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ABSTRACT e Block (or “chunk”) sizes that are perhaps 1000 times

larger than those in conventional file systems — multi-
Implementations of map-reduce are being used to perform  Megabyte instead of multikilobyte.
many operations on very large data. We explore alternative o Replication of blocks in relatively independent locations
ways that a system could use the environment and capabilities  (e.g., on different racks) to increase availability.
of map-reduce implementations such as Hadoop, yet perform

operations that are not identical to map-reduce. The center- A powerful tool for building applications on such a file sys-
piece of this exploration is a computational model that captem is map-reduce [10] or its open-source equivalent Hadoop
tures the essentials of the environment in which systems likg). Briefly, map-reduce allows a Map function to be applied
Hadoop operate. Files are unordered sets of tuples that cgsdata stored in one or more files, resulting in key-value pairs.
be read and/or written in parallel; processes are limited in thf1any instantiations of the Map function can operate at once,
amount of input/output they can perform, and processors agnd all their produced pairs are routed bgnaster controller
available in essentially unlimited supply. We develop, in thisto one or more Reduce processes, so that all pairs with the
model, an algorithm for sorting that has a worst-case runningame key wind up at the same Reduce process. The Reduce
time better than the obvious implementations of parallel sortprocesses apply a Reduce function to combine all the values
Ing. associated with one key and produce a single result for that
key.

Map-reduce also offers resilience to hardware failures, which
1. Introduction can be expected to occur during a massive calculation. The
master controller manages Map and Reduce processes and is

Search engines and other data-intensive applications procedde to redo them if a process fails.

large amounts of data that need special-purpose computationshe new software stack includes higher-level, more database-
The most well-known problem is the sparse-matrix-vector caljiye facilities, as well. Examples are Google’s BigTable [8],
culation involved with PageRank [6], where the dimension Ofpr yahoo!'s PNUTS [9], which are essentially object stores.
the matrix and vector can be in the 10's of billions. Most of ot 5 siill higher level, Yahoo!'s PIG/PigLatin [19] translates

these computations are conceptually simple, but their size hag|ational operations such as joins into map-reduce computa-
led implementors to distribute them across hundreds or thoyjons. [1] shows how to do multiway joins optimally using

sands of low-end machines. This problem, and others like "map-reduce.
led to a new software stack to take the place of file systems,

operating systems, and database-management systems. 1.2 Contribution of this Paper

1.1 The New Software Stack There are concerns that as effective the map-reduce frame-
work might be for certain tasks, there are issues that are not
Central to this stack is distributed file systersuch as the effectively addressed by this framework. [12] argues that the
Google File System (GFS) [15] or Hadoop File System (HFS§gfficiency ofa DBMS, as embodied intools such as indexes, are
[3]. Such file systems are characterized by: missing from the map-reduce framework. Of note is the recent
work on Clustera [13], which uses the same distributed file sys-
tem as do map-reduce systems, but allows a far more general
set of interacting processes to collaborate in a calculation.
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its consequences for the fundamental problems of sorting arate executed by processor nodes and are executed by a single
merging. processor. Here are the assumptions we make about files, pro-

. . ._cesses and processors.
Inthe proposed model, algorithms are acyclic networks of in-

terconnected processes. We evaluate algorithms by the amount

of data that must be moved among the processes, both in tofailes.

and along any path in the network of processes. Map-reduceA file is a set of tuples. It is stored in a file system such
algorithms are a special case of algorithms in this model. Howas GFS, that is, replicated and with a very large block size
ever, many interesting algorithms are not of the map-reduc®ypically, b is 64 Megabytes, and these blocks, often called
form. chunks are not related to the blocks used in conventional disk

The sorting task has often been used for testing computas—torage' Unusual assumptions about files are:

tional environments about data management applications. For ) ) ]
example, the goal in [4, 7, 22] is to explore the viability of 1. We assumethga orderoftuplesin a_flle cannptbe pred!cted,
commercial technologies for utilizing cluster resources, racks ~ 1hus, these files are really relations as in a relational
of computers and disks; in these works, algorithms for exter- ~ DBMS.

nal sorting are implemented with the focus on I/O efficiency.
These algorithms are tested against well known benchmarks
[18, 22].

In this paper, we offer sorting algorithms that follow our
model. They are not well suited to the map-reduce form of com-
putation, but can be expressed easily as a network of processes.
In broad outline, we follow a Mergesort strategy, because that
approach offers the opportunity to give a strong upper bound
on running time. Competitors for the Terasort [24] competition
(large-scale sorting benchmarks) normally follow a Quicksor

style of algorithm, which has a bad worst case that is irrelevarft 'OC€SSES. . _ .
in such a competition. A process is the conventional unit of computation. It may

obtain input from one or more files and write output to one or
more files. The unusual aspect of processes in our model is
that we assume there are upper and lower limits on how much
ﬁ1put and output a process may have. The lower limit is the
block sizeb, since if it gets any input at all from a file, it will
get at least one block of data (which could be mostly empty,
e Based on similar ideas, we develop a merging algorithniut in our cost model, to be discussed, the process must “pay”
in Section 4.7. for a full block). There is also an upper limit on the amount of
data a process can receive. This limit, which we denote, by
o We develop a sorting algorithm for any numbeof el-  can represent one of several things, such as:
ements in Sections 4.6 through 4.9. The algorithm has

been designed to minimize the worst-case cCommunica- 1 The amount of time we are willing to spend moving data
tion cost, which we show i) (nlog™ " n). from the file system to or from the local storage of the pro-
cessor that executes the process. The typical computing
environment in which our model makes sense is a rack
or racks of processors, connected by relatively low-speed

2. Many processes can read a file in parallel. That assump-
tion is justified by the fact that all blocks are replicated
and so several copies can be read at once.

3. Many processes can write pieces of a file at the same
time. The justification is that tuples of the file can appear
in any order, so several processes can write into the same
buffer, or into several buffers, and thence into the file.

e In Section 4.1, we offer an algorithm with four layers
of processes (compared with two layers in map-reduc
algorithms) that we argue can be used for sorting
elements using today’'s commodity hardware.

¢ In Section 4.5 we argue that there is@fm log n) lower
bound on sorting in our model.

¢ In Section 4.8 we give an asymptotically better sort- interconnect, e.g., gigabit Ethernet. In that environment,
ing algorithm with communicatio®(n log n log? log n). even loading main memory can take a minute, assuming
However, this algorithm may, in practice, use more com- N0 contention for the interconnect.

munication than the earlier algorithm because the base of ,

; . . The amount of available main memory at a processor.
the logarithms involved is much smaller.

This choice makes sense if we want to avoid the cost of

moving data between main memory and local disk. Note

. . that, depending on what a process does, only a fraction

2. A Model for Cluster-Computing Algorithms of the total main memory may be available to hold input

data. For instance, a number of algorithms implemented

Here, we introduce the data elements of the model and then  on Clustera have used a quarter of a gigabyte as the value

discuss the different cost measures by which we evaluate algo-  of s [11].

rithms.

