
A New Computation Model for Cluster Computing

Foto N. Afrati
National Technical University of Athens

afrati@softlab.ece.ntua.gr

Jeffrey D. Ullman
Stanford University

ullman@infolab.stanford.edu

ABSTRACT

Implementations of map-reduce are being used to perform
many operations on very large data. We explore alternative
ways that a system could use the environment and capabilities
of map-reduce implementations such as Hadoop, yet perform
operations that are not identical to map-reduce. The center-
piece of this exploration is a computational model that cap-
tures the essentials of the environment in which systems like
Hadoop operate. Files are unordered sets of tuples that can
be read and/or written in parallel; processes are limited in the
amount of input/output they can perform, and processors are
available in essentially unlimited supply. We develop, in this
model, an algorithm for sorting that has a worst-case running
time better than the obvious implementations of parallel sort-
ing.

1. Introduction

Search engines and other data-intensive applications process
large amounts of data that need special-purpose computations.
The most well-known problem is the sparse-matrix-vector cal-
culation involved with PageRank [6], where the dimension of
the matrix and vector can be in the 10’s of billions. Most of
these computations are conceptually simple, but their size has
led implementors to distribute them across hundreds or thou-
sands of low-end machines. This problem, and others like it,
led to a new software stack to take the place of file systems,
operating systems, and database-management systems.

1.1 The New Software Stack

Central to this stack is adistributed file systemsuch as the
Google File System (GFS) [15] or Hadoop File System (HFS)
[3]. Such file systems are characterized by:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’10, Indianapolis, IN, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ... $5.00.

• Block (or “chunk”) sizes that are perhaps 1000 times
larger than those in conventional file systems — multi-
megabyte instead of multikilobyte.

• Replication of blocks in relatively independent locations
(e.g., on different racks) to increase availability.

A powerful tool for building applications on such a file sys-
tem is map-reduce [10] or its open-source equivalent Hadoop
[3]. Briefly, map-reduce allows a Map function to be applied
to data stored in one or more files, resulting in key-value pairs.
Many instantiations of the Map function can operate at once,
and all their produced pairs are routed by amaster controller
to one or more Reduce processes, so that all pairs with the
same key wind up at the same Reduce process. The Reduce
processes apply a Reduce function to combine all the values
associated with one key and produce a single result for that
key.

Map-reduce also offers resilience to hardware failures, which
can be expected to occur during a massive calculation. The
master controller manages Map and Reduce processes and is
able to redo them if a process fails.

The new software stack includes higher-level, more database-
like facilities, as well. Examples are Google’s BigTable [8],
or Yahoo!’s PNUTS [9], which are essentially object stores.
At a still higher level, Yahoo!’s PIG/PigLatin [19] translates
relational operations such as joins into map-reduce computa-
tions. [1] shows how to do multiway joins optimally using
map-reduce.

1.2 Contribution of this Paper

There are concerns that as effective the map-reduce frame-
work might be for certain tasks, there are issues that are not
effectively addressed by this framework. [12] argues that the
efficiency of a DBMS, as embodied in tools such as indexes, are
missing from the map-reduce framework. Of note is the recent
work on Clustera [13], which uses the same distributed file sys-
tem as do map-reduce systems, but allows a far more general
set of interacting processes to collaborate in a calculation.

If there is to be a serious study of algorithms that take ad-
vantage of distributed file systems and cluster computing, there
must be a computational model that reflects the costs associ-
ated with computations in this new environment. The purpose
of this paper is to propose such a model. We justify the as-
pects of the model in Section 2. In later sections we explore

1

its consequences for the fundamental problems of sorting and
merging.

In the proposed model, algorithms are acyclic networks of in-
terconnected processes. We evaluate algorithms by the amount
of data that must be moved among the processes, both in total
and along any path in the network of processes. Map-reduce
algorithms are a special case of algorithms in this model. How-
ever, many interesting algorithms are not of the map-reduce
form.

The sorting task has often been used for testing computa-
tional environments about data management applications. For
example, the goal in [4, 7, 22] is to explore the viability of
commercial technologies for utilizing cluster resources, racks
of computers and disks; in these works, algorithms for exter-
nal sorting are implemented with the focus on I/O efficiency.
These algorithms are tested against well known benchmarks
[18, 22].

In this paper, we offer sorting algorithms that follow our
model. They are not well suited to the map-reduce form of com-
putation, but can be expressed easily as a network of processes.
In broad outline, we follow a Mergesort strategy, because that
approach offers the opportunity to give a strong upper bound
on running time. Competitors for the Terasort [24] competition
(large-scale sorting benchmarks) normally follow a Quicksort
style of algorithm, which has a bad worst case that is irrelevant
in such a competition.

• In Section 4.1, we offer an algorithm with four layers
of processes (compared with two layers in map-reduce
algorithms) that we argue can be used for sorting1015

elements using today’s commodity hardware.

• Based on similar ideas, we develop a merging algorithm
in Section 4.7.

• We develop a sorting algorithm for any numbern of el-
ements in Sections 4.6 through 4.9. The algorithm has
been designed to minimize the worst-case communica-
tion cost, which we show isO(n log1.7 n).

• In Section 4.5 we argue that there is anΩ(n log n) lower
bound on sorting in our model.

• In Section 4.8 we give an asymptotically better sort-
ing algorithm with communicationO(n log n log2 log n).
However, this algorithm may, in practice, use more com-
munication than the earlier algorithm because the base of
the logarithms involved is much smaller.

2. A Model for Cluster-Computing Algorithms

Here, we introduce the data elements of the model and then
discuss the different cost measures by which we evaluate algo-
rithms.

2.1 Elements of the Model

Algorithms in the model we propose are networks of pro-
cesses. Each process operates on data stored as files. Processes

are executed by processor nodes and are executed by a single
processor. Here are the assumptions we make about files, pro-
cesses and processors.

Files.
A file is a set of tuples. It is stored in a file system such

as GFS, that is, replicated and with a very large block sizeb.
Typically, b is 64 Megabytes, and these blocks, often called
chunks, are not related to the blocks used in conventional disk
storage. Unusual assumptions about files are:

1. We assume the order of tuples in a file cannot be predicted.
Thus, these files are really relations as in a relational
DBMS.

2. Many processes can read a file in parallel. That assump-
tion is justified by the fact that all blocks are replicated
and so several copies can be read at once.

