be the case for a B-tree or R-tree,
which the cluster-representing tree resembles. Each leaf of the tree holds as
many cluster representations as can fit. Note that a cluster representation has
a size that does not depend on the number of points in the cluster.

An interior node of the cluster tree holds a sample of the clustroids of the
clusters represented by each of its subtrees, along with pointers to the roots of
those subtrees. The samples are of fixed size, so the number of children that
an interior node may have is independent of its level. Notice that as we go up
the tree, the probability that a given cluster’s clustroid is part of the sample
diminishes.

We initialize the cluster tree by taking a main-memory sample of the dataset
and clustering it hierarchically. The result of this clustering is a tree T , but T
is not exactly the tree used by the GRGPF Algorithm. Rather, we select from
T certain of its nodes that represent clusters of approximately some desired size
n. These are the initial clusters for the GRGPF Algorithm, and we place their
representations at the leaf of the cluster-representing tree. We then group clus-
ters with a common ancestor in T into interior nodes of the cluster-representing
tree, so in some sense, clusters descended from one interior node are as close
as possible. In some cases, rebalancing of the cluster-representing tree will be
necessary. This process is similar to the reorganization of a B-tree, and we shall
not examine this issue in detail.
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7.5.3 Adding Points in the GRGPF Algorithm

We now read points from secondary storage and insert each one into the nearest
cluster. We start at the root, and look at the samples of clustroids for each of
the children of the root. Whichever child has the clustroid closest to the new
point p is the node we examine next. When we reach any node in the tree, we
look at the sample clustroids for its children and go next to the child with the
clustroid closest to p. Note that some of the sample clustroids at a node may
have been seen at a higher level, but each level provides more detail about the
clusters lying below, so we see many new sample clustroids each time we go a
level down the tree.

Finally, we reach a leaf. This leaf has the cluster features for each cluster
represented by that leaf, and we pick the cluster whose clustroid is closest to p.
We adjust the representation of this cluster to account for the new node p. In
particular, we:

1. Add 1 to N .

2. Add the square of the distance between p and each of the nodes q men-
tioned in the representation to ROWSUM(q). These points q include the
clustroid, the k nearest points, and the k furthest points.

We also estimate the rowsum of p, in case p needs to be part of the represen-
tation (e.g., it turns out to be one of the k points closest to the clustroid). Note
we cannot compute ROWSUM(p) exactly, without going to disk and retrieving
all the points of the cluster. The estimate we use is

ROWSUM(p) = ROWSUM(c) + Nd2(p, c)

where d(p, c) is the distance between p and the clustroid c. Note that N and
ROWSUM(c) in this formula are the values of these features before they were
adjusted to account for the addition of p.

We might well wonder why this estimate works. In Section 7.1.3 we discussed
the “curse of dimensionality,” in particular the observation that in a high-
dimensional Euclidean space, almost all angles are right angles. Of course the
assumption of the GRGPF Algorithm is that the space might not be Euclidean,
but typically a non-Euclidean space also suffers from the curse of dimensionality,
in that it behaves in many ways like a high-dimensional Euclidean space. If we
assume that the angle between p, c, and another point q in the cluster is a right
angle, then the Pythagorean theorem tell us that

d2(p, q) = d2(p, c) + d2(c, q)

If we sum over all q other than c, and then add d2(p, c) to ROWSUM(p) to
account for the fact that the clustroid is one of the points in the cluster, we
derive ROWSUM(p) = ROWSUM(c) + Nd2(p, c).

Now, we must see if the new point p is one of the k closest or furthest
points from the clustroid, and if so, p and its rowsum become a cluster feature,
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replacing one of the other features – whichever is no longer one of the k closest
or furthest. We also need to consider whether the rowsum for one of the k
closest points q is now less than ROWSUM(c). That situation could happen if p
were closer to one of these points than to the current clustroid. If so, we swap
the roles of c and q. Eventually, it is possible that the true clustroid will no
longer be one of the original k closest points. We have no way of knowing, since
we do not see the other points of the cluster in main memory. However, they
are all stored on disk, and can be brought into main memory periodically for a
recomputation of the cluster features.

