Mining of Massive Datasets

Jure Leskovec
Stanford Univ.

Anand Rajaraman
Milliway Labs

Jeffrey D. Ullman
Stanford Univ.

Preface

This book evolved from material developed over several years by Anand Rajaraman and Jeff Ullman for a one-quarter course at Stanford. The course CS345A, titled “Web Mining,” was designed as an advanced graduate course, although it has become accessible and interesting to advanced undergraduates. When Jure Leskovec joined the Stanford faculty, we reorganized the material considerably. He introduced a new course CS224W on network analysis and added material to CS345A, which was renumbered CS246. The three authors also introduced a large-scale data-mining project course, CS341. The book now contains material taught in all three courses.

What the Book Is About

At the highest level of description, this book is about data mining. However, it focuses on data mining of very large amounts of data, that is, data so large it does not fit in main memory. Because of the emphasis on size, many of our examples are about the Web or data derived from the Web. Further, the book takes an algorithmic point of view: data mining is about applying algorithms to data, rather than using data to “train” a machine-learning engine of some sort. The principal topics covered are:

1. Distributed file systems and map-reduce as a tool for creating parallel algorithms that succeed on very large amounts of data.
2. Similarity search, including the key techniques of minhashing and locality-sensitive hashing.
3. Data-stream processing and specialized algorithms for dealing with data that arrives so fast it must be processed immediately or lost.
4. The technology of search engines, including Google’s PageRank, link-spam detection, and the hubs-and-authorities approach.
5. Frequent-itemset mining, including association rules, market-baskets, the A-Priori Algorithm and its improvements.
6. Algorithms for clustering very large, high-dimensional datasets.
7. Two key problems for Web applications: managing advertising and recommendation systems.

8. Algorithms for analyzing and mining the structure of very large graphs, especially social-network graphs.

9. Techniques for obtaining the important properties of a large dataset by dimensionality reduction, including singular-value decomposition and latent semantic indexing.

10. Machine-learning algorithms that can be applied to very large data, such as perceptrons, support-vector machines, and gradient descent.

Prerequisites

To appreciate fully the material in this book, we recommend the following prerequisites:

1. An introduction to database systems, covering SQL and related programming systems.

2. A sophomore-level course in data structures, algorithms, and discrete math.

3. A sophomore-level course in software systems, software engineering, and programming languages.

Exercises

The book contains extensive exercises, with some for almost every section. We indicate harder exercises or parts of exercises with an exclamation point. The hardest exercises have a double exclamation point.

Support on the Web

Go to http://www.mmds.org for slides, homework assignments, project requirements, and exams from courses related to this book.

Gradiance Automated Homework

There are automated exercises based on this book, using the Gradiance root-question technology, available at www.gradiance.com/services. Students may enter a public class by creating an account at that site and entering the class with code 1EDD8A1D. Instructors may use the site by making an account there
and then emailing support at gradiance dot com with their login name, the name of their school, and a request to use the MMDS materials.

Acknowledgements

Cover art is by Scott Ullman.

We would like to thank Foto Afrati, Arun Marathe, and Rok Sosic for critical readings of a draft of this manuscript.

Errors were also reported by Rajiv Abraham, Ruslan Aduk, Apoorv Agarwal, Aris Anagnostopoulos, Yokila Arora, Atilla Soner Balkir, Arnaud Belletoiile, Robin Bennett, Susan Biancani, Amitabh Chaudhary, Leland Chen, Hua Feng, Marcus Gemeinder, Anastasios Gounaris, Clark Grubb, Shrey Gupta, Waleed Hameid, Saman Haratizadeh, Przemyslaw Horban, Jeff Hwang, Rafi Kamal, Lachlan Kang, Ed Knorr, Haewoon Kwak, Ellis Lau, Greg Lee, David Z. Liu, Ethan Lozano, Yuman Luo, Michael Mahoney, Justin Meyer, Bryant Moscon, Brad Penoff, John Phillips, Philips Kokoh Prasetyo, Qi Ge, Harizo Rajaona, Timon Ruban, Rich Seiter, Hitesh Shetty, Angad Singh, Sandeep Sripada, Dennis Sidharta, Krzysztof Stencel, Mark Storus, Roshan Sumbaly, Zack Taylor, Tim Triche Jr., Wang Bin, Weng Zhen-Bin, Robert West, Oscar Wu, Xie Ke, Nicolas Zhao, and Zhou Jingbo, The remaining errors are ours, of course.