3. Many processes can write pieces of a file at the same
time. The justification is that tuples of the file can appear
in any order, so several processes can write into the same
buffer, or into several buffers, and thence into the file.

Processes.
A process is the conventional unit of computation. It may

obtain input from one or more files and write output to one or
more files. The unusual aspect of processes in our model is
that we assume there are upper and lower limits on how much
input and output a process may have. The lower limit is the
block sizeb, since if it gets any input at all from a file, it will
get at least one block of data (which could be mostly empty,
but in our cost model, to be discussed, the process must “pay”
for a full block). There is also an upper limit on the amount of
data a process can receive. This limit, which we denote bys,
can represent one of several things, such as:

1. The amount of time we are willing to spend moving data
from the file system to or from the local storage of the pro-
cessor that executes the process. The typical computing
environment in which our model makes sense is a rack
or racks of processors, connected by relatively low-speed
interconnect, e.g., gigabit Ethernet. In that environment,
even loading main memory can take a minute, assuming
no contention for the interconnect.

2. The amount of available main memory at a processor.
This choice makes sense if we want to avoid the cost of
moving data between main memory and local disk. Note
that, depending on what a process does, only a fraction
of the total main memory may be available to hold input
data. For instance, a number of algorithms implemented
on Clustera have used a quarter of a gigabyte as the value
of s [11].

We shall leaves as a parameter without choosing one specific
interpretation. We could alternatively allow fors not to reflect
a physical limit on processors but rather to force processes
to be of limited scope and thereby to constrain algorithms to
obtain lots of parallelism. It is interesting to note thats andb

2

may not differ by too much. However, as we shall see, it is the
parameters, limiting input/output size for a single process that
has the most influence on the design of algorithms. In order to
simplify arguments in what follows, we shall often treats not
as an absolute limit, but as an order-of-magnitude limit. That
is, we shall allow processes that have input and/or output size
O(s), where some small constant is hidden inside the big-oh.

Managing Processes.
As is normal in any operating system, processes may be

created, named, and referred to by other processes. We as-
sume there is amaster processthat represents the algorithm
as a whole and is responsible for creating at least some of the
processes that constitute the algorithm. It is also possible for
processes to be created dynamically, by other processes, so an
algorithm’s processes may not be determined initially. The
operations we assume are available to manage processes and
to transmit data among them are:

• Create(P): If a process with nameP does not exist, it
is created. IfP already exists, then this operation has
no effect. We assume that the code to be executed by
the process is implied by the name, so there can be no
ambiguity about what a process is supposed to do.

• Push(D,P): A process may send (part of) its output data,
designated byD to the process namedP .

• Pull(D,P): A processQ may request some other process
P to sendQ (part of) its output data, designated byD.
The dataD need not be available at the time this command
is executed byQ; the data will be sent when ready.

Processors.
These are conventional nodes with a CPU, main memory, and

secondary storage. We do not assume that the processors hold
particular files or components of files. There is an essentially
infinite supply of processors. Any process can be assigned to
any processor, but to only one processor. We do not assume
that the application can control which processor gets which
process; thus, it is not possible for one process to pass data to
another by leaving it at a processor.1

2.2 Cost Measures for Algorithms

An algorithmin our model is an acyclic graph of processes (a
network of processes) with an arc from processP1 to process
P2 if P1 generates output that is (part of) the input toP2.
Processes cannot begin until all of their input has been created.
Note that we assume an infinite supply of processors, so any
process can begin as soon as its input is ready. Each process is
characterized by:
1In current map-reduce implementations, data is passed between Map
and Reduce processes not through the file store, but through the lo-
cal disks of processors executing the processes. We do not take into
account, when we consider the cost measures for algorithms in Sec-
tion 2.2, of the possibility that some time can be saved by not having
to move data between certain pairs of processes. However, in the al-
gorithms we propose, this additional cost issue would not result in an
order-of-magnitude difference in the results.

• A communication cost, which we define to be the sizen
of the input data to this particular process.

• A processing cost, which is the running time of the pro-
cess.

Typically, the processes themselves perform tasks that are of
low computational complexity, so the processing cost of a pro-
cess is dominated by the time it takes to get the data to the
processor, i.e., the processing cost is proportional to the com-
munication cost.

In addition, we assume a lower boundb and an upper bound
s on the communication cost of each process. That is, an algo-
rithm is not allowed to feed any process with data of size larger
thans and when we count the communication of a process this
count cannot be less thanb (since we have to pay that price in
our distributed file system). However, we allow bounds on the
communication cost of a process to be adhered to in a “big-oh”
sense; that is, a process can haveO(s) communication cost if
s is the upper bound.

Our goal is to study efficient computation, so we need to
measure the communication cost and processing cost of algo-
rithms as a whole. Thus, we define:

• The total communication cost(total processing cost, re-
spectively) is the sum of the communication (processing,
respectively) costs of all processes comprising an algo-
rithm.

• Theelapsed communication cost(elapsed processing cost,
respectively) is defined on the acyclic graph of processes.
Consider a path through this graph, and sum the commu-
nication (processing, respectively) costs of the processes
along that path. The maximum sum, over all paths, is the
elapsed communication (processing, respectively) cost.

On the assumption that the processes themselves do a fairly
elementary operation on their data, the time taken to deliver the
data to a process dominates the total time taken by a process. If
you are using a public cloud to do your computing, you “rent”
time on processors, so the sum, over all processes, of the time
taken by that process is what you pay to run the algorithm.
Thus the total communication cost measures the monetary cost
of executing your algorithm.

On the other hand, elapsed communication cost measures
the wall-clock time the algorithm requires. Again, we assume
that the running time of any process is dominated by the time
to ship its data, and we also assume that we can obtain as
many processors as we need. If processor availability is not
limited, then processes execute as soon as all their predecessors
in the graph of processes have completed, and their data has
been delivered. Thus, elapsed communication cost measures
the time from the beginning to the end of an algorithm on a
computing cloud.

2.3 Comparison With Other Models

Models in which processors have limited resources and/or
limited ability to communicate with other processors have been

3

studied for decades. However, the constraints inherent in the
new distributed file systems are somewhat different from what
has been looked at previously, and these differences naturally
change what the best algorithms are for many problems.

