Mining of Massive Datasets

Jure Leskovec
Stanford Univ.

Anand Rajaraman
Milliway Labs

Jeffrey D. Ullman
Stanford Univ.

Preface

This book evolved from material developed over several years by Anand Raja-raman and Jeff Ullman for a one-quarter course at Stanford. The course CS345A, titled “Web Mining,” was designed as an advanced graduate course, although it has become accessible and interesting to advanced undergraduates. When Jure Leskovec joined the Stanford faculty, we reorganized the material considerably. He introduced a new course CS224W on network analysis and added material to CS345A, which was renumbered CS246. The three authors also introduced a large-scale data-mining project course, CS341. The book now contains material taught in all three courses.

What the Book Is About

At the highest level of description, this book is about data mining. However, it focuses on data mining of very large amounts of data, that is, data so large it does not fit in main memory. Because of the emphasis on size, many of our examples are about the Web or data derived from the Web. Further, the book takes an algorithmic point of view: data mining is about applying algorithms to data, rather than using data to “train” a machine-learning engine of some sort. The principal topics covered are:

1. Distributed file systems and map-reduce as a tool for creating parallel algorithms that succeed on very large amounts of data.

2. Similarity search, including the key techniques of minhashing and locality-sensitive hashing.

3. Data-stream processing and specialized algorithms for dealing with data that arrives so fast it must be processed immediately or lost.

4. The technology of search engines, including Google’s PageRank, link-spam detection, and the hubs-and-authorities approach.

5. Frequent-itemset mining, including association rules, market-baskets, the A-Priori Algorithm and its improvements.

6. Algorithms for clustering very large, high-dimensional datasets.
7. Two key problems for Web applications: managing advertising and recommendation systems.

8. Algorithms for analyzing and mining the structure of very large graphs, especially social-network graphs.

9. Techniques for obtaining the important properties of a large dataset by dimensionality reduction, including singular-value decomposition and latent semantic indexing.

10. Machine-learning algorithms that can be applied to very large data, such as perceptrons, support-vector machines, and gradient descent.

Prerequisites

To appreciate fully the material in this book, we recommend the following prerequisites:

1. An introduction to database systems, covering SQL and related programming systems.

2. A sophomore-level course in data structures, algorithms, and discrete math.

3. A sophomore-level course in software systems, software engineering, and programming languages.

Exercises

The book contains extensive exercises, with some for almost every section. We indicate harder exercises or parts of exercises with an exclamation point. The hardest exercises have a double exclamation point.

Support on the Web

Go to http://www.mmds.org for slides, homework assignments, project requirements, and exams from courses related to this book.

Gradiance Automated Homework

There are automated exercises based on this book, using the Gradiance root-question technology, available at www.gradiance.com/services. Students may enter a public class by creating an account at that site and entering the class with code 1EDD8A1D. Instructors may use the site by making an account there
and then emailing support at gradiance dot com with their login name, the name of their school, and a request to use the MMDS materials.

Acknowledgements

Cover art is by Scott Ullman.

We would like to thank Foto Afrati, Arun Marathe, and Rok Sosic for critical readings of a draft of this manuscript.

Errors were also reported by Rajiv Abraham, Ruslan Aduk, Apoorv Agarwal, Aris Anagnostopoulos, Atilla Soner Balkir, Arnaud Belletoile, Robin Bennett, Susan Biancani, Amitabh Chaudhary, Leland Chen, Hua Feng, Marcus Gemeinder, Anastasios Gounaris, Clark Grubb, Shrey Gupta, Waleed Hameid, Saman Haratizadeh, Przemyslaw Horban, Jeff Hwang, Rafi Kamal, Lachlan Kang, Ed Knorr, Haewoon Kwak, Ellis Lau, Greg Lee, David Z. Liu, Ethan Lozano, Yunan Luo, Michael Mahoney, Justin Meyer, Bryant Moscon, Brad Penoff, John Phillips, Philips Kokoh Prasetyo, Qi Ge, Harizo Rajaona, Timmon Ruban, Rich Seiter, Hitesh Shetty, Angad Singh, Sandeep Sripada, Dennis Sidharta, Krzysztof Stencel, Mark Storus, Roshan Sumbaly, Zack Taylor, Tim Triche Jr., Wang Bin, Weng Zhen-Bin, Robert West, Oscar Wu, Xie Ke, Nicolas Zhao, and Zhou Jingbo, The remaining errors are ours, of course.