We shall leaves as a parameter without choosing one specific
2.1 Elements of the Model interpretation. We could alternatively allow fenot to reflect
a physical limit on processors but rather to force processes
Algorithms in the model we propose are networks of pro-to be of limited scope and thereby to constrain algorithms to
cesses. Each process operates on data stored as files. Procesbe&sn lots of parallelism. It is interesting to note tkaandb



may not differ by too much. However, as we shall see, itisthe e A communication costvhich we define to be the size

parametes, limiting input/output size for a single process that of the input data to this particular process.
has the most influence on the design of algorithms. In order to ] o o
simplify arguments in what follows, we shall often treatot e A processing costvhich is the running time of the pro-

as an absolute limit, but as an order-of-magnitude limit. That cess.
is, we shall allow processes that have input and/or output size

O(s), where some small constant is hidden inside the big-oh.Typically, the processes themselves perform tasks that are of
low computational complexity, so the processing cost of a pro-
cess is dominated by the time it takes to get the data to the

Managmg Procgsses. . processor, i.e., the processing cost is proportional to the com-
As is normal in any operating system, processes may bgnication cost.

created, named, and referred to by other processes. We as-

sume there is anaster processhat represents the algorithm  In addition, we assume a lower bouhénd an upper bound

as a whole and is responsible for creating at least some of theon the communication cost of each process. That is, an algo-

processes that constitute the algorithm. It is also possible faithm is not allowed to feed any process with data of size larger

processes to be created dynamically, by other processes, sothans and when we count the communication of a process this

algorithm’s processes may not be determined initially. Thecount cannot be less thar(since we have to pay that price in

operations we assume are available to manage processes aud distributed file system). However, we allow bounds on the

to transmit data among them are: communication cost of a process to be adhered to in a “big-oh”
sense; that is, a process can héMg) communication cost if

« Create(P) If a process with namé does not exist, it 1S the upper bound.

is created. IfP already eXiStS, then this Operation has Our goa| is to Study efficient Computation’ SO we need to

no effect. We assume that the code to be executed byeasure the communication cost and processing cost of algo-
the process is implied by the name, so there can be n§thms as a whole. Thus, we define:

ambiguity about what a process is supposed to do.

e Push(D,P) A process may send (part of) its output data, ® Thetotal communication cogtotal processing coste-

designated by to the process namef. spectively) is the sum of the communication (processing,
respectively) costs of all processes comprising an algo-
e Pull(D,P): A process) may request some other process rithm.

P to send@ (part of) its output data, designated by o .

The dataD need not be available at the time thiscommand  ® Theelapsed communication cqstapsed processing cost

is executed by); the data will be sent when ready. respectively) is defined on the acyclic graph of processes.
Consider a path through this graph, and sum the commu-
nication (processing, respectively) costs of the processes
along that path. The maximum sum, over all paths, is the

Processors. elapsed communication (processing, respectively) cost.

These are conventional nodes with a CPU, main memory, and
secondary storage. We do not assume that the processors hol% . .
particular files or components of files. There is an essentially, ON the assumption that the processes themselves do a fairly
infinite supply of processors. Any process can be assignedn%me”tary operation on their data, the time taken to deliver the
any processor, but to only one processor. We do not assunfét@ t0 & process dominates the total time taken by a process. If
that the application can control which processor gets whicl{©U &€ using a public cloud to do your computing, you “rent
process; thus, it is not possible for one process to pass datatﬂﬂe on processors, so the sum, over all processes, of the time

another by leaving it at a processor. aken by that process is what you pay to run the algorithm.
Thus the total communication cost measures the monetary cost

i of executing your algorithm.
2.2 Cost Measures for Algorithms

On the other hand, elapsed communication cost measures
An algorithmin our model is an acyclic graph of processes (athe wall-clock time the algorithm requires. Again, we assume
network of processes) with an arc from procésgo process that the running time of any process is dominated by the time
P, if P, generates output that is (part of) the input®g.  to ship its data, and we also assume that we can obtain as
Processes cannot begin until all of their input has been create@iany processors as we need. If processor availability is not
Note that we assume an infinite supply of processors, so adinited, then processes execute as soon as all their predecessors
process can begin as soon as its input is ready. Each proces§ighe graph of processes have completed, and their data has
characterized by: been delivered. Thus, elapsed communication cost measures

the time from the beginning to the end of an algorithm on a
!In current map-reduce implementations, data is passed between M@Bmputing cloud

and Reduce processes not through the file store, but through the lo- ’

cal disks of processors executing the processes. We do not take into

account, when we consider the cost measures for algorithms in Seg-3 Comparison With Other Models

tion 2.2, of the possibility that some time can be saved by not having

to move data between certain pairs of processes. However, in the al- . . -

gorithms we propose, this additional cost issue would not result in an Models in which processors have limited resources and/or

order-of-magnitude difference in the results. limited ability to communicate with other processors have been




studied for decades. However, the constraints inherent in the The more general communication-complexity models also
new distributed file systems are somewhat different from whadliffer from ours in assuming that the data is distributed among
has been looked at previously, and these differences naturaliiye processors and not shared in ways that are permitted by
change what the best algorithms are for many problems. our model. In particular, our ability to share data through files
changes the constraints radically, compared with models such

The Kung-Hong Model. as [20].

A generation ago, the Kung-Hong model [16] examined the
amount of I/O (transfer between main and secondary memong.  Sorting by Standard Methods
that was needed on a processor that had a limited amount of
main memory. They gave alower bound for matrix-multiplicationNow, we shall take up the familiar problem of sorting. As
in this model. The same model was used to explore transitivze shall see, there is a tradeoff between the elapsed time/com-
closure algorithms ([2], [26]) later. One important differencemunication costs and the total costs.
between the Kung-Hong model and the model we present here o )
is that we place a limit on communication, not local memory. 10 begin, since our model does not support sorted lists, one
Example 2.1 As a simple example of how this change affectdnight ask if it is even p.055|blle to sort. A reasonab_le substitute
algorithms, consider the simple problem of summing a ver§or ordering elements is assigning the proper ordinal to every
large file of integers. In the Kung-Hong model, it is permitted€lement. That is, for our purposes a sorting algorithm takes a
to stream the entire file into one process, and use main memofie of n pairs(zo,0), (z1,1), (z2,2),...,(zp—1,n —1)in
to hold the sum. As long as the sum itself is not so large that ihich then elementsre each paired with an arbitrary, unique
cannot fit in main memory, there is no limit on how much datdnteger from 0 ton — 1, and produces a set of pairs (z, 1),
can be read by one process. wherez is one of the input elements, ani its position in the

In our model, one process could only read a limited amoungorted order of the elements.

s of the file. To sum a file with more tharintegers, we would /o begin by implementing some standard techniques in our

have to use a tree of processes, and the elapsed communication, o “However, they are not optimal, either in our model or
would be greater than the length of the file by a logarithmic;, \1)ore familiar models of parallel computation. We then offer

factor. On the other hand, because we permit paraliel execgén algorithm that uses communication cost close to the optimal
tion of processes, the elapsed time would be much less un 2

our model than under Kung-Hong. O hd polylogarithmic elapsed cost.