J. L.
A. R.
J. D. U.
Palo Alto, CA
March, 2014
Contents

1 Data Mining 1
 1.1 What is Data Mining? 1
 1.1.1 Statistical Modeling 1
 1.1.2 Machine Learning 2
 1.1.3 Computational Approaches to Modeling 2
 1.1.4 Summarization 3
 1.1.5 Feature Extraction 4
 1.2 Statistical Limits on Data Mining 4
 1.2.1 Total Information Awareness 5
 1.2.2 Bonferroni’s Principle 5
 1.2.3 An Example of Bonferroni’s Principle 6
 1.2.4 Exercises for Section 1.2 7
 1.3 Things Useful to Know 7
 1.3.1 Importance of Words in Documents 7
 1.3.2 Hash Functions 9
 1.3.3 Indexes 10
 1.3.4 Secondary Storage 11
 1.3.5 The Base of Natural Logarithms 12
 1.3.6 Power Laws 13
 1.3.7 Exercises for Section 1.3 15
 1.4 Outline of the Book 15
 1.5 Summary of Chapter 1 17
 1.6 References for Chapter 1 18

2 MapReduce and the New Software Stack 21
 2.1 Distributed File Systems 22
 2.1.1 Physical Organization of Compute Nodes 22
 2.1.2 Large-Scale File-System Organization 23
 2.2 MapReduce 24
 2.2.1 The Map Tasks 25
 2.2.2 Grouping by Key 26
 2.2.3 The Reduce Tasks 27
 2.2.4 Combiners 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Choosing the Shingle Size</td>
<td>78</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Hashing Shingles</td>
<td>79</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Shingles Built from Words</td>
<td>79</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Exercises for Section 3.2</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Similarity-Preserving Summaries of Sets</td>
<td>80</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Matrix Representation of Sets</td>
<td>81</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Minhashing</td>
<td>81</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Minhashing and Jaccard Similarity</td>
<td>82</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Minhash Signatures</td>
<td>83</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Computing Minhash Signatures</td>
<td>83</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Exercises for Section 3.3</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Locality-Sensitive Hashing for Documents</td>
<td>87</td>
</tr>
<tr>
<td>3.4.1</td>
<td>LSH for Minhash Signatures</td>
<td>88</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Analysis of the Banding Technique</td>
<td>89</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Combining the Techniques</td>
<td>91</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Exercises for Section 3.4</td>
<td>91</td>
</tr>
<tr>
<td>3.5</td>
<td>Distance Measures</td>
<td>92</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Definition of a Distance Measure</td>
<td>92</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Euclidean Distances</td>
<td>93</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Jaccard Distance</td>
<td>94</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Cosine Distance</td>
<td>95</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Edit Distance</td>
<td>95</td>
</tr>
<tr>
<td>3.5.6</td>
<td>Hamming Distance</td>
<td>96</td>
</tr>
<tr>
<td>3.5.7</td>
<td>Exercises for Section 3.5</td>
<td>97</td>
</tr>
<tr>
<td>3.6</td>
<td>The Theory of Locality-Sensitive Functions</td>
<td>99</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Locality-Sensitive Functions</td>
<td>99</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Locality-Sensitive Families for Jaccard Distance</td>
<td>100</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Amplifying a Locality-Sensitive Family</td>
<td>101</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Exercises for Section 3.6</td>
<td>103</td>
</tr>
<tr>
<td>3.7</td>
<td>LSH Families for Other Distance Measures</td>
<td>104</td>
</tr>
<tr>
<td>3.7.1</td>
<td>LSH Families for Hamming Distance</td>
<td>104</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Random Hyperplanes and the Cosine Distance</td>
<td>105</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Sketches</td>
<td>106</td>
</tr>
<tr>
<td>3.7.4</td>
<td>LSH Families for Euclidean Distance</td>
<td>107</td>
</tr>
<tr>
<td>3.7.5</td>
<td>More LSH Families for Euclidean Spaces</td>
<td>108</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Exercises for Section 3.7</td>
<td>109</td>
</tr>
<tr>
<td>3.8</td>
<td>Applications of Locality-Sensitive Hashing</td>
<td>110</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Entity Resolution</td>
<td>110</td>
</tr>
<tr>
<td>3.8.2</td>
<td>An Entity-Resolution Example</td>
<td>111</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Validating Record Matches</td>
<td>112</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Matching Fingerprints</td>
<td>113</td>
</tr>
<tr>
<td>3.8.5</td>
<td>A LSH Family for Fingerprint Matching</td>
<td>114</td>
</tr>
<tr>
<td>3.8.6</td>
<td>Similar News Articles</td>
<td>115</td>
</tr>
<tr>
<td>3.8.7</td>
<td>Exercises for Section 3.8</td>
<td>117</td>
</tr>
<tr>
<td>3.9</td>
<td>Methods for High Degrees of Similarity</td>
<td>118</td>
</tr>
</tbody>
</table>
4 Mining Data Streams