J. L.
A. R.
J. D. U.
Palo Alto, CA
March, 2014
Contents

1 Data Mining 1

1.1 What is Data Mining? 1

1.1.1 Statistical Modeling 1

1.1.2 Machine Learning 2

1.1.3 Computational Approaches to Modeling 2

1.1.4 Summarization 3

1.1.5 Feature Extraction 4

1.2 Statistical Limits on Data Mining 4

1.2.1 Total Information Awareness 5

1.2.2 Bonferroni’s Principle 5

1.2.3 An Example of Bonferroni’s Principle 6

1.2.4 Exercises for Section 1.2 7

1.3 Things Useful to Know 7

1.3.1 Importance of Words in Documents 7

1.3.2 Hash Functions 9

1.3.3 Indexes 10

1.3.4 Secondary Storage 11

1.3.5 The Base of Natural Logarithms 12

1.3.6 Power Laws 13

1.3.7 Exercises for Section 1.3 15

1.4 Outline of the Book 15

1.5 Summary of Chapter 1 17

1.6 References for Chapter 1 18

2 MapReduce and the New Software Stack 21

2.1 Distributed File Systems 22

2.1.1 Physical Organization of Compute Nodes 22

2.1.2 Large-Scale File-System Organization 23

2.2 MapReduce 24

2.2.1 The Map Tasks 25

2.2.2 Grouping by Key 26

2.2.3 The Reduce Tasks 27

2.2.4 Combiners 27
2.2.5 Details of MapReduce Execution 28
2.2.6 Coping With Node Failures 29
2.2.7 Exercises for Section 2.2 30

2.3 Algorithms Using MapReduce 30
2.3.1 Matrix-Vector Multiplication by MapReduce 31
2.3.2 If the Vector v Cannot Fit in Main Memory 31
2.3.3 Relational-Algebra Operations 32
2.3.4 Computing Selections by MapReduce 35
2.3.5 Computing Projections by MapReduce 36
2.3.6 Union, Intersection, and Difference by MapReduce .. 36
2.3.7 Computing Natural Join by MapReduce 37
2.3.8 Grouping and Aggregation by MapReduce 37
2.3.9 Matrix Multiplication 38
2.3.10 Matrix Multiplication with One MapReduce Step .. 39
2.3.11 Exercises for Section 2.3 40

2.4 Extensions to MapReduce 41
2.4.1 Workflow Systems 41
2.4.2 Recursive Extensions to MapReduce 42
2.4.3 Pregel .. 45
2.4.4 Exercises for Section 2.4 46

2.5 The Communication Cost Model 46
2.5.1 Communication-Cost for Task Networks 47
2.5.2 Wall-Clock Time 49
2.5.3 Multiway Joins 49
2.5.4 Exercises for Section 2.5 52

2.6 Complexity Theory for MapReduce 54
2.6.1 Reducer Size and Replication Rate 54
2.6.2 An Example: Similarity Joins 55
2.6.3 A Graph Model for MapReduce Problems 57
2.6.4 Mapping Schemas 58
2.6.5 When Not All Inputs Are Present 60
2.6.6 Lower Bounds on Replication Rate 61
2.6.7 Case Study: Matrix Multiplication 62
2.6.8 Exercises for Section 2.6 66