3.1 Batcher Sort
The Bulk-Synchronous Parallel Model.

In 1990, Valiant [27] introduced the BSP model, a bridging  For a sorting algorithm that is guaranteed to®g: log n)
model between software and hardware having in mind suchnd works well with non-main-memory data, you usually think
applications as those where communication was enabled By some variant of merge-sort. However, in our model, merging
packet switching networks or optical crossbars, although thgyge sorted files is problematic, because merging appears se-

model goes arguably beyond that. One of the concerns Wag,ential. Obvious implementations would imglin) elapsed
to compare with sequential or PRAM algorithms and ShOV\tommunication/processing costs.

competitiveness for several problems including sorting. In

[14], a probabilistic algorithm for sorting is developed for this  Known parallel sorting algorithms allow us to get close to
model. This algorithm is based on quicksort and its goal irthe optimalO(log n) elapsed processing cost. For example, we
this algorithm is to optimize the competitive ratio of the total can use a Batcher sorting network [5] to gk(ﬂogQ n) elapsed
number of operations and the ratio between communicatiopost. A similar approach is to use th&n log? n) version of

time and border parallel computation time (i.e., computatiorshel| sort [23] developed by V. Pratt ([21] or see [17]).
time when the competitive ratio is equal to one). Recently

in [28], Valiant proposed the multi-BSP model which extends While we shall notgo into the details of exactly how Batcher’s
BSP. These works differ from ours in the assumptions about thgorting algorithm works. At a high level, itimplements merge-
systems that are incorporated to the model and the measurg®t with a recursive parallel merge, to make good use of paral-
by which algorithms are evaluated. lelism. The algorithm is implemented by a sorting network of
comparatorgdevices that take two inputs, send the higher out
L . on one output line and the lower out on the second output line),
Communication Complexity. _ a simple instance of which is suggested by Fig. 1. There are
There have been several interesting models that address COPlog? n) columns ofn/2 comparators each. Theinput ele-
munication among processes. [20] is a central workin this aregents enter in any order on the left and emerge in sorted order

although the first studies were based on VLSI complexity, €.9y, the right. For convenience, we shall describe the algorithm
[25] — the development of lower bounds on chip speed angy, the case where is a power of 2.

area for chips that solve common problems such as sorting.

Our model is quite different from VLSI models, since we place There is a simple pattern that determines which comparator
no constraint on where processes are located, and we do rmitputs are connected to which comparator inputs of the next
assume that physical location affects computation or commuweolumn. If we think of the outputs of the comparators as
nication speed (although strictly speaking, the placement afumbered in orded, 1,...,n — 1, then the connections from
processes on the same or different racks might have an effeasbe column to the next are determined by writing the integer
on performance). number of each comparator output in binary, and rotating the



N 1. aren/s processes per column of the network, ai@dog® n)
e — columns, the total processing time(IE(nlog2 n). Likewise,

- - we can argue that the elapsed processing tint(islog? n).
- Thus we have proved for Batcher sort (all logarithms are in
—L| L base 2):
T — Theorem 3.2 The algorithm in Section 3.1 sortselements
L T with the following costs: a) total communication(n log® n),

- - b) elapsed communicatiad(s log® n), c) total processing time
e — O(nlog® n) and d) elapsed processing tirfik s log? n).

Figure 1: Part of a Batcher sorting network 3.3 Sorting Under Hadoop

It turns out that becauseg of the way Hadoop is implemented,
. . : it offers a trivial way to sort. The input to any Reduce process
'?'Ir]nizrg n;rgqt?:nr ir;gggl?g%lﬁzh\gfmeerdﬁ depends on the column. is always sorted by key. Thus, a single Map process and a single
P . Reduce process, both implementing the identity function, will
Example 3.1 Suppose: = 8 andk = 2. Output 5 is repre-  regylt in the input being sorted. However, this algorithm is

sented by 101 in binary. If we rotate right 2 places, the nuUminnherently serial, and is not a solution to the problem of sorting
ber becomes 011, or 3 in decimal. That is, if the connectioery |arge sets.

between one column and the next is governed by 2, then
the output number 5 becomes the input number 3 at the next
column. 4. Efficient Sorting Algorithms

Output 1 is represented by 001, and if we rotate right 2
places, the number becomes 010. That is, output 1 becomesyhile Batcher or Shell sorts implemented in our model can
input 2. There is an important connection between outputs Be fairly efficient and simple, they are not the best we can do.
and 1 in this case. Since they differ only in their last bit afterye shall show next an algorithm that is close to the theoretical
rotation, they will be inputs to the same comparator at the nexfower bound for sorting in this model. We begin by discussing a
column. particular algorithm that sorts = s3/2 distinct elements with
a network of processes with constant depth, and then show
how to extend the idea to sort any number of elements with
Opolylogarithmic network depth.

Now, let us implement Batcher sort in our model. Each
column of comparators will be implementedhys processes,
where as usuah is the number of elements to be sorted, an

s is the limit on input size for a process. The only constraint Note, however, that = s3/2 is sufficient for most practical

on which elements are assigned to which process are that thgrposes. For example, if is 108 (one hundred million)
two inputs to a comparator must be sent to the same procesements — a number of elements that should fit in a typical
As we saw in Example 3.1, numbers that differ only in the bitmain memory — then even our first algorithm can siirt?

that will become leftmost after &-shuffle are sent to the same (e trillion) elements.

process. Thus, for each value bf we must choose a hash

function h;, that does not depend on ttket 1st bit from the )

right end. If the Batcher sort moves data from one column té-1 The Constant-Depth Algorithm

the next using &-shuffle, then we send the element on ithe

output of a process to thg, (7)th process for the next column.  For convenience, we shall assume that communication sizes
are measured in elements rather than in bytes. Thissthe
number of elements (with their attached ordinal numbers) that
can be input or output to any process, arid the total number

of elements to be sorted. The algorithm uses a parampeter
and we definen = p® ands = p?. The following method
|sortsn = p? elements, usin@(p?) total communication, with
8ommunication cost for each process equal (p?). We begin
with an outline, and later discuss how the work is assigned to
processes and how the processes communicate.

3.2 Analysis of Batcher Sort

As we stated, there ar@(log” ) columns in Batcher’s net-
work. Simulating the network in our model requires that al
n elements be communicated from column to column, so th
total communication i€ (n log? n). Paths in the connection
graph areO(log® n) long, so the elapsed communication is
O(slog?n). Step 1 Divide the input intop lines each having? el-

] o ements. Sort each line using a single process. Recall that
~ We can execute a process((s) time. The justification "sorting" in this context means attaching to each element an
is that itss inputs can be arranged in linear time so elementsnteger that indicates where in the sorted order, the element

whose associated integers differ only in the last bit can b@ould be found. The output is a set of (element, ordinal) pairs,
compared, and their associated integers swapped if they agfgther than a sorted list.

out of order. We can then apply to each element’s integer the
proper hash function to implement the next shuffle. Since theréThanks to Ragho Murthy for making this point.




Step 2 For each line, the-th, 2p-th, 3p-th, and so on up each such process, as needed. Before proceeding, consider the
to elementp? is asentinel The number of sentinels in each following example.
line is p, and the total number of sentinelsyd. We sort the

sentinels, using another process. Let the sentinels in sort ample 4.2 Letus consider how Steps 3 and 4 would work

if the outcome of Step 2 were as seen in Fig. 2. For the first

order beao, az, ..., apz . line, the elements of subgroup (i.e., those elements that are
- Pm at mosta) are found among the firgt= 4 elements of the line
(i.e., those up to and including;, although surelya; is not
a a a a among them). For the second line, the elements of subgroup
T A Lo are exactly allp = 4 first elements of the line.
Now, considerL; (i.e., those elements that are larger than
- 80 - - -84 .. - 8p - . . 8y a4 but no greater thanu;). They are found among the third
p = 4 elements of the first and second lines, among the first
-+« .89 ... 4812. .. 814. .. 415 group in the third line, and among the second group of the last
l line. For the first line, all subgroup$; for ¢ > 7 are empty.
. a2 .. .¥y9 - - - A17- - . A13 O

Step 3 The goal of this step is to partition each line into
the variousL;'s. As seen in the third column of Fig. 3, there
arep processes, one for each line. In addition to the sorted
line as input, each of these processes takes the entire sorted