The Kung-Hong Model.
A generation ago, the Kung-Hong model [16] examined the

amount of I/O (transfer between main and secondary memory)
that was needed on a processor that had a limited amount of
main memory. They gave a lower bound for matrix-multiplication
in this model. The same model was used to explore transitive
closure algorithms ([2], [26]) later. One important difference
between the Kung-Hong model and the model we present here
is that we place a limit on communication, not local memory.
Example 2.1. As a simple example of how this change affects
algorithms, consider the simple problem of summing a very
large file of integers. In the Kung-Hong model, it is permitted
to stream the entire file into one process, and use main memory
to hold the sum. As long as the sum itself is not so large that it
cannot fit in main memory, there is no limit on how much data
can be read by one process.

In our model, one process could only read a limited amount
s of the file. To sum a file with more thans integers, we would
have to use a tree of processes, and the elapsed communication
would be greater than the length of the file by a logarithmic
factor. On the other hand, because we permit parallel execu-
tion of processes, the elapsed time would be much less under
our model than under Kung-Hong.

The Bulk-Synchronous Parallel Model.
In 1990, Valiant [27] introduced the BSP model, a bridging

model between software and hardware having in mind such
applications as those where communication was enabled by
packet switching networks or optical crossbars, although the
model goes arguably beyond that. One of the concerns was
to compare with sequential or PRAM algorithms and show
competitiveness for several problems including sorting. In
[14], a probabilistic algorithm for sorting is developed for this
model. This algorithm is based on quicksort and its goal in
this algorithm is to optimize the competitive ratio of the total
number of operations and the ratio between communication
time and border parallel computation time (i.e., computation
time when the competitive ratio is equal to one). Recently
in [28], Valiant proposed the multi-BSP model which extends
BSP. These works differ from ours in the assumptions about the
systems that are incorporated to the model and the measures
by which algorithms are evaluated.

Communication Complexity.
There have been several interesting models that address com-

munication among processes. [20] is a central work in this area,
although the first studies were based on VLSI complexity, e.g.
[25] — the development of lower bounds on chip speed and
area for chips that solve common problems such as sorting.
Our model is quite different from VLSI models, since we place
no constraint on where processes are located, and we do not
assume that physical location affects computation or commu-
nication speed (although strictly speaking, the placement of
processes on the same or different racks might have an effect
on performance).

The more general communication-complexity models also
differ from ours in assuming that the data is distributed among
the processors and not shared in ways that are permitted by
our model. In particular, our ability to share data through files
changes the constraints radically, compared with models such
as [20].

3. Sorting by Standard Methods

Now, we shall take up the familiar problem of sorting. As
we shall see, there is a tradeoff between the elapsed time/com-
munication costs and the total costs.

To begin, since our model does not support sorted lists, one
might ask if it is even possible to sort. A reasonable substitute
for ordering elements is assigning the proper ordinal to every
element. That is, for our purposes a sorting algorithm takes a
file of n pairs(x0, 0), (x1, 1), (x2, 2), . . . , (xn−1, n − 1) in
which then elementsare each paired with an arbitrary, unique
integer from 0 ton − 1, and produces a set ofn pairs(x, i),
wherex is one of the input elements, andi is its position in the
sorted order of the elements.

We begin by implementing some standard techniques in our
model. However, they are not optimal, either in our model or
in more familiar models of parallel computation. We then offer
an algorithm that uses communication cost close to the optimal
and polylogarithmic elapsed cost.

3.1 Batcher Sort

For a sorting algorithm that is guaranteed to beO(n log n)
and works well with non-main-memory data, you usually think
of some variant of merge-sort. However, in our model, merging
large sorted files is problematic, because merging appears se-
quential. Obvious implementations would implyO(n) elapsed
communication/processing costs.

Known parallel sorting algorithms allow us to get close to
the optimalO(log n) elapsed processing cost. For example, we
can use a Batcher sorting network [5] to getO(log2 n) elapsed
cost. A similar approach is to use theO(n log2 n) version of
Shell sort [23] developed by V. Pratt ([21] or see [17]).

While we shall not go into the details of exactly how Batcher’s
sorting algorithm works. At a high level, it implements merge-
sort with a recursive parallel merge, to make good use of paral-
lelism. The algorithm is implemented by a sorting network of
comparators(devices that take two inputs, send the higher out
on one output line and the lower out on the second output line),
a simple instance of which is suggested by Fig. 1. There are
O(log2 n) columns ofn/2 comparators each. Then input ele-
ments enter in any order on the left and emerge in sorted order
on the right. For convenience, we shall describe the algorithm
for the case wheren is a power of 2.

There is a simple pattern that determines which comparator
outputs are connected to which comparator inputs of the next
column. If we think of the outputs of the comparators as
numbered in order0, 1, . . . , n − 1, then the connections from
one column to the next are determined by writing the integer
number of each comparator output in binary, and rotating the

4

. . .

. . .

. . .

. . .

Figure 1: Part of a Batcher sorting network

binary number right byk bits, wherek depends on the column.
This operation is called ak-shuffle.
Example 3.1. Supposen = 8 andk = 2. Output 5 is repre-
sented by 101 in binary. If we rotate right 2 places, the num-
ber becomes 011, or 3 in decimal. That is, if the connection
between one column and the next is governed byk = 2, then
the output number 5 becomes the input number 3 at the next
column.

Output 1 is represented by 001, and if we rotate right 2
places, the number becomes 010. That is, output 1 becomes
input 2. There is an important connection between outputs 5
and 1 in this case. Since they differ only in their last bit after
rotation, they will be inputs to the same comparator at the next
column.

Now, let us implement Batcher sort in our model. Each
column of comparators will be implemented byn/s processes,
where as usual,n is the number of elements to be sorted, and
s is the limit on input size for a process. The only constraint
on which elements are assigned to which process are that the
two inputs to a comparator must be sent to the same process.
As we saw in Example 3.1, numbers that differ only in the bit
that will become leftmost after ak-shuffle are sent to the same
process. Thus, for each value ofk, we must choose a hash
functionhk that does not depend on thek + 1st bit from the
right end. If the Batcher sort moves data from one column to
the next using ak-shuffle, then we send the element on theith
output of a process to thehk(i)th process for the next column.