2.7 Summary of Chapter 2 67
2.8 References for Chapter 2 69

3 Finding Similar Items .. 73
3.1 Applications of Near-Neighbor Search 73
3.1.1 Jaccard Similarity of Sets 74
3.1.2 Similarity of Documents 74
3.1.3 Collaborative Filtering as a Similar-Sets Problem .. 75
3.1.4 Exercises for Section 3.1 77
3.2 Shingling of Documents 77
3.2.1 k-Shingles ... 77
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.1 Finding Identical Items</td>
<td>118</td>
</tr>
<tr>
<td>3.9.2 Representing Sets as Strings</td>
<td>118</td>
</tr>
<tr>
<td>3.9.3 Length-Based Filtering</td>
<td>119</td>
</tr>
<tr>
<td>3.9.4 Prefix Indexing</td>
<td>119</td>
</tr>
<tr>
<td>3.9.5 Using Position Information</td>
<td>121</td>
</tr>
<tr>
<td>3.9.6 Using Position and Length in Indexes</td>
<td>122</td>
</tr>
<tr>
<td>3.9.7 Exercises for Section 3.9</td>
<td>125</td>
</tr>
<tr>
<td>3.10 Summary of Chapter 3</td>
<td>126</td>
</tr>
<tr>
<td>3.11 References for Chapter 3</td>
<td>128</td>
</tr>
<tr>
<td>4 Mining Data Streams</td>
<td>131</td>
</tr>
<tr>
<td>4.1 The Stream Data Model</td>
<td>131</td>
</tr>
<tr>
<td>4.1.1 A Data-Stream-Management System</td>
<td>132</td>
</tr>
<tr>
<td>4.1.2 Examples of Stream Sources</td>
<td>133</td>
</tr>
<tr>
<td>4.1.3 Stream Queries</td>
<td>134</td>
</tr>
<tr>
<td>4.1.4 Issues in Stream Processing</td>
<td>135</td>
</tr>
<tr>
<td>4.2 Sampling Data in a Stream</td>
<td>136</td>
</tr>
<tr>
<td>4.2.1 A Motivating Example</td>
<td>136</td>
</tr>
<tr>
<td>4.2.2 Obtaining a Representative Sample</td>
<td>137</td>
</tr>
<tr>
<td>4.2.3 The General Sampling Problem</td>
<td>137</td>
</tr>
<tr>
<td>4.2.4 Varying the Sample Size</td>
<td>138</td>
</tr>
<tr>
<td>4.2.5 Exercises for Section 4.2</td>
<td>138</td>
</tr>
<tr>
<td>4.3 Filtering Streams</td>
<td>139</td>
</tr>
<tr>
<td>4.3.1 A Motivating Example</td>
<td>139</td>
</tr>
<tr>
<td>4.3.2 The Bloom Filter</td>
<td>140</td>
</tr>
<tr>
<td>4.3.3 Analysis of Bloom Filtering</td>
<td>140</td>
</tr>
<tr>
<td>4.3.4 Exercises for Section 4.3</td>
<td>141</td>
</tr>
<tr>
<td>4.4 Counting Distinct Elements in a Stream</td>
<td>142</td>
</tr>
<tr>
<td>4.4.1 The Count-Distinct Problem</td>
<td>142</td>
</tr>
<tr>
<td>4.4.2 The Flajolet-Martin Algorithm</td>
<td>143</td>
</tr>
<tr>
<td>4.4.3 Combining Estimates</td>
<td>144</td>
</tr>
<tr>
<td>4.4.4 Space Requirements</td>
<td>144</td>
</tr>
<tr>
<td>4.4.5 Exercises for Section 4.4</td>
<td>145</td>
</tr>
<tr>
<td>4.5 Estimating Moments</td>
<td>145</td>
</tr>
<tr>
<td>4.5.1 Definition of Moments</td>
<td>145</td>
</tr>
<tr>
<td>4.5.2 The Alon-Matias-Szegedy Algorithm for Second Moments</td>
<td>146</td>
</tr>
<tr>
<td>4.5.3 Why the Alon-Matias-Szegedy Algorithm Works</td>
<td>147</td>
</tr>
<tr>
<td>4.5.4 Higher-Order Moments</td>
<td>148</td>
</tr>
<tr>
<td>4.5.5 Dealing With Infinite Streams</td>
<td>148</td>
</tr>
<tr>
<td>4.5.6 Exercises for Section 4.5</td>
<td>149</td>
</tr>
<tr>
<td>4.6 Counting Ones in a Window</td>
<td>150</td>
</tr>
<tr>
<td>4.6.1 The Cost of Exact Counts</td>
<td>151</td>
</tr>
<tr>
<td>4.6.2 The Datar-Gionis-Indyk-Motwani Algorithm</td>
<td>151</td>
</tr>
<tr>
<td>4.6.3 Storage Requirements for the DGIM Algorithm</td>
<td>153</td>
</tr>
</tbody>
</table>
CONTENTS