Example 4.1 Figure 2 illustrates a possible outcome of Steps/iSt Of sentinels. Note that the input size is tyg = 2, but
1 and 2 for the case — 4. If there were a large number we have, for convenience in description, allowed a process to

of randomly ordered elements to be sorted, we would expe ke O(s) input rather than exactly. The process for ling

that the firstp sentinels would be the first sentinels from eachietermines to whictl; each element belongs. It can do so,

line, in some order. However, it is in principle possible for since it sees all the sentinels. The process also determines, for
the sentinels to be unevenly distributed. For instance, we ha ch sentltna.tﬁ,go.v\ll mar:%/ eletrf?ents '.?. "”ﬁaf;‘“? Ietzrs]s tha?,;d
suggested in Fig. 2 that the first sentinel of the third line follows. S count witl be: 1ess than the position al; in the sorte

all the sentinels of the first two lines. On the other hand, sinc@rOIer of thedllnte t?]nd the selrrl;?r?ls, rtnefrgled). It:|r]1ally, tﬁaCh
the lines are sorted, the sentinels within a line must appear ifprOCEsS Senas 1o the process € setot elements from the
sorted order. 0 line that belong td; and the count of elements less thgn

- p2—>

Figure 2: Sorting: lines and sentinels

Step 4 With this information, the process fdr; (shown in
the fourth column of Fig. 3) can determine the order of elements
in L;. Since it knows how many elements in the entire set to be
sorted are less than, it can also determine the position, in the
entire sorted list, of each member bf. Finally, we note that,
since no one line can have more thaalements belonging to
any oneL; (and usually has many fewer thaj the input to
the process foL; can not be larger thagp? = s.

In summary, the sorting algorithm of this section is the fol-
lowing:

Create Assemble

lins M Pick Li's  Output ALGORITHM CONSDEP-SORTING

Sentindls  Li's and Sort

. . . . . Step 1 Divide the input intop lines each having? ele-
Figure 3: The processes involved in the sorting algorithm  ents. Create processes and push the data of the lines to
of Section 4.1 them. Sort each line using a single process.

. . ) Step 2 For each line, the-th, 2p-th, 3p-th, and so on up
Figure 3 illustrates the network of processes tha constitutg, elementy? is asentinel Sort the sentinels, using another
entire sorting algorithm. The first two columns of processe@rocess_ Creatg? processes for Step 4. '

correspond to the first two steps. There are two more step

corresponding to the last two columns of Fig. 3. Their goal Step 3 Createp processes and pull the data from Steps 1
is to construct the? sets of elementsg, L1, . . .,L,2_1such and 2 as explained below. For each initial line construct a
that all elements irl; are less than or equal tg and greater process with input this line and the sentinels. Sort the input
thana,;_; (unless = 0, inwhich case there is no lower bound). of each process. Suppose the sentinels in sorted order are
In Step 4 we have one process for edgh These processes ag,as,...,a,2_1. The output of each process is distributed as
are constructed by the master process and given a name tlialows: The elements that are betwegn ; anda; are fed to
incorporates the indexif the process is to handle the elementsthe process labelel;, foralli = 0,. .., p?> — 1. Each process

of L;. We need to divide the lines among the processes, aralso determines, for each sentirg] how many elements in
that division is the job of Step 3. The processes of Step 3 caime j are less tham,; this count isi less than the position of
deduce the name of the process fgrand can push data to a; in the sorted order of the line and the sentinels, combined.



Step 4 Each process obtains its associated set of elements  (a) The sum of their input sizes i9(n) = O(p?) =

L;, sorts them and computes their global order as follows. The 0(53/2), because each original input goes to only
count ofa; is the sum of the counts fed from the processes of one of the processes. The additional information
Step 3. The global rank of an elementn processL; is the sent to each process for Step 4 is one count of ele-
count fora; minus the number of elements bf that follow x ments below its sentinel from each of the processes
in the order of elements at process of Step 3. That information is onl§)(p) additional
input, orO(n) total for all p* processes. Thus, the
4.2 Communication and Processing Costs cEONSDEP- total communication for Step 4 @&(n). We already
SORTING observed that no one process at Step 4 gets more

than O(s) input, so that is the elapsed cost upper

The communication and processing costs for the processes bound for this step.
in each of the columns of Fig. 3 are easy to analyze. We can (b) For the processing time, each of theslements is

then sum them to get the total costs. All paths through the involved in the sorting that goes on at one of the
network of Fig. 3 have exactly one process from each column, processes of Step 4. There can be at ni&t)

so elapsed costs are also easy to obtain. This analysis and the elements at one process, so the total processing time
correctness of the algorithm are formally stated in the theorem is O(nlog s). The elapsed time at any one process
below: is (at most)O(slog s).

Theorem 4.3 Suppose the communication cost allowed for i
each process is less than= p2. Then algorithmCONSDEP- If we add the costs of the four steps, we find that the total

SORTING constructs a network of processes which correctlycommunication cost i€)(n). The total processing cost is

sortsn = p* elements. Moreover, the costs of the network areO (72108 5); the elapsed communication cost(gs), and the

1) Total communication cos©(n) 2) Elapsed communication €/apsed processing costi®slog s). [

cost: O(s) 3) Total processing costO(nlogs) 4) Elapsed

processing costO(slog s). Note that since: < s3/2 was assumed)(log s) is the same

o ] asO(logn), so the total processing costign log n), as would

PROOF. First it is clear that the algorithm uses only pro- pe expected for an efficient sort. The elapsed processing cost

cesses whose input and output do not exa@ed). The cor- s significantly less, because we are doing much of the work in

rectness of the algorithm is a consequence of the followingarallel. However, the algorithm is not as parallel as the best

facts: a) the sentinels of all lines are sorted in Step 2, b) theorts, because we are constrained to take fairly large chunks of

elements from each line that lie between two consecutive seftata and pass them to a single process. Of course, if the process

tinels are found in Step 3 and c) each process in Step 4 sofitSelf were executed on a multicore processor, we would get

exactly all elements that lie between two consecutive sentinelgdditional speedup due to parallelism that is not visible in our
and places them in their correct global position. The analysesodel.

for the costs are done by column (or equivalently, step) of the
algorithm: . ) .
4.3 Dealing With Large Block Size

1. For Step 1, each process takes input of gize= s and  There is one last concern that must be addressed to make the
makes output of siz&(s). Thus, the elapsed communi- gnalysis of Section 4.2 precise. Recall that we assume there is
cationisO(s). Since itis sorting)(s) elements, presum- 4 jower bound on block size that may be significant in Step 4.
ably by an efficient sort, we take the elapsed processingnere we have? processes, each with an averagegp) =
time to beO(slog s). Thus, for this step the total commu- O(/3) input. If b > /s, as might be the case in practice, we
nication cost for the processes i6)(ps) = O(n). Thus  ¢could in fact require(bp?) > O(n) communication at Step 4.
the total processing costi®(pslog s) = O(nlog s).