4.1 The Stream Data Model ... 131
 4.1.1 A Data-Stream-Management System 132
 4.1.2 Examples of Stream Sources 133
 4.1.3 Stream Queries ... 134
 4.1.4 Issues in Stream Processing 135

4.2 Sampling Data in a Stream 136
 4.2.1 A Motivating Example 136
 4.2.2 Obtaining a Representative Sample 137
 4.2.3 The General Sampling Problem 137
 4.2.4 Varying the Sample Size 138
 4.2.5 Exercises for Section 4.2 138

4.3 Filtering Streams .. 139
 4.3.1 A Motivating Example 139
 4.3.2 The Bloom Filter ... 140
 4.3.3 Analysis of Bloom Filtering 140
 4.3.4 Exercises for Section 4.3 141

4.4 Counting Distinct Elements in a Stream 142
 4.4.1 The Count-Distinct Problem 142
 4.4.2 The Flajolet-Martin Algorithm 143
 4.4.3 Combining Estimates 144
 4.4.4 Space Requirements 144
 4.4.5 Exercises for Section 4.4 145

4.5 Estimating Moments .. 145
 4.5.1 Definition of Moments 145
 4.5.2 The Alon-Matias-Szegedy Algorithm for Second Moments 146
 4.5.3 Why the Alon-Matias-Szegedy Algorithm Works 147
 4.5.4 Higher-Order Moments 148
 4.5.5 Dealing With Infinite Streams 148
 4.5.6 Exercises for Section 4.5 149

4.6 Counting Ones in a Window 150
 4.6.1 The Cost of Exact Counts 151
 4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm 151
 4.6.3 Storage Requirements for the DGIM Algorithm 153
CONTENTS

4.6.4 Query Answering in the DGIM Algorithm 153
4.6.5 Maintaining the DGIM Conditions 154
4.6.6 Reducing the Error . 155
4.6.7 Extensions to the Counting of Ones 156
4.6.8 Exercises for Section 4.6 157
4.7 Decaying Windows . 157
4.7.1 The Problem of Most-Common Elements 157
4.7.2 Definition of the Decaying Window 158
4.7.3 Finding the Most Popular Elements 159
4.8 Summary of Chapter 4 . 160
4.9 References for Chapter 4 . 161

5 Link Analysis 163

5.1 PageRank . 163
5.1.1 Early Search Engines and Term Spam 164
5.1.2 Definition of PageRank . 165
5.1.3 Structure of the Web . 169
5.1.4 Avoiding Dead Ends . 170
5.1.5 Spider Traps and Taxation 173
5.1.6 Using PageRank in a Search Engine 175
5.1.7 Exercises for Section 5.1 . 175
5.2 Efficient Computation of PageRank 177
5.2.1 Representing Transition Matrices 178
5.2.2 PageRank Iteration Using MapReduce 179
5.2.3 Use of Combiners to Consolidate the Result Vector 179
5.2.4 Representing Blocks of the Transition Matrix 180
5.2.5 Other Efficient Approaches to PageRank Iteration 181
5.2.6 Exercises for Section 5.2 . 183
5.3 Topic-Sensitive PageRank . 183
5.3.1 Motivation for Topic-Sensitive Page Rank 183
5.3.2 Biased Random Walks . 184
5.3.3 Using Topic-Sensitive PageRank 185
5.3.4 Inferring Topics from Words 186
5.3.5 Exercises for Section 5.3 . 187
5.4 Link Spam . 187
5.4.1 Architecture of a Spam Farm 187
5.4.2 Analysis of a Spam Farm 189
5.4.3 Combating Link Spam . 190
5.4.4 TrustRank . 190
5.4.5 Spam Mass . 191
5.4.6 Exercises for Section 5.4 . 191
5.5 Hubs and Authorities . 192
5.5.1 The Intuition Behind HITS 192
5.5.2 Formalizing Hubbiness and Authority 193
5.5.3 Exercises for Section 5.5 . 196
6 Frequent Itemsets