7.5.4 Splitting and Merging Clusters

The GRGPF Algorithm assumes that there is a limit on the radius that a cluster
may have. The particular definition used for the radius is

√

ROWSUM(c)/N ,
where c is the clustroid of the cluster and N the number of points in the cluster.
That is, the radius is the square root of the average square of the distance from
the clustroid of the points in the cluster. If a cluster’s radius grows too large,
it is split into two. The points of that cluster are brought into main memory,
and divided into two clusters to minimize the rowsums. The cluster features
for both clusters are computed.

As a result, the leaf of the split cluster now has one more cluster to represent.
We should manage the cluster tree like a B-tree, so usually, there will be room
in a leaf to add one more cluster. However, if not, then the leaf must be split
into two leaves. To implement the split, we must add another pointer and more
sample clustroids at the parent node. Again, there may be extra space, but if
not, then this node too must be split, and we do so to minimize the squares of
the distances between the sample clustroids assigned to different nodes. As in
a B-tree, this splitting can ripple all the way up to the root, which can then be
split if needed.

The worst thing that can happen is that the cluster-representing tree is now
too large to fit in main memory. There is only one thing to do: we make it
smaller by raising the limit on how large the radius of a cluster can be, and we
consider merging pairs of clusters. It is normally sufficient to consider clusters
that are “nearby,” in the sense that their representatives are at the same leaf
or at leaves with a common parent. However, in principle, we can consider
merging any two clusters C1 and C2 into one cluster C.

To merge clusters, we assume that the clustroid of C will be one of the
points that are as far as possible from the clustroid of C1 or the clustroid of
C2. Suppose we want to compute the rowsum in C for the point p, which is one
of the k points in C1 that are as far as possible from the centroid of C1. We
use the curse-of-dimensionality argument that says all angles are approximately
right angles, to justify the following formula.

ROWSUMC(p) = ROWSUMC1
(p) + NC2

(

d2(p, c1) + d2(c1, c2)
)

+ ROWSUMC2
(c2)

In the above, we subscript N and ROWSUM by the cluster to which that feature
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refers. We use c1 and c2 for the clustroids of C1 and C2, respectively.
In detail, we compute the sum of the squares of the distances from p to all

the nodes in the combined cluster C by beginning with ROWSUMC1
(p) to get

the terms for the points in the same cluster as p. For the NC2
points q in C2,

we consider the path from p to the clustroid of C1, then to the clustroid of C2,
and finally to q. We assume there is a right angle between the legs from p to
c1 and c1 to c2, and another right angle between the shortest path from p to
c2 and the leg from c2 to q. We then use the Pythagorean theorem to justify
computing the square of the length of the path to each q as the sum of the
squares of the three legs.

We must then finish computing the features for the merged cluster. We
need to consider all the points in the merged cluster for which we know the
rowsum. These are, the centroids of the two clusters, the k points closest to the
clustroids for each cluster, and the k points furthest from the clustroids for each
cluster, with the exception of the point that was chosen as the new clustroid.
We can compute the distances from the new clustroid for each of these 4k + 1
points. We select the k with the smallest distances as the “close” points and
the k with the largest distances as the “far” points. We can then compute the
rowsums for the chosen points, using the same formulas above that we used to
compute the rowsums for the candidate clustroids.

7.5.5 Exercises for Section 7.5

Exercise 7.5.1 : Using the cluster representation of Section 7.5.1, represent
the twelve points of Fig. 7.8 as a single cluster. Use parameter k = 2 as the
number of close and distant points to be included in the representation. Hint :
Since the distance is Euclidean, we can get the square of the distance between
two points by taking the sum of the squares of the differences along the x- and
y-axes.

Exercise 7.5.2 : Compute the radius, in the sense used by the GRGPF Algo-
rithm (square root of the average square of the distance from the clustroid) for
the cluster that is the five points in the lower right of Fig. 7.8. Note that (11,4)
is the clustroid.