3.2 Analysis of Batcher Sort

As we stated, there areO(log2 n) columns in Batcher’s net-
work. Simulating the network in our model requires that all
n elements be communicated from column to column, so the
total communication isO(n log2 n). Paths in the connection
graph areO(log2 n) long, so the elapsed communication is
O(s log2 n).

We can execute a process inO(s) time. The justification
is that itss inputs can be arranged in linear time so elements
whose associated integers differ only in the last bit can be
compared, and their associated integers swapped if they are
out of order. We can then apply to each element’s integer the
proper hash function to implement the next shuffle. Since there

aren/s processes per column of the network, andO(log2 n)
columns, the total processing time isO(n log2 n). Likewise,
we can argue that the elapsed processing time isO(s log2 n).
Thus we have proved for Batcher sort (all logarithms are in
base 2):

Theorem 3.2. The algorithm in Section 3.1 sortsn elements
with the following costs: a) total communicationO(n log2 n),
b) elapsed communicationO(s log2 n), c) total processing time
O(n log2 n) and d) elapsed processing timeO(s log2 n).

3.3 Sorting Under Hadoop

It turns out that because of the way Hadoop is implemented,
it offers a trivial way to sort.2 The input to any Reduce process
is always sorted by key. Thus, a single Map process and a single
Reduce process, both implementing the identity function, will
result in the input being sorted. However, this algorithm is
inherently serial, and is not a solution to the problem of sorting
very large sets.

4. Efficient Sorting Algorithms

While Batcher or Shell sorts implemented in our model can
be fairly efficient and simple, they are not the best we can do.
We shall show next an algorithm that is close to the theoretical
lower bound for sorting in this model. We begin by discussing a
particular algorithm that sortsn = s3/2 distinct elements with
a network of processes with constant depth, and then show
how to extend the idea to sort any number of elements with
polylogarithmic network depth.

Note, however, thatn = s3/2 is sufficient for most practical
purposes. For example, ifs is 108 (one hundred million)
elements — a number of elements that should fit in a typical
main memory — then even our first algorithm can sort1012

(one trillion) elements.

4.1 The Constant-Depth Algorithm

For convenience, we shall assume that communication sizes
are measured in elements rather than in bytes. Thus,s is the
number of elements (with their attached ordinal numbers) that
can be input or output to any process, andn is the total number
of elements to be sorted. The algorithm uses a parameterp,
and we definen = p3 and s = p2. The following method
sortsn = p3 elements, usingO(p3) total communication, with
communication cost for each process equal toO(p2). We begin
with an outline, and later discuss how the work is assigned to
processes and how the processes communicate.

Step 1: Divide the input intop lines, each havingp2 el-
ements. Sort each line using a single process. Recall that
"sorting" in this context means attaching to each element an
integer that indicates where in the sorted order, the element
would be found. The output is a set of (element, ordinal) pairs,
rather than a sorted list.

2Thanks to Ragho Murthy for making this point.

5

Step 2: For each line, thep-th, 2p-th, 3p-th, and so on up
to elementp2 is a sentinel. The number of sentinels in each
line is p, and the total number of sentinels isp2. We sort the
sentinels, using another process. Let the sentinels in sorted
order bea0, a1, . . . , ap2−1.

. . . a . . . a . . . a. . . a

. . . a . . . a . . . a. . . a

. . . a . . . a . . . a. . . a

. . . a . . . a . . . a. . . a

1

0

3 5 7

4 6 8

2

9

10 11

12

13

14 15

p

p

p

2

Figure 2: Sorting: lines and sentinels

Example 4.1. Figure 2 illustrates a possible outcome of Steps
1 and 2 for the casep = 4. If there were a large number
of randomly ordered elements to be sorted, we would expect
that the firstp sentinels would be the first sentinels from each
line, in some order. However, it is in principle possible for
the sentinels to be unevenly distributed. For instance, we have
suggested in Fig. 2 that the first sentinel of the third line follows
all the sentinels of the first two lines. On the other hand, since
the lines are sorted, the sentinels within a line must appear in
sorted order.

L i ’s
L i ’s

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Input

and Sort
Lines
Create

Sentinels

Sort Pick
Assemble

and Sort

Output

Figure 3: The processes involved in the sorting algorithm
of Section 4.1

Figure 3 illustrates the network of processes tha constitute
entire sorting algorithm. The first two columns of processes
correspond to the first two steps. There are two more steps,
corresponding to the last two columns of Fig. 3. Their goal
is to construct thep2 sets of elementsL0, L1, . . . , Lp2−1 such
that all elements inLi are less than or equal toai and greater
thanai−1 (unlessi = 0, in which case there is no lower bound).
In Step 4 we have one process for eachLi. These processes
are constructed by the master process and given a name that
incorporates the indexi if the process is to handle the elements
of Li. We need to divide the lines among the processes, and
that division is the job of Step 3. The processes of Step 3 can
deduce the name of the process forLi and can push data to

each such process, as needed. Before proceeding, consider the
following example.

Example 4.2. Let us consider how Steps 3 and 4 would work
if the outcome of Step 2 were as seen in Fig. 2. For the first
line, the elements of subgroupL0 (i.e., those elements that are
at mosta0) are found among the firstp = 4 elements of the line
(i.e., those up to and includinga1, although surelya1 is not
among them). For the second line, the elements of subgroup
L0 are exactly allp = 4 first elements of the line.

Now, considerL5 (i.e., those elements that are larger than
a4 but no greater thana5). They are found among the third
p = 4 elements of the first and second lines, among the first
group in the third line, and among the second group of the last
line. For the first line, all subgroupsLi for i > 7 are empty.

Step 3: The goal of this step is to partition each line into
the variousLi’s. As seen in the third column of Fig. 3, there
arep processes, one for each line. In addition to the sorted
line as input, each of these processes takes the entire sorted
list of sentinels. Note that the input size is thus2p2 = 2s, but
we have, for convenience in description, allowed a process to
takeO(s) input rather than exactlys. The process for linej
determines to whichLi each element belongs. It can do so,
since it sees all the sentinels. The process also determines, for
each sentinelai, how many elements in linej are less thanai

(this count will bei less than the position ofai in the sorted
order of the line and the sentinels, merged). Finally, each
process sends to the process forLi the set of elements from the
line that belong toLi and the count of elements less thanai.