5.6 Summary of Chapter 5 ... 196
5.7 References for Chapter 5 200

6 Frequent Itemsets ... 201
6.1 The Market-Basket Model 202
 6.1.1 Definition of Frequent Itemsets 202
 6.1.2 Applications of Frequent Itemsets 204
 6.1.3 Association Rules 205
 6.1.4 Finding Association Rules with High Confidence 207
 6.1.5 Exercises for Section 6.1 207
6.2 Market Baskets and the A-Priori Algorithm 209
 6.2.1 Representation of Market-Basket Data 209
 6.2.2 Use of Main Memory for Itemset Counting 210
 6.2.3 Monotonicity of Itemsets 212
 6.2.4 Tyranny of Counting Pairs 213
 6.2.5 The A-Priori Algorithm 213
 6.2.6 A-Priori for All Frequent Itemsets 214
 6.2.7 Exercises for Section 6.2 217
6.3 Handling Larger Datasets in Main Memory 218
 6.3.1 The Algorithm of Park, Chen, and Yu 218
 6.3.2 The Multistage Algorithm 220
 6.3.3 The Multihash Algorithm 222
 6.3.4 Exercises for Section 6.3 224
6.4 Limited-Pass Algorithms 226
 6.4.1 The Simple, Randomized Algorithm 226
 6.4.2 Avoiding Errors in Sampling Algorithms 227
 6.4.3 The Algorithm of Savasere, Omiecinski, and Navathe 228
 6.4.4 The SON Algorithm and MapReduce 229
 6.4.5 Toivonen’s Algorithm 230
 6.4.6 Why Toivonen’s Algorithm Works 231
 6.4.7 Exercises for Section 6.4 232
6.5 Counting Frequent Items in a Stream 232
 6.5.1 Sampling Methods for Streams 233
 6.5.2 Frequent Itemsets in Decaying Windows 234
 6.5.3 Hybrid Methods 235
 6.5.4 Exercises for Section 6.5 235
6.6 Summary of Chapter 6 236
6.7 References for Chapter 6 238

7 Clustering ... 241
7.1 Introduction to Clustering Techniques 241
 7.1.1 Points, Spaces, and Distances 241
 7.1.2 Clustering Strategies 243
 7.1.3 The Curse of Dimensionality 244
7.4 The CURE Algorithm ... 262
7.4.1 Initialization in CURE 263
7.4.2 Completion of the CURE Algorithm 264
7.4.3 Exercises for Section 7.4 265
7.5 Clustering in Non-Euclidean Spaces 266
7.5.1 Representing Clusters in the GRGPF Algorithm 266
7.5.2 Initializing the Cluster Tree 267
7.5.3 Adding Points in the GRGPF Algorithm 268
7.5.4 Splitting and Merging Clusters 269
7.5.5 Exercises for Section 7.5 270
7.6 Clustering for Streams and Parallelism 270
7.6.1 The Stream-Computing Model 271
7.6.2 A Stream-Clustering Algorithm 271
7.6.3 Initializing Buckets 272
7.6.4 Merging Buckets ... 272
7.6.5 Answering Queries .. 275
7.6.6 Clustering in a Parallel Environment 275
7.6.7 Exercises for Section 7.6 276
7.7 Summary of Chapter 7 .. 276
7.8 References for Chapter 7 280

8 Advertising on the Web .. 281
8.1 Issues in On-Line Advertising 281
8.1.1 Advertising Opportunities 281
8.1.2 Direct Placement of Ads 282
8.1.3 Issues for Display Ads 283
8.2 On-Line Algorithms .. 284
8.2.1 On-Line and Off-Line Algorithms 284
8.2.2 Greedy Algorithms 285
8.2.3 The Competitive Ratio 286
8.2.4 Exercises for Section 8.2 .. 286
8.3 The Matching Problem .. 287
 8.3.1 Matches and Perfect Matches 287
 8.3.2 The Greedy Algorithm for Maximal Matching 288
 8.3.3 Competitive Ratio for Greedy Matching 289
 8.3.4 Exercises for Section 8.3 290
8.4 The Adwords Problem .. 290
 8.4.1 History of Search Advertising 291
 8.4.2 Definition of the Adwords Problem 291
 8.4.3 The Greedy Approach to the Adwords Problem 292
 8.4.4 The Balance Algorithm 293
 8.4.5 A Lower Bound on Competitive Ratio for Balance 294
 8.4.6 The Balance Algorithm with Many Bidders 296
 8.4.7 The Generalized Balance Algorithm 297
 8.4.8 Final Observations About the Adwords Problem 298
 8.4.9 Exercises for Section 8.4 299
8.5 Adwords Implementation ... 299
 8.5.1 Matching Bids and Search Queries 300
 8.5.2 More Complex Matching Problems 300
 8.5.3 A Matching Algorithm for Documents and Bids 301
8.6 Summary of Chapter 8 ... 303
8.7 References for Chapter 8 ... 305