7.6 Clustering for Streams and Parallelism

In this section, we shall consider briefly how one might cluster a stream. The
model we have in mind is one where there is a sliding window (recall Sec-
tion 4.1.3Stream Queriessubsection.4.1.3) of N points, and we can ask for the
centroids or clustroids of the best clusters formed from the last m of these
points, for any m ≤ N . We also study a similar approach to clustering a large,
fixed set of points using MapReduce on a computing cluster (no pun intended).
This section provides only a rough outline to suggest the possibilities, which
depend on our assumptions about how clusters evolve in a stream.
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7.6.1 The Stream-Computing Model

We assume that each stream element is a point in some space. The sliding
window consists of the most recent N points. Our goal is to precluster subsets
of the points in the stream, so that we may quickly answer queries of the form
“what are the clusters of the last m points?” for any m ≤ N . There are many
variants of this query, depending on what we assume about what constitutes
a cluster. For instance, we may use a k-means approach, where we are really
asking that the last m points be partitioned into exactly k clusters. Or, we may
allow the number of clusters to vary, but use one of the criteria in Section 7.2.3
or 7.2.4 to determine when to stop merging clusters into larger clusters.

We make no restriction regarding the space in which the points of the stream
live. It may be a Euclidean space, in which case the answer to the query is the
centroids of the selected clusters. The space may be non-Euclidean, in which
case the answer is the clustroids of the selected clusters, where any of the
definitions for “clustroid” may be used (see Section 7.2.4).

The problem is considerably easier if we assume that all stream elements are
chosen with statistics that do not vary along the stream. Then, a sample of the
stream is good enough to estimate the clusters, and we can in effect ignore the
stream after a while. However, the stream model normally assumes that the
statistics of the stream elements varies with time. For example, the centroids
of the clusters may migrate slowly as time goes on, or clusters may expand,
contract, divide, or merge.

7.6.2 A Stream-Clustering Algorithm

In this section, we shall present a greatly simplified version of an algorithm
referred to as BDMO (for the authors, B. Babcock, M. Datar, R. Motwani,
and L. O’Callaghan). The true version of the algorithm involves much more
complex structures, which are designed to provide performance guarantees in
the worst case.

The BDMO Algorithm builds on the methodology for counting ones in a
stream that was described in Section 4.6Counting Ones in a Windowsection.4.6.
Here are the key similarities and differences:

• Like that algorithm, the points of the stream are partitioned into, and
summarized by, buckets whose sizes are a power of two. Here, the size of
a bucket is the number of points it represents, rather than the number of
stream elements that are 1.

• As before, the sizes of buckets obey the restriction that there are one or
two of each size, up to some limit. However, we do not assume that the
sequence of allowable bucket sizes starts with 1. Rather, they are required
only to form a sequence where each size is twice the previous size, e.g.,
3, 6, 12, 24, . . . .
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• Bucket sizes are again restrained to be nondecreasing as we go back in
time. As in Section 4.6Counting Ones in a Windowsection.4.6, we can
conclude that there will be O(log N) buckets.

• The contents of a bucket consists of:

1. The size of the bucket.

2. The timestamp of the bucket, that is, the most recent point that
contributes to the bucket. As in Section 4.6Counting Ones in a
Windowsection.4.6, timestamps can be recorded modulo N .

3. A collection of records that represent the clusters into which the
points of that bucket have been partitioned. These records contain:

(a) The number of points in the cluster.

(b) The centroid or clustroid of the cluster.

(c) Any other parameters necessary to enable us to merge clusters
and maintain approximations to the full set of parameters for the
merged cluster. We shall give some examples when we discuss
the merger process in Section 7.6.4.

7.6.3 Initializing Buckets

Our smallest bucket size will be p, a power of 2. Thus, every p stream elements,
we create a new bucket, with the most recent p points. The timestamp for this
bucket is the timestamp of the most recent point in the bucket. We may leave
each point in a cluster by itself, or we may perform a clustering of these points
according to whatever clustering strategy we have chosen. For instance, if we
choose a k-means algorithm, then (assuming k < p) we cluster the points into
k clusters by some algorithm.

Whatever method we use to cluster initially, we assume it is possible to
compute the centroids or clustroids for the clusters and count the points in
each cluster. This information becomes part of the record for each cluster. We
also compute whatever other parameters for the clusters will be needed in the
merging process.