Step 4: With this information, the process forLi (shown in
the fourth column of Fig. 3) can determine the order of elements
in Li. Since it knows how many elements in the entire set to be
sorted are less thanai, it can also determine the position, in the
entire sorted list, of each member ofLi. Finally, we note that,
since no one line can have more thanp elements belonging to
any oneLi (and usually has many fewer thanp), the input to
the process forLi can not be larger thanp2 = s.

In summary, the sorting algorithm of this section is the fol-
lowing:

ALGORITHM CONSDEP-SORTING

Step 1: Divide the input intop lines, each havingp2 ele-
ments. Createp processes and push the data of the lines to
them. Sort each line using a single process.

Step 2: For each line, thep-th, 2p-th, 3p-th, and so on up
to elementp2 is a sentinel. Sort the sentinels, using another
process. Createp2 processes for Step 4.

Step 3: Createp processes and pull the data from Steps 1
and 2 as explained below. For each initial line construct a
process with input this line and the sentinels. Sort the input
of each process. Suppose the sentinels in sorted order are
a0, a1, . . . , ap2−1. The output of each process is distributed as
follows: The elements that are betweenai−1 andai are fed to
the process labeledLi, for all i = 0, . . . , p2 − 1. Each process
also determines, for each sentinelai, how many elements in
line j are less thanai; this count isi less than the position of
ai in the sorted order of the line and the sentinels, combined.

6

Step 4: Each process obtains its associated set of elements
Li, sorts them and computes their global order as follows. The
count ofai is the sum of the counts fed from the processes of
Step 3. The global rank of an elementx in processLi is the
count forai minus the number of elements ofLi that followx
in the order of elements at processLi.

4.2 Communication and Processing Costs ofCONSDEP-
SORTING

The communication and processing costs for the processes
in each of the columns of Fig. 3 are easy to analyze. We can
then sum them to get the total costs. All paths through the
network of Fig. 3 have exactly one process from each column,
so elapsed costs are also easy to obtain. This analysis and the
correctness of the algorithm are formally stated in the theorem
below:

Theorem 4.3. Suppose the communication cost allowed for
each process is less thans = p2. Then algorithmCONSDEP-
SORTING constructs a network of processes which correctly
sortsn = p3 elements. Moreover, the costs of the network are:
1) Total communication cost:O(n) 2) Elapsed communication
cost: O(s) 3) Total processing cost:O(n log s) 4) Elapsed
processing cost:O(s log s).

PROOF. First it is clear that the algorithm uses only pro-
cesses whose input and output do not exceedO(s). The cor-
rectness of the algorithm is a consequence of the following
facts: a) the sentinels of all lines are sorted in Step 2, b) the
elements from each line that lie between two consecutive sen-
tinels are found in Step 3 and c) each process in Step 4 sorts
exactly all elements that lie between two consecutive sentinels,
and places them in their correct global position. The analyses
for the costs are done by column (or equivalently, step) of the
algorithm:

1. For Step 1, each process takes input of sizep2 = s and
makes output of sizeO(s). Thus, the elapsed communi-
cation isO(s). Since it is sortingO(s) elements, presum-
ably by an efficient sort, we take the elapsed processing
time to beO(s log s). Thus, for this step the total commu-
nication cost for thep processes isO(ps) = O(n). Thus
the total processing cost isO(ps log s) = O(n log s).

2. Step 2 is similar to Step 1. The elapsed costs are the same,
but since there is only one process instead ofp, the total
communication is onlyO(s), and the total processing
cost isO(s log s).

3. In Step 3, the processes take input of sizeO(p2) = O(s)
and make output of the same size. Thus, the elapsed
communication cost isO(s). One way to achieve the
goals of this step is to merge the elements of the line with
the sentinels, so we assert the elapsed processing cost is
O(s). Since there arep processes at this step, the total
communication cost isO(n) and the total processing cost
is O(n) as well.

4. Step 4 must be analyzed more carefully. There arep2 = s
processes, rather thanp processes as in Steps 1 and 3.
However:

(a) The sum of their input sizes isO(n) = O(p3) =
O(s3/2), because each original input goes to only
one of the processes. The additional information
sent to each process for Step 4 is one count of ele-
ments below its sentinel from each of the processes
of Step 3. That information is onlyO(p) additional
input, orO(n) total for all p2 processes. Thus, the
total communication for Step 4 isO(n). We already
observed that no one process at Step 4 gets more
thanO(s) input, so that is the elapsed cost upper
bound for this step.

(b) For the processing time, each of then elements is
involved in the sorting that goes on at one of the
processes of Step 4. There can be at mostO(s)
elements at one process, so the total processing time
is O(n log s). The elapsed time at any one process
is (at most)O(s log s).

If we add the costs of the four steps, we find that the total
communication cost isO(n). The total processing cost is
O(n log s); the elapsed communication cost isO(s), and the
elapsed processing cost isO(s log s).

Note that sincen ≤ s3/2 was assumed,O(log s) is the same
asO(log n), so the total processing cost isO(n log n), as would
be expected for an efficient sort. The elapsed processing cost
is significantly less, because we are doing much of the work in
parallel. However, the algorithm is not as parallel as the best
sorts, because we are constrained to take fairly large chunks of
data and pass them to a single process. Of course, if the process
itself were executed on a multicore processor, we would get
additional speedup due to parallelism that is not visible in our
model.

4.3 Dealing With Large Block Size

There is one last concern that must be addressed to make the
analysis of Section 4.2 precise. Recall that we assume there is
a lower boundb on block size that may be significant in Step 4.
There, we havep2 processes, each with an average ofO(p) =
O(
√

s) input. If b >
√

s, as might be the case in practice, we
could in fact requireO(bp2) > O(n) communication at Step 4.

Fortunately, it is not hard to fix the problem. We do not have
to usep2 distinct processes at Step 4. A smaller number of
processes will do, since we may combine the work of several
of the processes of Step 4 into one process. However, combin-
ing the processes arbitrarily could cause one of the combined
processes to get much more thans input, which is not per-
mitted. Thus, we might need to introduce another columns
of processes between Steps 3 and 4. Each process reads the
counts of elements below each ofp consecutive sentinels, from
each of thep lines, and combines them as needed into fewer
thanp groups of sentinels, as evenly as possible.