Fortunately, it is not hard to fix the problem. We do not have

2. Step 2is similarto Step 1. The elapsed costs are the sam®, usep? distinct processes at Step 4. A smaller number of
but since there is only one process instead,dhe total  processes will do, since we may combine the work of several
communication is onlyO(s), and the total processing of the processes of Step 4 into one process. However, combin-
costisO(slog s). ing the processes arbitrarily could cause one of the combined

. 9 processes to get much more thamnput, which is not per-

3. In Step 3, the processes take input of gi#g") = O(s) itted. Thus, we might need to introduce another columns
and make output of the same size. Thus, the e'apseg processes between Steps 3 and 4. Each process reads the
communication cost i€)(s). One way to achieve the o nts of elements below eachyofonsecutive sentinels, from
goals of this step is to merge the elements of the line withy, oy of thep lines, and combines them as needed into fewer

the sentinels, so we assert the elapsed processing COSW]%mp groups of sentinels, as evenly as possible.
O(s). Since there arp processes at this step, the total '

communication cost i®(n) and the total processing cost

is O(n) as well. 4.4 Comparison With Batcher Sort

4. Step 4 must be analyzed more carefully. Thergare s The sorting algorithm of Section 4.1 works for only a limited
processes, rather thanprocesses as in Steps 1 and 3.input sizen; that limit depends on the value chosen for
However: However, for a realistic choice of ands, says = 10'° and



n = 10'?, the algorithm requires a network of depth only four. inputs each, then we must replace each box in Fig. 3 by the
In comparison, the Batcher network has depth over 1000 fanetwork of Fig. 3 itself.

n = 10'®. While we can undoubtedly combine many layers . .

of the Batcher network so they can be performed by a singI% It should be evident that Steps 1 and 2 of Algorithm Cons-

layer of processes with input size= 101°, it is not probable ~ D€P-Sorting (columns 1 and 2 of Fig. 3) can be implemented by
that we can thus get even close to four layers. sorting networks. The same is true for Step 4, although there is

a subtlety. While Steps 1 and 2 use boxes thatselktments,
Morever, we shall see in what follows that we can build net-Step 4 (column 4) uses boxes that sort variable numbers of
works for arbitrarily large: and fixeds. The communication elements, up te. However, we shall imagine, in what follows,
cost for this family of networks is asymptotically better thanthat Step 4 uses/s boxes ofs inputs each. Considering a

that of Batcher sort. communication functiorC(n) that is smooth, the following
arguments are sufficient to derive that the communication cost
4.5 A Lower Bound for Sorting of s boxes, when replaced by networks, is no greater than that

of /s sorters ofs elements each:

There is a lower bound of2(nlog, n) for sorting in the
model we have proposed which is proven in Theorem 4.4. The 1. The communication cost of sortingelements is surely
argument is a simple generalization of the lower bound on at least linear im,

comparisons. ) )
) 2. No box in column 4 uses more tharinput, and
Theorem 4.4 Suppose the upper bound on the communica-

tion cost for each process is Then any network in our model 3. The sum of the input/output sizes of all the boxes in
that sortsn elements has total communication c@st log, n). column 4 iss®/2,

PROOF First we argue that we cannot sort more than
elements wherer! = (s1!)(s2!)--- assuming that we have
some number of processes whose inputs consist,ch, . . .
elements. Once a process reads a fixeelements, then all it
can do is learn the order of these elements. That informatiopemma 4.5 Suppose that a functiofi(n) is such thatC'(n)
reduces the number of possible ordersnotlements by at _ anlog'* n, wherea andb are constants. Suppose thiat+
most a factor ofs;!. We can assume the true order of the . PR Y d '
elements is the one that leaves the most remaining possibilitiég - -+ % =77 an
after executing a process that examingglements. Thus, if mazx(iy, is, ..., i) <N
we havep processes with input, so, . . ., s, elements and we -, o )
suppose they can sottelements, then the following must be Where thei;’s are all positive integers. Then, the following
satisfied:n! < (s1!)(s2!) - - - (s,)). holds:

For the particular class of communication functions which
we may consider here, the above observation is stated in the
following lemma whose proof can be found in the Appendix.

Next, we argue that assuming a certain total communication C(ir) + Ciz) + ...+ C(in) < n'?C(n)
k, and that each process gets input at moiten we cannot
sort more tham elements withn! = (s!)*/*. Since we are  Also, in Step 4, each sentinel should compute its final rank
assuming communicatiol, we know that the suny; + s2 + by adding up all the:'/? partial ranks that this sentinel was
-++ + s, is fixed atk. We also constrain each to be at most  attached to in Step 3. This involves adding/? counts in
s. The product(s;!)(sz!) - - - consists ofp integer factors. It ,1/2 geparate networks, which can be done by a network with

is easy to see that, given the factors must form factorials, ang(n) communication (the depth of the network will grow as
none can exceed that the greatest product occurs when each,s 4, ‘since each process is limiteddiput). It also involves

si 1S 5, and there are as few as POSSib_le- Thus we have numbgisssigning ordinals by addition of a base value, which requires
of processep = k/s each with inputs; hence the following g additional communication. The summing network does not

must be satisfied(s!)” > n!, orp > (logn!)/(log s!). affect the asymptotic upper bounds on the communication and
If we use the asymptotic Stirling approximationg «! = processing costs, so we shall ignore it in our calculations.

z log z, then we will obtain the lower bound on communication Finally Step 3 can be implemented either by sorting or merg-

which is Q(s(nlogn)/(slog s)) = Q(n(logn)/(logs)) = ing networks (we discuss merging networks in the next section).

Q(nlog,n). O Note that in Step 3 each element should also decide in which

network of Step 4 it is forwarded to. This is done by subtract-
ing the rank of the element in its network in Step 3 from the
rank of the element in its network in the first step; the result is

the rank of the sentinel (among all the sentinels, i.e., its rank

We have so far developed a network, Fig. 3, that uses prosomputed in Step 2) which is the first in the pair of sentinels
cesses WithO(s) input/output each, and sort$/? elements.  that define the process in the fourth step.

We can use this network recursively, if we “pretend” thas

larger, say the true raised to the 3/2th power, and implement We observe, therefore, that if we have a sorting network for
the network for that larges. Each of the boxes in Fig. 3 can 7 elements that sorts with communication c6%t), then we

be implemented by a sorting algorithm. Thus, if we are to sortcan build a sorting network that sorts/? elements, using
say,s”/* elements using boxes that we pretend can t&k&  communication at most(n®/2) = (3y/n + 1)C(n). The

4.6 Extending the Constant-Depth Sort Recursively



justification is that there ar¢/n boxes in each of columns 1 Step 2 Merge the two lists ok merge-sentinels using one
and 3, one boxin column 2, and the communication in column grocess. Create processes for Step 3, one for each merge-
is no more than the communication-gh, boxes; i.e., there are sentinel. Create similar processes for Step 4.

3+/n + 1 boxes or equivalents, each of which is replaced by a

sorting network of communication coSt(n). Step 3 The s processes for this step are namég, for

each pair(a, b) of consecutive merge-sentinels. Each process
The following lemma is useful and easy to prove: pulls data from Step 1 and Step 2. Each process receives two
. sorted lists ok elements each (one frofy and one fromSs)
Lemma 4.6 The solution to the recurrence and merges them. The elements in the lists are chosen so that
C(n**®) = an’C(n) they are the only ones that may be in the intefuab]. The

. . . o . output of each process is also a count of the number of elements
with a basis in whichC(s) is linear in s for ¢ > 1 andb > 0, bet\aleem ande.)

isC(n) = O(nlogy n), whereu = log a/log(1 + b).
Step 4 Determine by summation the rank of each element.
Moreover, Lemma 4.6 holds even if we add low-order terms Now, let us see how algorithRMERGEn) constructs a

. 4 ;
(i.e., terms that grow more slowly tharlog; n) on the right. . oryork for anyn. Then the processes are really merging
The same holds if we add a constant to the factdron the left,  networks. In this case, merge-sentinels are taken at positions

as is the case with the recurrer€én’/?) = (3y/n +1)C(n)  (\/n, 2./, .. .. First, only Steps 2 and 3 require merging net-

discussed in connection with sorting. works. Step 1 only involves filtering, and so its communication
For the latter recurrence, we have- 3 andb = 1/2. Thus, S O(n) @ was in the case we had to sort osfyelements.
we achieve a solutiof(n) = O(n log" n), where Also, Step 4 |nvolvles computing the ordinal of the first element
of each networkV; , (which replaces the procesy, , in the
u = logy 3/1og,(3/2) = 2.7 recursive merge), where, b are consecutive sentinels in the

merged list of sentinels. It further involves adding this ordinal
we the partial rank of each element of, , (i.e., partial rank

in the sense that it is the rank of the element only among the

elements that lie in the intervéd, b]). Thus, Steps 1 and 4

together requir®(n) communication. The following theorem

states the costs for this recursive algorithm.