7.6.4 Merging Buckets

Following the strategy from Section 4.6Counting Ones in a Windowsection.4.6,
whenever we create a new bucket, we need to review the sequence of buckets.
First, if some bucket has a timestamp that is more than N time units prior to
the current time, then nothing of that bucket is in the window, and we may
drop it from the list. Second, we may have created three buckets of size p, in
which case we must merge the oldest two of the three. The merger may create
two buckets of size 2p, in which case we may have to merge buckets of increasing
sizes, recursively, just as in Section 4.6Counting Ones in a Windowsection.4.6.

To merge two consecutive buckets, we need to do several things:
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1. The size of the bucket is twice the sizes of the two buckets being merged.

2. The timestamp for the merged bucket is the timestamp of the more recent
of the two consecutive buckets.

3. We must consider whether to merge clusters, and if so, we need to compute
the parameters of the merged clusters. We shall elaborate on this part of
the algorithm by considering several examples of criteria for merging and
ways to estimate the needed parameters.

Example 7.14 : Perhaps the simplest case is where we are using a k-means
approach in a Euclidean space. We represent clusters by the count of their
points and their centroids. Each bucket has exactly k clusters, so we can pick
p = k, or we can pick p larger than k and cluster the p points into k clusters when
we create a bucket initially as in Section 7.6.3. We must find the best matching
between the k clusters of the first bucket and the k clusters of the second. Here,
“best” means the matching that minimizes the sum of the distances between
the centroids of the matched clusters.

Note that we do not consider merging two clusters from the same bucket,
because our assumption is that clusters do not evolve too much between con-
secutive buckets. Thus, we would expect to find in each of two adjacent buckets
a representation of each of the k “true” clusters that exist in the stream.

When we decide to merge two clusters, one from each bucket, the number
of points in the merged cluster is surely the sum of the numbers of points in the
two clusters. The centroid of the merged cluster is the weighted average of the
centroids of the two clusters, where the weighting is by the numbers of points
in the clusters. That is, if the two clusters have n1 and n2 points, respectively,
and have centroids c1 and c2 (the latter are d-dimensional vectors for some d),
then the combined cluster has n = n1 + n2 points and has centroid

c =
n1c1 + n2c2

n1 + n2

2

Example 7.15 : The method of Example 7.14 suffices when the clusters are
changing very slowly. Suppose we might expect the cluster centroids to mi-
grate sufficiently quickly that when matching the centroids from two consecu-
tive buckets, we might be faced with an ambiguous situation, where it is not
clear which of two clusters best matches a given cluster from the other bucket.
One way to protect against such a situation is to create more than k clusters in
each bucket, even if we know that, when we query (see Section 7.6.5), we shall
have to merge into exactly k clusters. For example, we might choose p to be
much larger than k, and, when we merge, only merge clusters when the result
is sufficiently coherent according to one of the criteria outlined in Section 7.2.3.
Or, we could use a hierarchical strategy, and make the best merges, so as to
maintain p > k clusters in each bucket.
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Suppose, to be specific, that we want to put a limit on the sum of the
distances between all the points of a cluster and its centroid. Then in addition
to the count of points and the centroid of a cluster, we can include an estimate
of this sum in the record for a cluster. When we initialize a bucket, we can
compute the sum exactly. But as we merge clusters, this parameter becomes an
estimate only. Suppose we merge two clusters, and want to compute the sum of
distances for the merged cluster. Use the notation for centroids and counts in
Example 7.14, and in addition, let s1 and s2 be the sums for the two clusters.
Then we may estimate the radius of the merged cluster to be

n1|c1 − c| + n2|c2 − c| + s1 + s2

That is, we estimate the distance between any point x and the new centroid
c to be the distance of that point to its old centroid (these distances sum to
s1 + s2, the last two terms in the above expression) plus the distance from
the old centroid to the new (these distances sum to the first two terms of the
above expression). Note that this estimate is an upper bound, by the triangle
inequality.

An alternative is to replace the sum of distances by the sum of the squares of
the distances from the points to the centroid. If these sums for the two clusters
are t1 and t2, respectively, then we can produce an estimate for the same sum
in the new cluster as

n1|c1 − c|2 + n2|c2 − c|2 + t1 + t2

This estimate is close to correct if the space is high-dimensional, by the “curse
of dimensionality.” 2

Example 7.16 : Our third example will assume a non-Euclidean space and no
constraint on the number of clusters. We shall borrow several of the techniques
from the GRGPF Algorithm of Section 7.5. Specifically, we represent clusters
by their clustroid and rowsum (sum of the squares of the distances from each
node of the cluster to its clustroid). We include in the record for a cluster
information about a set of points at maximum distance from the clustroid,
including their distances from the clustroid and their rowsums. Recall that
their purpose is to suggest a clustroid when this cluster is merged with another.