4.4 Comparison With Batcher Sort

The sorting algorithm of Section 4.1 works for only a limited
input sizen; that limit depends on the value chosen fors.
However, for a realistic choice ofn ands, says = 1010 and

7

n = 1015, the algorithm requires a network of depth only four.
In comparison, the Batcher network has depth over 1000 for
n = 1015. While we can undoubtedly combine many layers
of the Batcher network so they can be performed by a single
layer of processes with input sizes = 1010, it is not probable
that we can thus get even close to four layers.

Morever, we shall see in what follows that we can build net-
works for arbitrarily largen and fixeds. The communication
cost for this family of networks is asymptotically better than
that of Batcher sort.

4.5 A Lower Bound for Sorting

There is a lower bound ofΩ(n logs n) for sorting in the
model we have proposed which is proven in Theorem 4.4. The
argument is a simple generalization of the lower bound on
comparisons.

Theorem 4.4. Suppose the upper bound on the communica-
tion cost for each process iss. Then any network in our model
that sortsn elements has total communication costΩ(n logs n).

PROOF. First we argue that we cannot sort more thann
elements wheren! = (s1!)(s2!) · · · assuming that we have
some number of processes whose inputs consist ofs1, s2, . . .
elements. Once a process reads a fixedsi elements, then all it
can do is learn the order of these elements. That information
reduces the number of possible orders ofn elements by at
most a factor ofsi!. We can assume the true order of then
elements is the one that leaves the most remaining possibilities
after executing a process that examinessi elements. Thus, if
we havep processes with inputs1, s2, . . . , sp elements and we
suppose they can sortn elements, then the following must be
satisfied:n! ≤ (s1!)(s2!) · · · (sp!).

Next, we argue that assuming a certain total communication
k, and that each process gets input at mosts then we cannot
sort more thann elements withn! = (s!)k/s. Since we are
assuming communicationk, we know that the sums1 + s2 +
· · · + sp is fixed atk. We also constrain eachsi to be at most
s. The product(s1!)(s2!) · · · consists ofp integer factors. It
is easy to see that, given the factors must form factorials, and
none can exceeds, that the greatest product occurs when each
si is s, and there are as few as possible. Thus we have number
of processesp = k/s each with inputs; hence the following
must be satisfied:(s!)p ≥ n!, or p ≥ (log n!)/(log s!).

If we use the asymptotic Stirling approximationlog x! =
x log x, then we will obtain the lower bound on communication
which is Ω

(
s(n log n)/(s log s)

)
= Ω

(
n(log n)/(log s)

)
=

Ω(n logs n).

4.6 Extending the Constant-Depth Sort Recursively

We have so far developed a network, Fig. 3, that uses pro-
cesses withO(s) input/output each, and sortss3/2 elements.
We can use this network recursively, if we “pretend” thats is
larger, say the trues raised to the 3/2th power, and implement
the network for that largers. Each of the boxes in Fig. 3 can
be implemented by a sorting algorithm. Thus, if we are to sort,
say,s9/4 elements using boxes that we pretend can takes3/2

inputs each, then we must replace each box in Fig. 3 by the
network of Fig. 3 itself.

It should be evident that Steps 1 and 2 of Algorithm Cons-
Dep-Sorting (columns 1 and 2 of Fig. 3) can be implemented by
sorting networks. The same is true for Step 4, although there is
a subtlety. While Steps 1 and 2 use boxes that sorts elements,
Step 4 (column 4) uses boxes that sort variable numbers of
elements, up tos. However, we shall imagine, in what follows,
that Step 4 uses

√
s boxes ofs inputs each. Considering a

communication functionC(n) that is smooth, the following
arguments are sufficient to derive that the communication cost
of s boxes, when replaced by networks, is no greater than that
of
√

s sorters ofs elements each:

1. The communication cost of sortingn elements is surely
at least linear inn,

2. No box in column 4 uses more thans input, and

3. The sum of the input/output sizes of all the boxes in
column 4 iss3/2.

For the particular class of communication functions which
we may consider here, the above observation is stated in the
following lemma whose proof can be found in the Appendix.

Lemma 4.5. Suppose that a functionC(n) is such thatC(n)
= an log1+b

s n, wherea andb are constants. Suppose thati1 +
i2 + . . . + in = n3/2 and

max(i1, i2, . . . , in) ≤ n

where theij ’s are all positive integers. Then, the following
holds:

C(i1) + C(i2) + . . . + C(in) ≤ n1/2C(n)

Also, in Step 4, each sentinel should compute its final rank
by adding up all then1/2 partial ranks that this sentinel was
attached to in Step 3. This involves addingn1/2 counts in
n1/2 separate networks, which can be done by a network with
O(n) communication (the depth of the network will grow as
logs n, since each process is limited tos input). It also involves
reassigning ordinals by addition of a base value, which requires
no additional communication. The summing network does not
affect the asymptotic upper bounds on the communication and
processing costs, so we shall ignore it in our calculations.

Finally Step 3 can be implemented either by sorting or merg-
ing networks (we discuss merging networks in the next section).
Note that in Step 3 each element should also decide in which
network of Step 4 it is forwarded to. This is done by subtract-
ing the rank of the element in its network in Step 3 from the
rank of the element in its network in the first step; the result is
the rank of the sentinel (among all the sentinels, i.e., its rank
computed in Step 2) which is the first in the pair of sentinels
that define the process in the fourth step.

We observe, therefore, that if we have a sorting network for
n elements that sorts with communication costC(n), then we
can build a sorting network that sortsn3/2 elements, using
communication at mostC(n3/2) = (3

√
n + 1)C(n). The

8

justification is that there are
√

n boxes in each of columns 1
and 3, one box in column 2, and the communication in column 4
is no more than the communication of

√
n boxes; i.e., there are

3
√

n + 1 boxes or equivalents, each of which is replaced by a
sorting network of communication costC(n).

The following lemma is useful and easy to prove:

Lemma 4.6. The solution to the recurrence

C(n1+b) = anbC(n)

with a basis in whichC(s) is linear in s for a > 1 andb > 0,
is C(n) = O(n logu

s n), whereu = log a/ log(1 + b).

Moreover, Lemma 4.6 holds even if we add low-order terms
(i.e., terms that grow more slowly thann logu

s n) on the right.
The same holds if we add a constant to the factoranb on the left,
as is the case with the recurrenceC(n3/2) = (3

√
n + 1)C(n)

discussed in connection with sorting.