Note that for fixeds, C(n) = O(nlog>" n) is asymptotically
worse than Batcher sort. However, we can do better, as
shall see next.

4.7 A Merging Network

The improvement to our recursive sorting network comed’heorem 4.7 AlgorithmRMERGEconstructs a network/,,
from the fact that in Step 3, we do not need a sorting network9f processes which correctly merges two sorted lists efe-
a merging network will do. If we can replace the third columnments each. Moreover, the costs of the network are: 1) Total
in Fig. 3 by merging networks, then we replace the constargommunication costO(n log, log, n) 2) Elapsed communi-
a = 3 in Lemma 4.6 bya = 2, and we add to the right cation cost:O(slog, nlog,log, n) 3) Total processing cost:
side of the recurrence a low-order term representing the coél(n log, log, n) 4) Elapsed processing cosb(s log, n log, log, n).
of the merging networks, which does not affect the value of

u. The resulting value of, is log, 2/ log,(3/2) = 1.7. The PrRoOOF Correctness is.proved similarly as Theorem 4.3.
communication cost'(n) = O(nlog"" n) beats the Batcher 1) Let M,, denote a merging network that merges two lists of
network asymptotically. s n elements. Step 2 requires one merging netwirl:; while

Step 3 requireg/n merging networkd/ ... LetCy/(n) be the
To complete the argument f6r(n log: " n) communication-  communication required to merge lists of lengthThen Steps
cost sorting, we need to show how to merge efficiently. We2 and 3 together requirg/n + 1)Cj;(y/n) communication.
shall describe a network/,, that merges two sorted lists of  The complete recurrence is thus:
elements each. Recall that by “sorted list,” we mean that each

listis a set of pairgzx, i), where element is asserted to be the Cu(n) = (Vn+1)Cu(Vn) +an
ithin the list. This setis “sorted,” in the sense thdtifi) and  for some constant. Note that Lemma 4.6 does not apply
(y,7) are two pairs, ana < y, then it must be that < ;. here, because the forcing functian is not low-order, com-

h pared with the solutio’y;(n) = O(n) that this lemma would
imply. However, we can solve the recurrence, with the basis
1(s) = O(s), by repeated expansion of the right side, to get

For a basis, we can surely merge two sorted lists of leagt
each in a single process with(s) communication cost. The
recursion useska netvr\:ork whicrgjis based on simila:jideasbast e solution
sorting network. In the Appendix, Section B, we describe i : o
detailgt]his network which igpdepicted in Fig. 4 there. Actually?z) The elapsed communication is given by
in the Appendix we describe a constant depth algorithm that Ce(n) = 2C.(v/n) + O(1),Ce(s) = O(s)
merges two lists of siz&?. This gives a constant depth network

for which we only give a succinct description below. with solutionCe(n) = O(s log, nlog, log, n).

3) The total processing cost comes from the same recurrence
ALGORITHM RMERGHs?) as the communication and (3(n log, log, n). The reason is
that all operations performed by processors are linear in their
Step 1 Creates processes where each process getd  input size.
ements. Filter th&s merge-sentinels and push them to the4) Similarly, the elapsed processing cost is the same as the
process in Step 2. elapsed communication]



4.8 Merge Sort 3) Total processing costd(n log! " nlog, s) 4) Elapsed pro-
cessing costO(slog>" nlog, s).
We can use the merge algorithm to build the obvious imple-
mentation of merge sort. This will affect Step 4 (Step 2 haslow PROOF Correctness is proved in exactly the same way as in
costs anyway) where we need merge a number of sorted listEheorem 4.3.
We do that in a number of stages; at itiestage we merge two . .
lists of lengths2i—. The resulting algorithm (which we shall 1) The argumentis as discussed above.

disc#lss in detail in thehAppendix_, Set_:tic1>_rr1] C) hasA(f:o7sts thatare 5) 14 sortn3/2 elements, the longest paths go through three

eachlog,(n/s) times the costs given in Theorem 4.7. sorting networks for. elements and either a merging network
For example, the communication cost of merge-sort algowith elapsed communicatiafl(s log, log, n), or the summing

rithmisO(n log, (n/s) log, log, n). Thisexpressionisasymp- tree for implementing column 4, which has longest paths of

totically less than the communication cost we shall give in ThelengthO(slog, n), as discussed above. Thus, the recurrence

orem 4.8 for sorting based on Algorith@oNSDEP-SorTING,  for Ce, the elapsed communication cost, is

which isOg(n logt " n). However, for a reasonable value 5f C.(n®/?) = 3C.(n) + O(slog, n)

such asl0”, and even an astronomically large valuewlike ) ) ) ) _

n =53 = 1027, log! " nis much less thalog, (n/s) log, log, . which, with the basi€. (s) = O(s), gives us the solution.

Note thaflog, n = 3 for our example, whiléog, (n2/5) is about 3) The total processing cost will Heg, s times the total

60. Also this comparison makes sense although the claims aggnmunication cost because the processes that stetnents
in terms of O() because the hidden constants are small an aveO(s) communication bud(s log, s) processing time.
independent of.

4) The same argument as for (3) applies to the elapsed pro-
4.9 Completing the Recursive Sort cessing cost. []

We can now complete the plan outlined in Section 4.6. .
5. Conclusion
ALGORITHM RECURS SORTING
We introduced a new computation model that reflects the
1. For anyn, we can build a network as in Fig. 3 to sort assumptions of the map-reduce framework, but allows for net-
n3/2 elements if we replace each box in columns 1 and 2vorks of processes other than Map feeding Reduce. We illus-
by recursively defined sorting networks ferelements.  trated the benefit of our model by developing algorithms for
merging and sorting. The cost measures by which we evaluate
the algorithms are the communication among processes and
the processing time, both total over all processes and elapsed

3. For column 4 we use sorting networks of the appropriate (I-€-» €xploiting parallelism).

size. The work in this paper initiates an investigation into the pos-
sibilities of using efficiently the new paradigm of cluster com-
For column 4, we rely on the lemma in the Appendix toputing. In that respect, both implementations of the extended
justify that the cost cannot be greater than that,6f net- framework, and theoretical research for developing algorithms
works that sort: elements each. However, we must also payfor other problems that involve data-intensive computations are
attention to the fact that the various boxes in column 4 repseen as future research. Some worthwhile directions include:
resent networks of different, and unpredictable, sizes. Thus,
we need to precede each one by a tree of processes that sumg . Examine the best algorithms within the model for other
the counts for each of these processes. In analogy with Step 4 common database operations. For example, if we can
of Algorithm RMERGE, the total communication cost of these sort efficiently, we can eliminate duplicates efficiently.
networks cannot excee@(n>/?) and their elapsed commu- Are there even better ways to eliminate duplicates?
nication cost cannot excedd(slog,n). As in Algorithm . )
RMERGE, the recursive case must use a network of processes 2. The model itself should not be thought of as fixed. For