When we merge buckets, we may choose one of many ways to decide which
clusters to merge. For example, we may consider pairs of clusters in order of
the distance between their clustroids. We may also choose to merge clusters
when we consider them, provided the sum of their rowsums is below a certain
limit. Alternatively, we may perform the merge if the sum of rowsums divided
by the number of points in the clusters is below a limit. Any of the other
strategies discussed for deciding when to merge clusters may be used as well,
provided we arrange to maintain the data (e.g., cluster diameter) necessary to
make decisions.

We then must pick a new clustroid, from among the points most distant
from the clustroids of the two merged clusters. We can compute rowsums for
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each of these candidate clustroids using the formulas given in Section 7.5.4. We
also follow the strategy given in that section to pick a subset of the distant
points from each cluster to be the set of distant points for the merged cluster,
and to compute the new rowsum and distance-to-clustroid for each. 2

7.6.5 Answering Queries

Recall that we assume a query is a request for the clusters of the most recent m
points in the stream, where m ≤ N . Because of the strategy we have adopted
of combining buckets as we go back in time, we may not be able to find a set of
buckets that covers exactly the last m points. However, if we choose the smallest
set of buckets that cover the last m points, we shall include in these buckets no
more than the last 2m points. We shall produce, as answer to the query, the
centroids or clustroids of all the points in the selected buckets. In order for the
result to be a good approximation to the clusters for exactly the last m points,
we must assume that the points between 2m and m + 1 will not have radically
different statistics from the most recent m points. However, if the statistics
vary too rapidly, recall from Section 4.6.6Reducing the Errorsubsection.4.6.6
that a more complex bucketing scheme can guarantee that we can find buckets
to cover at most the last m(1 + ǫ) points, for any ǫ > 0.

Having selected the desired buckets, we pool all their clusters. We then use
some methodology for deciding which clusters to merge. Examples 7.14 and
7.16 are illustrations of two approaches to this merger. For instance, if we are
required to produce exactly k clusters, then we can merge the clusters with the
closest centroids until we are left with only k clusters, as in Example 7.14. Or
we can make a decision whether or not to merge clusters in various ways, as we
sampled in Example 7.16.

7.6.6 Clustering in a Parallel Environment

Now, let us briefly consider the use of parallelism available in a computing
cluster.3 We assume we are given a very large collection of points, and we wish
to exploit parallelism to compute the centroids of their clusters. The simplest
approach is to use a MapReduce strategy, but in most cases we are constrained
to use a single Reduce task.

Begin by creating many Map tasks. Each task is assigned a subset of the
points. The Map function’s job is to cluster the points it is given. Its output is
a set of key-value pairs with a fixed key 1, and a value that is the description
of one cluster. This description can be any of the possibilities suggested in
Section 7.6.2, such as the centroid, count, and diameter of the cluster.

Since all key-value pairs have the same key, there can be only one Reduce
task. This task gets descriptions of the clusters produced by each of the Map

3Do not forget that the term “cluster” has two completely different meanings in this

section.
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tasks, and must merge them appropriately. We may use the discussion in Sec-
tion 7.6.4 as representative of the various strategies we might use to produce
the final clustering, which is the output of the Reduce task.

7.6.7 Exercises for Section 7.6

Exercise 7.6.1 : Execute the BDMO Algorithm with p = 3 on the following
1-dimensional, Euclidean data:

1, 45, 80, 24, 56, 71, 17, 40, 66, 32, 48, 96, 9, 41, 75, 11, 58, 93, 28, 39, 77

The clustering algorithms is k-means with k = 3. Only the centroid of a cluster,
along with its count, is needed to represent a cluster.

Exercise 7.6.2 : Using your clusters from Exercise 7.6.1, produce the best
centroids in response to a query asking for a clustering of the last 10 points.