For the latter recurrence, we havea = 3 andb = 1/2. Thus,
we achieve a solutionC(n) = O(n logu

s n), where

u = log2 3/ log2(3/2) = 2.7

Note that for fixeds, C(n) = O(n log2.7
s n) is asymptotically

worse than Batcher sort. However, we can do better, as we
shall see next.

4.7 A Merging Network

The improvement to our recursive sorting network comes
from the fact that in Step 3, we do not need a sorting network;
a merging network will do. If we can replace the third column
in Fig. 3 by merging networks, then we replace the constant
a = 3 in Lemma 4.6 bya = 2, and we add to the right
side of the recurrence a low-order term representing the cost
of the merging networks, which does not affect the value of
u. The resulting value ofu is log2 2/ log2(3/2) = 1.7. The
communication costC(n) = O(n log1.7

s n) beats the Batcher
network asymptotically.

To complete the argument forO(n log1.7
s n) communication-

cost sorting, we need to show how to merge efficiently. We
shall describe a networkMn that merges two sorted lists ofn
elements each. Recall that by “sorted list,” we mean that each
list is a set of pairs(x, i), where elementx is asserted to be the
ith in the list. This set is “sorted,” in the sense that if(x, i) and
(y, j) are two pairs, andx < y, then it must be thati < j.

For a basis, we can surely merge two sorted lists of lengths
each in a single process withO(s) communication cost. The
recursion uses a network which is based on similar ideas as the
sorting network. In the Appendix, Section B, we describe in
detail this network which is depicted in Fig. 4 there. Actually,
in the Appendix we describe a constant depth algorithm that
merges two lists of sizes2. This gives a constant depth network
for which we only give a succinct description below.

ALGORITHM RMERGE(s2)

Step 1: Creates processes where each process getss el-
ements. Filter the2s merge-sentinels and push them to the
process in Step 2.

Step 2: Merge the two lists ofs merge-sentinels using one
process. Creates processes for Step 3, one for each merge-
sentinel. Create similar processes for Step 4.

Step 3: The s processes for this step are namedPa,b for
each pair(a, b) of consecutive merge-sentinels. Each process
pulls data from Step 1 and Step 2. Each process receives two
sorted lists ofs elements each (one fromS1 and one fromS2)
and merges them. The elements in the lists are chosen so that
they are the only ones that may be in the interval[a, b]. The
output of each process is also a count of the number of elements
betweena andb.

Step 4: Determine by summation the rank of each element.

Now, let us see how algorithmRMERGE(n) constructs a
network for anyn. Then the processes are really merging
networks. In this case, merge-sentinels are taken at positions
0,
√

n, 2
√

n, First, only Steps 2 and 3 require merging net-
works. Step 1 only involves filtering, and so its communication
is O(n) as was in the case we had to sort onlys2 elements.
Also, Step 4 involves computing the ordinal of the first element
of each networkN ′

a,b (which replaces the processP ′a,b in the
recursive merge), wherea, b are consecutive sentinels in the
merged list of sentinels. It further involves adding this ordinal
to the partial rank of each element ofN ′

a,b (i.e., partial rank
in the sense that it is the rank of the element only among the
elements that lie in the interval[a, b]). Thus, Steps 1 and 4
together requireO(n) communication. The following theorem
states the costs for this recursive algorithm.

Theorem 4.7. AlgorithmRMERGEconstructs a networkMn

of processes which correctly merges two sorted lists ofn ele-
ments each. Moreover, the costs of the network are: 1) Total
communication cost:O(n log2 logs n) 2) Elapsed communi-
cation cost:O(s logs n log2 logs n) 3) Total processing cost:
O(n log2 logs n) 4) Elapsed processing cost:O(s logs n log2 logs n).

PROOF. Correctness is proved similarly as Theorem 4.3.
1) Let Mn denote a merging network that merges two lists of
n elements. Step 2 requires one merging networkM√

n while
Step 3 requires

√
n merging networksM√

n. LetCM (n) be the
communication required to merge lists of lengthn. Then Steps
2 and 3 together require(

√
n + 1)CM (

√
n) communication.

The complete recurrence is thus:

CM (n) = (
√

n + 1)CM (
√

n) + an

for some constanta. Note that Lemma 4.6 does not apply
here, because the forcing functionan is not low-order, com-
pared with the solutionCM (n) = O(n) that this lemma would
imply. However, we can solve the recurrence, with the basis
CM (s) = O(s), by repeated expansion of the right side, to get
the solution.
2) The elapsed communication is given by

Ce(n) = 2Ce(
√

n) + O(1), Ce(s) = O(s)

with solutionCe(n) = O(s logs n log2 logs n).
3) The total processing cost comes from the same recurrence
as the communication and isO(n log2 logs n). The reason is
that all operations performed by processors are linear in their
input size.
4) Similarly, the elapsed processing cost is the same as the
elapsed communication.

9

4.8 Merge Sort

We can use the merge algorithm to build the obvious imple-
mentation of merge sort. This will affect Step 4 (Step 2 has low
costs anyway) where we need merge a number of sorted lists.
We do that in a number of stages; at theith stage we merge two
lists of lengths2i−1. The resulting algorithm (which we shall
discuss in detail in the Appendix, Section C) has costs that are
eachlog2(n/s) times the costs given in Theorem 4.7.

For example, the communication cost of merge-sort algo-
rithm isO(n log2(n/s) log2 logs n). This expression is asymp-
totically less than the communication cost we shall give in The-
orem 4.8 for sorting based on AlgorithmCONSDEP-SORTING,
which isO(n log1.7

s n). However, for a reasonable value ofs,
such as109, and even an astronomically large value ofn, like
n = s3 = 1027, log1.7

s n is much less thanlog2(n/s) log2 logs n.
Note thatlogs n = 3 for our example, whilelog2(n/s) is about
60. Also this comparison makes sense although the claims are
in terms ofO() because the hidden constants are small and
independent ofs.

4.9 Completing the Recursive Sort

We can now complete the plan outlined in Section 4.6.

ALGORITHM RECURS-SORTING

1. For anyn, we can build a network as in Fig. 3 to sort
n3/2 elements if we replace each box in columns 1 and 2
by recursively defined sorting networks forn elements.