2. For column 3, we use the merge netwavk, just dis-
cussed.

of depthlog, n to sum the counts of elements below each ~ €xa@mple, we mentioned how Hadoop sorts inputs to all
sentinel, but this additive term is low-order for this algorithm Reduce processes by key. There are highly efficient sorts
(although it is significant iRMERGE). The communication for the amounts of data we imagine will be input to the
cost of the network for sorting®/? elements is thus given by typical process. What is the influence on algonthrﬂns
of assuming all processes can receive sorted input “for
C(n3/?) = (2¢/n)C(n) + lower order terms free™?
from which we conclud€'(n) = O(nlog!” n) by Lemma4.6. 3. One of the major objections of [12] was that indexing was
The cost measures are summarized in the following theorem. not available under map-reduce. Can we build and use
indexes in an environment like that of GFS or HFS, where
Theorem 4.8 AlgorithmRECURS SORTING constructs a net- block sizes are enormous? Or alternatively, is the model
work of processes which correctly sort®lements. Moreover, only appropriate for full-relation operations, where there
the costs of the network are: 1) Total communication cost: is no need to select individual records or small sets of
O(nlogt™n) 2) Elapsed communication cos®(slog>" n) records?
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APPENDIX

D. J. DeWitt, E. Paulson, E. Robinson, J. F. Naughton, A. Proof of Lemma 4.5

We prove here Lemma 4.5 which is restated as Lemma A.1
below.



Lemma A.l Suppose thata functiafi(n)issuchthaC'(n) = == (n'/? —1)/(1 —1/n)andy = (n —n'/2)/(1 — 1/n)
anlog!™n, wherea andb are constants. Suppose thiat-i,+ : ; )
Lt =132 and Supposinge andy are integers, we have:

p1log, p1 + p2log, po + ... + pnlog, pr

max(iy, iz, ..., i) <N
where thei;’s are all positive integers. Then, the following < [(n1/2 —1)/(1 - 1/n)]/n1/2 10gs(1/n1/2)
holds:
C(ir) 4 Clia) + ... + Clin) < n'/2C(n) +[(n —nY?)/(1 = 1/n)]/n3?log,(1/n3/?) =
PrOOF The proof essentially emanates from the following —(1/2)(1 = (1/n"/?))/(1 = 1/n) log, n—
claim: s
Claim 1: Ifiy +ig+. . .44, = n3/?andmax(iy, ia, ..., i,) < (3/2)((1/n*?) —1/n)/(1 — 1/n)log,n =

n wherei; are all positive integers then

i logi+b i1 + o log;er o4 .. t+in 1Ogi+b in < _(1/2) logs n[(l - (l/nl/Q) + (3/77,1/2) - 3/”)/(1 - l/n)]

(2/3)10n3/2 log! b 372 < —(1/2)(1 + (1/n'?))log,n < —1/2log, n
If x andy are not integers then we want to hold:

Proof of Claim 1.
r+y=n—1landz/n'/? +y/n3? +w =1,

The proof of Claim 1 uses Lemma A.2 and it is easy: . .
Thew denotes the one value that remains and is not equal to

i1log! ™ iy +iglog ™ is + - 4y logt TP, < either of the bounds. There is only onebecause, if there are
more, then we can replace the one value to be equal to one of
the bounds and replace another by subtracting the difference.
Then if we solve again, we get a similar analysis as the one
above by replacing the to one of the bounds to obtain the
upper bound we state in the claim.

3/2

Yijlog,ijloghn < 2/3n%2log, n*/?loghn =

(2/3)1+003/2 1og! Tb /2
- This concludes the proof of Claim 2]

Lemma A.2. If iy + iy + ...+ i, =n3? and

maz(iy, iz, -y in) <1 B. Constant Depth Merging Network
wherei; are all positive integers then
We shall explain in detail this algorithm in four steps, cor-
log, n responding to the four columns in Figure 4 but we give first
_ ) _a succinct description of each column (note that in this case
PrROOF The proofis a straightforward consequence ofCIalnbmy the two middle columns of Figure 4 are implemented by
2: merging networks while the first column only filters its input
Claim 2: Under the assumption thigtn®/2 < p; < 1/n'/2 and the fourth only sums up intermediate ordinals to find the

andXp; = 1, the following holds: final ordinal):

i1log, iy +iglog, is + ... +inlog, i, < n/?

p1loggp1 + p2log pa + ... + pplog, pn < —1/2loggn (1) roees G

at Step 2)

Before we prove Claim 2, we show how we finish the proof of
the lemma based on the claim. We replace in the claim pach
with n; /n3/? and using the fact that; +ny+. . . +n,, = n%/2,
we get immediately the desired inequality.

Proof of Claim 2: We know from Information Theory that
if we tend to "unbalance” thg;s (i.e., change the value of
the large ones to larger and the small ones to smaller while
keeping their sum equal to 1) then the quantity on the left
above becomes larger (actually the proof of this statement is
not too complicated but we omit it because it is tedious and L

To Column 3

is contained in most textbooks). Thus, since we know that . Fd Mege Mege Detemine

1/n%/2 < p; < 1/n'/2, we change alp;s either tol /n'/? or Seindls  Sentinds 1140 Ornds by

to 1/n%/2. Suppose we changep;s to1/n'/? andy p;s to

1/n3/2. We want to hold: Figure 4: The processes involved in the merging algorithm

of Section 4.7
z +y =nandz/n'/? 4+ y/n?? = 1. We solve and get:
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e Each process in Column 1 filters the sorted list in its inpuffirst element of each list from the ordinals of the subsequent
to find the merge-sentinels. elements in order for the ranks to Ioel,2,... instead of
The process in Column 2 meraes two sorted lists (thstarting from an arbitrary number). Notice that not all element

° p_ ; g ( (?ed into P,;, need be in the intervdh, b]. The ones that are
merge-sentinels). ¢ .

not, are simply deleted and the process transmits to Column 4

e Each process in Column 3 merges two sorted lists. only the non-deleted elements (it is easy to see that the deleted
e Each process in Column 4 determines (by summation) thelements will occur in some other process of Column 3 as
ordinal for each element. non-deleted; moreover, because of this deletion, each element

is transmitted only once in the fourth column). Each process

Supposing)(s) is the limit on communication for a process, Fab also transmits the number of elements it finds lower than
we shall build a network that merges two sorted lists of siz&t @mong Its Inputs.
n = s2 each. In this constant-depth network, the boxes in

; ; Step 4 Each proces®;, determines the number of elements
Fig. 4 are really single processes (not networks of processeg) o than, among the two listss; andS, by adding the rank
In detail the four columns represent the following four steps.

of a in its list and the rank of in its list, wherec is the closest
Step I Suppose the input is two sorted lists; and S,,  toaelement of the non-containingtist (i.e., of the other list).