7.7 Summary of Chapter 7

✦ Clustering: Clusters are often a useful summary of data that is in the form
of points in some space. To cluster points, we need a distance measure
on that space. Ideally, points in the same cluster have small distances be-
tween them, while points in different clusters have large distances between
them.

✦ Clustering Algorithms: Clustering algorithms generally have one of two
forms. Hierarchical clustering algorithms begin with all points in a cluster
of their own, and nearby clusters are merged iteratively. Point-assignment
clustering algorithms consider points in turn and assign them to the clus-
ter in which they best fit.

✦ The Curse of Dimensionality: Points in high-dimensional Euclidean spa-
ces, as well as points in non-Euclidean spaces often behave unintuitively.
Two unexpected properties of these spaces are that random points are
almost always at about the same distance, and random vectors are almost
always orthogonal.

✦ Centroids and Clustroids: In a Euclidean space, the members of a cluster
can be averaged, and this average is called the centroid. In non-Euclidean
spaces, there is no guarantee that points have an “average,” so we are
forced to use one of the members of the cluster as a representative or
typical element of the cluster. That representative is called the clustroid.

✦ Choosing the Clustroid : There are many ways we can define a typical point
of a cluster in a non-Euclidean space. For example, we could choose the
point with the smallest sum of distances to the other points, the smallest
sum of the squares of those distances, or the smallest maximum distance
to any other point in the cluster.
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✦ Radius and Diameter : Whether or not the space is Euclidean, we can de-
fine the radius of a cluster to be the maximum distance from the centroid
or clustroid to any point in that cluster. We can define the diameter of
the cluster to be the maximum distance between any two points in the
cluster. Alternative definitions, especially of the radius, are also known,
for example, average distance from the centroid to the other points.

✦ Hierarchical Clustering: This family of algorithms has many variations,
which differ primarily in two areas. First, we may chose in various ways
which two clusters to merge next. Second, we may decide when to stop
the merge process in various ways.

✦ Picking Clusters to Merge: One strategy for deciding on the best pair of
clusters to merge in a hierarchical clustering is to pick the clusters with
the closest centroids or clustroids. Another approach is to pick the pair of
clusters with the closest points, one from each cluster. A third approach
is to use the average distance between points from the two clusters.

✦ Stopping the Merger Process : A hierarchical clustering can proceed until
there are a fixed number of clusters left. Alternatively, we could merge
until it is impossible to find a pair of clusters whose merger is sufficiently
compact, e.g., the merged cluster has a radius or diameter below some
threshold. Another approach involves merging as long as the resulting
cluster has a sufficiently high “density,” which can be defined in various
ways, but is the number of points divided by some measure of the size of
the cluster, e.g., the radius.

✦ K-Means Algorithms : This family of algorithms is of the point-assignment
type and assumes a Euclidean space. It is assumed that there are exactly
k clusters for some known k. After picking k initial cluster centroids, the
points are considered one at a time and assigned to the closest centroid.
The centroid of a cluster can migrate during point assignment, and an
optional last step is to reassign all the points, while holding the centroids
fixed at their final values obtained during the first pass.

✦ Initializing K-Means Algorithms : One way to find k initial centroids is
to pick a random point, and then choose k − 1 additional points, each as
far away as possible from the previously chosen points. An alternative is
to start with a small sample of points and use a hierarchical clustering to
merge them into k clusters.

✦ Picking K in a K-Means Algorithm: If the number of clusters is unknown,
we can use a binary-search technique, trying a k-means clustering with
different values of k. We search for the largest value of k for which a
decrease below k clusters results in a radically higher average diameter
of the clusters. This search can be carried out in a number of clustering
operations that is logarithmic in the true value of k.
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✦ The BFR Algorithm: This algorithm is a version of k-means designed to
handle data that is too large to fit in main memory. It assumes clusters
are normally distributed about the axes.

✦ Representing Clusters in BFR: Points are read from disk one chunk at a
time. Clusters are represented in main memory by the count of the num-
ber of points, the vector sum of all the points, and the vector formed by
summing the squares of the components of the points in each dimension.
Other collection of points, too far from a cluster centroid to be included
in a cluster, are represented as “miniclusters” in the same way as the k
clusters, while still other points, which are not near any other point will
be represented as themselves and called “retained” points.