6.1 The Market-Basket Model

6.1.1 Definition of Frequent Itemsets
6.1.2 Applications of Frequent Itemsets
6.1.3 Association Rules
6.1.4 Finding Association Rules with High Confidence
6.1.5 Exercises for Section 6.1

6.2 Market Baskets and the A-Priori Algorithm

6.2.1 Representation of Market-Basket Data
6.2.2 Use of Main Memory for Itemset Counting
6.2.3 Monotonicity of Itemsets
6.2.4 Tyranny of Counting Pairs
6.2.5 The A-Priori Algorithm
6.2.6 A-Priori for All Frequent Itemsets
6.2.7 Exercises for Section 6.2

6.3 Handling Larger Datasets in Main Memory

6.3.1 The Algorithm of Park, Chen, and Yu
6.3.2 The Multistage Algorithm
6.3.3 The Multihash Algorithm
6.3.4 Exercises for Section 6.3

6.4 Limited-Pass Algorithms

6.4.1 The Simple, Randomized Algorithm
6.4.2 Avoiding Errors in Sampling Algorithms
6.4.3 The Algorithm of Savasere, Omiecinski, and Navathe
6.4.4 The SON Algorithm and MapReduce
6.4.5 Toivonen's Algorithm
6.4.6 Why Toivonen's Algorithm Works
6.4.7 Exercises for Section 6.4

6.5 Counting Frequent Items in a Stream

6.5.1 Sampling Methods for Streams
6.5.2 Frequent Itemsets in Decaying Windows
6.5.3 Hybrid Methods
6.5.4 Exercises for Section 6.5

6.6 Summary of Chapter 6
6.7 References for Chapter 6

7 Clustering

7.1 Introduction to Clustering Techniques

7.1.1 Points, Spaces, and Distances
7.1.2 Clustering Strategies
7.1.3 The Curse of Dimensionality
8.2.4 Exercises for Section 8.2 .. 286
8.3 The Matching Problem ... 287
8.3.1 Matches and Perfect Matches 287
8.3.2 The Greedy Algorithm for Maximal Matching 288
8.3.3 Competitive Ratio for Greedy Matching 289
8.3.4 Exercises for Section 8.3 290
8.4 The Adwords Problem ... 290
8.4.1 History of Search Advertising 291
8.4.2 Definition of the Adwords Problem 291
8.4.3 The Greedy Approach to the Adwords Problem 292
8.4.4 The Balance Algorithm 293
8.4.5 A Lower Bound on Competitive Ratio for Balance 294
8.4.6 The Balance Algorithm with Many Bidders 296
8.4.7 The Generalized Balance Algorithm 297
8.4.8 Final Observations About the Adwords Problem 298
8.4.9 Exercises for Section 8.4 299
8.5 Adwords Implementation 299
8.5.1 Matching Bids and Search Queries 300
8.5.2 More Complex Matching Problems 300
8.5.3 A Matching Algorithm for Documents and Bids 301
8.6 Summary of Chapter 8 .. 303
8.7 References for Chapter 8 305

9 Recommendation Systems ... 307
9.1 A Model for Recommendation Systems 307
9.1.1 The Utility Matrix 308
9.1.2 The Long Tail 309
9.1.3 Applications of Recommendation Systems 309
9.1.4 Populating the Utility Matrix 311
9.2 Content-Based Recommendations 312
9.2.1 Item Profiles 312
9.2.2 Discovering Features of Documents 313
9.2.3 Obtaining Item Features From Tags 314
9.2.4 Representing Item Profiles 315
9.2.5 User Profiles 316
9.2.6 Recommending Items to Users Based on Content 317
9.2.7 Classification Algorithms 318
9.2.8 Exercises for Section 9.2 320
9.3 Collaborative Filtering 321
9.3.1 Measuring Similarity 322
9.3.2 The Duality of Similarity 324
9.3.3 Clustering Users and Items 325
9.3.4 Exercises for Section 9.3 327
9.4 Dimensionality Reduction 328
9.4.1 UV-Decomposition 328
9.4.2 Root-Mean-Square Error 329
9.4.3 Incremental Computation of a UV-Decomposition 330
9.4.4 Optimizing an Arbitrary Element 332
9.4.5 Building a Complete UV-Decomposition Algorithm 334
9.4.6 Exercises for Section 9.4 336