2
of lengthn = s~ each. Choose the elementsfandsS; at | oyma B 1 The elements fed into the proceBg, are the

positionsD, s, 2s, .. .; we c;allthem merge-sentinels. pre that, only elements of the listS; and S, which may be> a and
since each list comes with elements attached to positions, this

step only requires filtering the input; no merging or sorting is—
necessary. Each process simply identifies the merge-sentinels
by their associated ordinals, which are divisible yThus,

this column does not require anything for the recursion, an
remains a single column if we apply this algorithm recursively.m

PROOFE 1. Suppose, b are from different lists. Suppose
%ifrom S andb from S,. Then all the elements &, greater

anb are outside the intervgh, b]. Suppose: is the first
erge-sentinel ofy which is less thab. Notice thate < a

Step 2 Each of the processes from Step 1 passes its sentindl§cause: is the merge-sentinel next toin the list of merged
to a single merge process. Technically, the ordinals of th&entinels. Hence all the elements%fless thar are also less
sentinels need to be divided byso the input to the process of thana.

column 2 is truly a sorted list, with ordinalls 1,2, .. . 2. Suppose, b are both from listS,. Clearly we correctly

each pairz andb of consecutive merge-sentinels, that merged™or the elements chosen from the li§twe argue as follows:

all the elements in the range fromto 6.3 These processes Leta’,t’ be merge-sentinels of list; such that the following
are the boxes in the third column. To give these processé/@!ds a’ is the first merge-sentinel of list; less tharu and

all the input they might need, we do the following: We feed?' iS the first merge-sentinel of list; greater tharb. Then
processP,;, with the elements of; with rank betweersi to @ < a andb’ > b. Hence all elements of; that either less
s(i+ 1) — 1 and with the elements &, with rank betweesj  thana’or greater that'’ are excluded from being in the interval

to s(j + 1) — 1, wherei and;j are computed from the ranks of [@,b]. The rank ofa’ in Sy is computed by subtracting the rank
elementss, b: 1. If a, b are from different lists (i.e., one from ©f a found in Step 2 (i.e., among alls sentinels) from the

S, and one front,) theni corresponds to the sentinel-rank of rank ofa in S, as a merge-sentinel (i.e., the rankaoin 5,

a in the listS; (supposing: belongs inS; anda < b) and;j divided by s). This computation is correct because the rank
is the sentinel-rank df in the list.S, minus one. 2. If, b are of ain _the _sentmel list says fchat there are so many sentinels
from the same list (suppose thisSs) then P, gets from list preceding: in the total of sentinels (of both lists). The rank of
S, all the elements in the intervél, b], i.e., with rank between @ as a sentinel irb; says that there are so mafly-sentinels

the rank ofa and the rank ob. The elements fed t&,, from  Precedinga. Thus the subtraction leaves the numbersgf

the list S, are computed fronj as we explained above. This Sentinels preceding, hence it denotes the rank (as a sentinel)
j is computed by subtracting the rank effound in Step 2  Of @’ (the firstS;-sentinel less thaa) in 5;. [

(i.e., among all2s sentinels) from the rank aof in S; as a

merge-sentinel (i.e., the rank afin S; divided bys). Note The following theorem states the costs of the constant depth
that some of the elements in procé3g will be either smaller algorithm. The proof is along the lines of the proof of Theo-
thana or greater thah; we will ignore/delete such elements in rem 4.3.

the output of each process of Step 3. Lemma B.1 below prov i
that we correctly choose the data to feed each praBass QPheorem B.2 A|gOFIthmRMERGE(52) constructs a network
of processes of depth four which has the following costs: 1)

Note that noP,;, can receive more tha®s inputs, which  Total communication costO(n) 2) Elapsed communication
is fine, because we allo®(s) communication for a process. cost: O(s) 3) Total processing costO(sn) 4) Elapsed pro-
Thus, we complete algorithm with: cessing costO(s)

Step 3 There is one procedy,, for each pair of consecutive
sentinels:, b and each process is fed with input from Column 1
as explained above. The process merges the two sorted Iists%‘ Merge Sort
its input (technically, it needs first to subtract the ordinal of the

The algorithmMM ERGE(S1, Ss, . .., Smn) merges a num-
3As a special case, Ifis the first sentinel, thea is “minus infinity.” ber of sorted listsSy, Ss, . . ., S;, using algorithmRMERGE
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In the first stage of building the network we use networksTheorem C.2 for the case when e&6H > s. This can be done
Ni,Ns, ... ,Nm/24 (of appropriate size) where netwolk is  using techniques similar to the techniques in Lemma A.1. It
a network built fromRMERGE to merge the two list$s; will give the following recurrence for the total communication:
and Sy;. The output of the networks built at this stage is a

number of listsS}, S5,..., S, ,, where listS,, , is the C(n*?) = (vVn)C(n) + O(nlogy(n/s)log, log, n)+
merged result of list$; and.S;. ;. Thus in the second stage

we need to merge the/2 lists 57, S3,..., 5], ,. We repeat lower order terms

the same procedure as in the first stage, i.e., we build networkshe solution is:O(n log, (n/s) log? log, n) which is asymp-
Ni{,Ni, ..., N;n/4, where networkV! is a network built from  totically better that the one in Theorem 4.8 but, as we explained
RMERGEto merge the two lists,_, andS},. Thus we will in Subsection 4.8, for realistic valuesofands, the commu-

be done aftetog, m stages. " ’ nication in Theorem 4.8 may be preferable.

The following theorem states the costs of a network built The following theorem states the costs for this asymptotically
by the algorithmMM ERGE(Sy, Ss,...,S,,). The costs are better sorting algorithm:

measured as functions B.5;|. Theorem C.2 We construct a network for sortingelements

Theorem C.1 We use algorithitMM ERGE(Sy, So, .. . , Sin) using the sorting algorithm of Figure 3, where in the third col-
to construct a network of processes. Suppbs&| = n and ~Umn we use the merging netwdRMERGE and in the fourth
|S;| = s wheres is the upper bound of communication per pro- c0lumn we use the netwoRMERGE _
cess. The costs of the network are as follows: 1) total commu- This network has the following costs: 1) total communica-
nication cost:O (n log, (n/s) log, log, n) 2) elapsed commu- tion cost: O(nlog,(n/s)logj log, n), 2) elapsed communi-
nication cost: O(slog,(n/s) log, log, n) 3) total processing cation cost: O(s log? n log, log, n), 3) total processing cost:
cost: O(nlogy(n/s)log, log, n) 4) elapsed processing cost: O(nlog,(n/s)log?log, n) and 4) elapsed processing cost:
O(slogy(n/s)log, log, n). O(slog? nlog, log, n).

PROOF First, we observe that we hagklog,(n/s)) stages.
We compute the elapsed costs. In the worst case there is a
longest path in the network in which in staghe elapsed com-
munication cost is equal to the communication cost of a net-
work built byRMERGE(2%s). Thus by summing up we have the
elapsed communication cost to 6&slog,(n/s) log, log, n)
(actually, since we havieg log function, we can assume that
the elapsed communication for each stag@(slog, log, n);
thus all we have to do to sum up is multiply by the number of
stages). The elapsed processing cost is computed exactly in
the same way.

In order to compute the total communication cost we com-
pute the total communication cost of each stage. For a certain
stagei, we have that each of tiRMERGE networks in this
stage has inpuyt, = 2°s and also the summation over all inputs
in this stage is equal ta. Hence, the total communication in
stagei is

Xjilogy log, j; < nlogylog,n

(becausglog, log, j;)/(logy log, n) < 1, thus, if we divide
both sides bylog, log, n then the left hand side becomes
smaller than¥i; and hence smaller than). So the to-
tal communication per stage @&(nlog,log, n). Since we
have O(log,(n/s)) stages, the total communication cost is
O(nlogy(n/s)log, log, n). The total processing cost is com-
puted exactly in the same wayl]

An asymptotically better algorithm.

Asymptotically we can do better than Theorem 4.8 if we
use in Step 4 of the recursive sort a network built by algo-
rithm MM ERGE which is described above (instead of sorting
networks). In order to compute the costs we need to extend

4If m is odd then the last network is not actually a network but the
list S,, itself.
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