✦ Processing Points in BFR: Most of the points in a main-memory load
will be assigned to a nearby cluster and the parameters for that cluster
will be adjusted to account for the new points. Unassigned points can
be formed into new miniclusters, and these miniclusters can be merged
with previously discovered miniclusters or retained points. After the last
memory load, the miniclusters and retained points can be merged to their
nearest cluster or kept as outliers.

✦ The CURE Algorithm: This algorithm is of the point-assignment type.
It is designed for a Euclidean space, but clusters can have any shape. It
handles data that is too large to fit in main memory.

✦ Representing Clusters in CURE : The algorithm begins by clustering a
small sample of points. It then selects representative points for each
cluster, by picking points in the cluster that are as far away from each
other as possible. The goal is to find representative points on the fringes of
the cluster. However, the representative points are then moved a fraction
of the way toward the centroid of the cluster, so they lie somewhat in the
interior of the cluster.

✦ Processing Points in CURE : After creating representative points for each
cluster, the entire set of points can be read from disk and assigned to a
cluster. We assign a given point to the cluster of the representative point
that is closest to the given point.

✦ The GRGPF Algorithm: This algorithm is of the point-assignment type.
It handles data that is too big to fit in main memory, and it does not
assume a Euclidean space.

✦ Representing Clusters in GRGPF : A cluster is represented by the count
of points in the cluster, the clustroid, a set of points nearest the clustroid
and a set of points furthest from the clustroid. The nearby points allow
us to change the clustroid if the cluster evolves, and the distant points
allow for merging clusters efficiently in appropriate circumstances. For
each of these points, we also record the rowsum, that is the square root
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of the sum of the squares of the distances from that point to all the other
points of the cluster.

✦ Tree Organization of Clusters in GRGPF : Cluster representations are or-
ganized into a tree structure like a B-tree, where nodes of the tree are
typically disk blocks and contain information about many clusters. The
leaves hold the representation of as many clusters as possible, while inte-
rior nodes hold a sample of the clustroids of the clusters at their descen-
dant leaves. We organize the tree so that the clusters whose representa-
tives are in any subtree are as close as possible.

✦ Processing Points in GRGPF : After initializing clusters from a sample of
points, we insert each point into the cluster with the nearest clustroid.
Because of the tree structure, we can start at the root and choose to visit
the child with the sample clustroid nearest to the given point. Following
this rule down one path in the tree leads us to a leaf, where we insert the
point into the cluster with the nearest clustroid on that leaf.

✦ Clustering Streams: A generalization of the DGIM Algorithm (for count-
ing 1’s in the sliding window of a stream) can be used to cluster points
that are part of a slowly evolving stream. The BDMO Algorithm uses
buckets similar to those of DGIM, with allowable bucket sizes forming a
sequence where each size is twice the previous size.

✦ Representation of Buckets in BDMO : The size of a bucket is the number
of points it represents. The bucket itself holds only a representation of the
clusters of these points, not the points themselves. A cluster representa-
tion includes a count of the number of points, the centroid or clustroid,
and other information that is needed for merging clusters according to
some selected strategy.

✦ Merging Buckets in BDMO : When buckets must be merged, we find the
best matching of clusters, one from each of the buckets, and merge them
in pairs. If the stream evolves slowly, then we expect consecutive buckets
to have almost the same cluster centroids, so this matching makes sense.

✦ Answering Queries in BDMO : A query is a length of a suffix of the sliding
window. We take all the clusters in all the buckets that are at least
partially within that suffix and merge them using some strategy. The
resulting clusters are the answer to the query.

✦ Clustering Using MapReduce: We can divide the data into chunks and
cluster each chunk in parallel, using a Map task. The clusters from each
Map task can be further clustered in a single Reduce task.
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7.8 References for Chapter 7

The ancestral study of clustering for large-scale data is the BIRCH Algorithm
of [6]. The BFR Algorithm is from [2]. The CURE Algorithm is found in [5].

The paper on the GRGPF Algorithm is [3]. The necessary background
regarding B-trees and R-trees can be found in [4]. The study of clustering on
streams is taken from [1].
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