9 Recommendation Systems .. 307
 9.1 A Model for Recommendation Systems 307
 9.1.1 The Utility Matrix 308
 9.1.2 The Long Tail .. 309
 9.1.3 Applications of Recommendation Systems 309
 9.1.4 Populating the Utility Matrix 311
 9.2 Content-Based Recommendations 312
 9.2.1 Item Profiles .. 312
 9.2.2 Discovering Features of Documents 313
 9.2.3 Obtaining Item Features From Tags 314
 9.2.4 Representing Item Profiles 315
 9.2.5 User Profiles .. 316
 9.2.6 Recommending Items to Users Based on Content 317
 9.2.7 Classification Algorithms 318
 9.2.8 Exercises for Section 9.2 320
 9.3 Collaborative Filtering ... 321
 9.3.1 Measuring Similarity 322
 9.3.2 The Duality of Similarity 324
 9.3.3 Clustering Users and Items 325
 9.3.4 Exercises for Section 9.3 327
 9.4 Dimensionality Reduction ... 328
 9.4.1 UV-Decomposition 328
9.4.2 Root-Mean-Square Error .. 329
9.4.3 Incremental Computation of a UV-Decomposition 330
9.4.4 Optimizing an Arbitrary Element 332
9.4.5 Building a Complete UV-Decomposition Algorithm 334
9.4.6 Exercises for Section 9.4 .. 336

9.5 The NetFlix Challenge ... 337

9.6 Summary of Chapter 9 ... 338

9.7 References for Chapter 9 .. 340

10 Mining Social-Network Graphs ... 343

10.1 Social Networks as Graphs ... 343
10.1.1 What is a Social Network? ... 344
10.1.2 Social Networks as Graphs .. 344
10.1.3 Varieties of Social Networks ... 346
10.1.4 Graphs With Several Node Types 347
10.1.5 Exercises for Section 10.1 .. 348

10.2 Clustering of Social-Network Graphs 349
10.2.1 Distance Measures for Social-Network Graphs 349
10.2.2 Applying Standard Clustering Methods 349
10.2.3 Betweenness ... 351
10.2.4 The Girvan-Newman Algorithm 351
10.2.5 Using Betweenness to Find Communities 354
10.2.6 Exercises for Section 10.2 .. 356

10.3 Direct Discovery of Communities 357
10.3.1 Finding Cliques ... 357
10.3.2 Complete Bipartite Graphs ... 357
10.3.3 Finding Complete Bipartite Subgraphs 358
10.3.4 Why Complete Bipartite Graphs Must Exist 359
10.3.5 Exercises for Section 10.3 .. 361

10.4 Partitioning of Graphs .. 361
10.4.1 What Makes a Good Partition? 362
10.4.2 Normalized Cuts .. 362
10.4.3 Some Matrices That Describe Graphs 363
10.4.4 Eigenvalues of the Laplacian Matrix 364
10.4.5 Alternative Partitioning Methods 367
10.4.6 Exercises for Section 10.4 .. 368

10.5 Finding Overlapping Communities 369
10.5.1 The Nature of Communities ... 369
10.5.2 Maximum-Likelihood Estimation 369
10.5.3 The Affiliation-Graph Model 371
10.5.4 Avoiding the Use of Discrete Membership Changes 374
10.5.5 Exercises for Section 10.5 .. 375