9.5 The Netflix Challenge 337

9.6 Summary of Chapter 9 338

9.7 References for Chapter 9 340

10 Mining Social-Network Graphs 343

10.1 Social Networks as Graphs 343
 10.1.1 What is a Social Network? 344
 10.1.2 Social Networks as Graphs 344
 10.1.3 Varieties of Social Networks 346
 10.1.4 Graphs With Several Node Types 347
 10.1.5 Exercises for Section 10.1 348

10.2 Clustering of Social-Network Graphs 349
 10.2.1 Distance Measures for Social-Network Graphs 349
 10.2.2 Applying Standard Clustering Methods 349
 10.2.3 Betweenness .. 351
 10.2.4 The Girvan-Newman Algorithm 351
 10.2.5 Using Betweenness to Find Communities 354
 10.2.6 Exercises for Section 10.2 356

10.3 Direct Discovery of Communities 357
 10.3.1 Finding Cliques 357
 10.3.2 Complete Bipartite Graphs 357
 10.3.3 Finding Complete Bipartite Subgraphs 358
 10.3.4 Why Complete Bipartite Graphs Must Exist 359
 10.3.5 Exercises for Section 10.3 361

10.4 Partitioning of Graphs 361
 10.4.1 What Makes a Good Partition? 362
 10.4.2 Normalized Cuts 362
 10.4.3 Some Matrices That Describe Graphs 363
 10.4.4 Eigenvalues of the Laplacian Matrix 364
 10.4.5 Alternative Partitioning Methods 367
 10.4.6 Exercises for Section 10.4 368

10.5 Finding Overlapping Communities 369
 10.5.1 The Nature of Communities 369
 10.5.2 Maximum-Likelihood Estimation 369
 10.5.3 The Affiliation-Graph Model 371
 10.5.4 Avoiding the Use of Discrete Membership Changes ... 374
 10.5.5 Exercises for Section 10.5 375

10.6 Simrank ... 376
 10.6.1 Random Walkers on a Social Graph 376
 10.6.2 Random Walks with Restart 377
10.6.3 Exercises for Section 10.6 ... 380
10.7 Counting Triangles ... 380
10.7.1 Why Count Triangles? .. 380
10.7.2 An Algorithm for Finding Triangles 381
10.7.3 Optimality of the Triangle-Finding Algorithm 382
10.7.4 Finding Triangles Using MapReduce 383
10.7.5 Using Fewer Reduce Tasks 384
10.7.6 Exercises for Section 10.7 385
10.8 Neighborhood Properties of Graphs 386
10.8.1 Directed Graphs and Neighborhoods 386
10.8.2 The Diameter of a Graph ... 388
10.8.3 Transitive Closure and Reachability 389
10.8.4 Transitive Closure Via MapReduce 390
10.8.5 Smart Transitive Closure ... 392
10.8.6 Transitive Closure by Graph Reduction 393
10.8.7 Approximating the Sizes of Neighborhoods 395
10.8.8 Exercises for Section 10.8 397
10.9 Summary of Chapter 10 .. 398
10.10 References for Chapter 10 ... 402

11 Dimensionality Reduction ... 405
11.1 Eigenvalues and Eigenvectors of Symmetric Matrices 406
11.1.1 Definitions ... 406
11.1.2 Computing Eigenvalues and Eigenvectors 407
11.1.3 Finding Eigenpairs by Power Iteration 408
11.1.4 The Matrix of Eigenvectors 411
11.1.5 Exercises for Section 11.1 411
11.2 Principal-Component Analysis 412
11.2.1 An Illustrative Example ... 413
11.2.2 Using Eigenvectors for Dimensionality Reduction 416
11.2.3 The Matrix of Distances ... 417
11.2.4 Exercises for Section 11.2 418
11.3 Singular-Value Decomposition 418
11.3.1 Definition of SVD ... 418
11.3.2 Interpretation of SVD ... 420
11.3.3 Dimensionality Reduction Using SVD 422
11.3.4 Why Zeroing Low Singular Values Works 423
11.3.5 Querying Using Concepts 425
11.3.6 Computing the SVD of a Matrix 426
11.3.7 Exercises for Section 11.3 427
11.4 CUR Decomposition .. 428
11.4.1 Definition of CUR ... 429
11.4.2 Choosing Rows and Columns Properly 430
11.4.3 Constructing the Middle Matrix 431
11.4.4 The Complete CUR Decomposition 432