10.6 Simrank ... 376
10.6.1 Random Walkers on a Social Graph 376
10.6.2 Random Walks with Restart ... 377
CONTENTS

10.6.3 Exercises for Section 10.6 380
10.7 Counting Triangles .. 380
 10.7.1 Why Count Triangles? .. 380
 10.7.2 An Algorithm for Finding Triangles 381
 10.7.3 Optimality of the Triangle-Finding Algorithm 382
 10.7.4 Finding Triangles Using MapReduce 383
 10.7.5 Using Fewer Reduce Tasks 384
 10.7.6 Exercises for Section 10.7 385
10.8 Neighborhood Properties of Graphs 386
 10.8.1 Directed Graphs and Neighborhoods 386
 10.8.2 The Diameter of a Graph 388
 10.8.3 Transitive Closure and Reachability 389
 10.8.4 Transitive Closure Via MapReduce 390
 10.8.5 Smart Transitive Closure 392
 10.8.6 Transitive Closure by Graph Reduction 393
 10.8.7 Approximating the Sizes of Neighborhoods 395
 10.8.8 Exercises for Section 10.8 397
10.9 Summary of Chapter 10 .. 398
10.10 References for Chapter 10 .. 402

11 Dimensionality Reduction ... 405
 11.1 Eigenvalues and Eigenvectors of Symmetric Matrices 406
 11.1.1 Definitions .. 406
 11.1.2 Computing Eigenvalues and Eigenvectors 407
 11.1.3 Finding Eigenvectors by Power Iteration 408
 11.1.4 The Matrix of Eigenvectors 411
 11.1.5 Exercises for Section 11.1 411
 11.2 Principal-Component Analysis 412
 11.2.1 An Illustrative Example 413
 11.2.2 Using Eigenvectors for Dimensionality Reduction 416
 11.2.3 The Matrix of Distances 417
 11.2.4 Exercises for Section 11.2 418
 11.3 Singular-Value Decomposition 418
 11.3.1 Definition of SVD .. 418
 11.3.2 Interpretation of SVD 420
 11.3.3 Dimensionality Reduction Using SVD 422
 11.3.4 Why Zeroing Low Singular Values Works 423
 11.3.5 Querying Using Concepts 425
 11.3.6 Computing the SVD of a Matrix 426
 11.3.7 Exercises for Section 11.3 427
 11.4 CUR Decomposition .. 428
 11.4.1 Definition of CUR .. 429
 11.4.2 Choosing Rows and Columns Properly 430
 11.4.3 Constructing the Middle Matrix 431
 11.4.4 The Complete CUR Decomposition 432
11.4.5 Eliminating Duplicate Rows and Columns 433
11.4.6 Exercises for Section 11.4 434
11.5 Summary of Chapter 11 . 434
11.6 References for Chapter 11 . 436

12 Large-Scale Machine Learning . 439
12.1 The Machine-Learning Model . 440
 12.1.1 Training Sets . 440
 12.1.2 Some Illustrative Examples 440
 12.1.3 Approaches to Machine Learning 443
 12.1.4 Machine-Learning Architecture 444
 12.1.5 Exercises for Section 12.1 447
12.2 Perceptrons . 447
 12.2.1 Training a Perceptron with Zero Threshold 447
 12.2.2 Convergence of Perceptrons 451
 12.2.3 The Winnow Algorithm . 451
 12.2.4 Allowing the Threshold to Vary 453
 12.2.5 Multiclass Perceptrons . 455
 12.2.6 Transforming the Training Set 456
 12.2.7 Problems With Perceptrons 457
 12.2.8 Parallel Implementation of Perceptrons 458
 12.2.9 Exercises for Section 12.2 459
12.3 Support-Vector Machines . 461
 12.3.1 The Mechanics of an SVM 461
 12.3.2 Normalizing the Hyperplane 462
 12.3.3 Finding Optimal Approximate Separators 464
 12.3.4 SVM Solutions by Gradient Descent 467
 12.3.5 Stochastic Gradient Descent 470
 12.3.6 Parallel Implementation of SVM 471
 12.3.7 Exercises for Section 12.3 472
12.4 Learning from Nearest Neighbors 472
 12.4.1 The Framework for Nearest-Neighbor Calculations 473
 12.4.2 Learning with One Nearest Neighbor 473
 12.4.3 Learning One-Dimensional Functions 474
 12.4.4 Kernel Regression . 477
 12.4.5 Dealing with High-Dimensional Euclidean Data 477
 12.4.6 Dealing with Non-Euclidean Distances 479
 12.4.7 Exercises for Section 12.4 479
12.5 Comparison of Learning Methods 480
12.6 Summary of Chapter 12 . 481
12.7 References for Chapter 12 . 483