2. For column 3, we use the merge networkMn just dis-
cussed.

3. For column 4 we usen sorting networks of the appropriate
size.

For column 4, we rely on the lemma in the Appendix to
justify that the cost cannot be greater than that of

√
n net-

works that sortn elements each. However, we must also pay
attention to the fact that the various boxes in column 4 rep-
resent networks of different, and unpredictable, sizes. Thus,
we need to precede each one by a tree of processes that sums
the counts for each of these processes. In analogy with Step 4
of Algorithm RMERGE, the total communication cost of these
networks cannot exceedO(n3/2) and their elapsed commu-
nication cost cannot exceedO(s logs n). As in Algorithm
RMERGE, the recursive case must use a network of processes
of depth logs n to sum the counts of elements below each
sentinel, but this additive term is low-order for this algorithm
(although it is significant inRMERGE). The communication
cost of the network for sortingn3/2 elements is thus given by

C(n3/2) = (2
√

n)C(n) + lower order terms

from which we concludeC(n) = O(n log1.7
s n) by Lemma 4.6.

The cost measures are summarized in the following theorem.

Theorem 4.8. AlgorithmRECURS-SORTINGconstructs a net-
work of processes which correctly sortsn elements. Moreover,
the costs of the network are: 1) Total communication cost:
O(n log1.7

s n) 2) Elapsed communication cost:O(s log2.7
s n)

3) Total processing cost:O(n log1.7
s n log2 s) 4) Elapsed pro-

cessing cost:O(s log2.7
s n log2 s).

PROOF. Correctness is proved in exactly the same way as in
Theorem 4.3.

1) The argument is as discussed above.

2) To sortn3/2 elements, the longest paths go through three
sorting networks forn elements and either a merging network
with elapsed communicationO(s log2 logs n), or the summing
tree for implementing column 4, which has longest paths of
lengthO(s logs n), as discussed above. Thus, the recurrence
for Ce, the elapsed communication cost, is

Ce(n3/2) = 3Ce(n) + O(s logs n)

which, with the basisCe(s) = O(s), gives us the solution.

3) The total processing cost will belog2 s times the total
communication cost because the processes that sorts elements
haveO(s) communication butO(s log2 s) processing time.

4) The same argument as for (3) applies to the elapsed pro-
cessing cost.

5. Conclusion

We introduced a new computation model that reflects the
assumptions of the map-reduce framework, but allows for net-
works of processes other than Map feeding Reduce. We illus-
trated the benefit of our model by developing algorithms for
merging and sorting. The cost measures by which we evaluate
the algorithms are the communication among processes and
the processing time, both total over all processes and elapsed
(i.e., exploiting parallelism).

The work in this paper initiates an investigation into the pos-
sibilities of using efficiently the new paradigm of cluster com-
puting. In that respect, both implementations of the extended
framework, and theoretical research for developing algorithms
for other problems that involve data-intensive computations are
seen as future research. Some worthwhile directions include:

1. Examine the best algorithms within the model for other
common database operations. For example, if we can
sort efficiently, we can eliminate duplicates efficiently.
Are there even better ways to eliminate duplicates?

2. The model itself should not be thought of as fixed. For
example, we mentioned how Hadoop sorts inputs to all
Reduce processes by key. There are highly efficient sorts
for the amounts of data we imagine will be input to the
typical process. What is the influence on algorithms
of assuming all processes can receive sorted input “for
free”?

3. One of the major objections of [12] was that indexing was
not available under map-reduce. Can we build and use
indexes in an environment like that of GFS or HFS, where
block sizes are enormous? Or alternatively, is the model
only appropriate for full-relation operations, where there
is no need to select individual records or small sets of
records?

10

AcknowledgmentWe would like to thank Raghotham Murthy,
Chris Olston, and Jennifer Widom for their advice and sugges-
tions in connection with this work.

6. References

[1] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. InEDBT, 2010.

[2] R. Agrawal and H. V. Jagadish. Direct algorithms for
computing the transitive closure of database relations. In
Proc. 13th Int’l Conf. on Very Large Data Bases, pages
255–266, 1987.

[3] Apache. Hadoop. http://hadoop.apache.org/, 2006.

[4] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson.
High-performance sorting on networks of workstations.
SIGMOD Rec., 26(2):243–254, 1997.

[5] K. E. Batcher. Sorting networks and their applications.
In AFIPS Spring Joint Computing Conference, pages
307–314, 1968.

[6] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine, 1998.

[7] P. Buonadonna, J. Coates, S. Low, and D. E. Culler.
Millennium sort: a cluster-based application for
windows nt using dcom, river primitives and the virtual
interface architecture. InWINSYM’99: Proceedings of
the 3rd conference on USENIX Windows NT Symposium,
pages 9–9, Berkeley, CA, USA, 1999. USENIX
Association.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data.ACM Trans. Comput. Syst., 26(2), 2008.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted data
serving platform.PVLDB, 1(2):1277–1288, 2008.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters.Commun. ACM,
51(1):107–113, 2008.

[11] D. DeWitt. Private communication, 2009.

[12] D. DeWitt and M. Stonebraker. Mapreduce: A major
step backwards.
http://www.databasecolumn.com/2008/01/mapreduce-a-
major-step-back.html,
2008.

[13] D. J. DeWitt, E. Paulson, E. Robinson, J. F. Naughton,
J. Royalty, S. Shankar, and A. Krioukov. Clustera: an
integrated computation and data management system.
PVLDB, 1(1):28–41, 2008.

[14] A. V. Gerbessiotis and L. G. Valiant. Direct
bulk-synchronous parallel algorithms.J. Parallel
Distrib. Comput., 22(2):251–267, 1994.

[15] S. Ghemawat, H. Gobioff, , and S.-T. Leung. The google
file system. In19th ACM Symposium on Operating
Systems Principles, 2003.

[16] J.-W. Hong and H. T. Kung. I/o complexity: The
red-blue pebble game. InSTOC, pages 326–333, 1981.

[17] D. E. Knuth.Art of Computer Programming, Volume 3:
Sorting and Searching (2nd Edition). Addison-Wesley
Professional, April 1998.

[18] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. B.
Lomet. Alphasort: A risc machine sort. InSIGMOD
Conference, pages 233–242, 1994.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. InSIGMOD Conference, pages 1099–1110,
2008.

[20] C. H. Papadimitriou and M. Sipser. Communication
complexity.J. Comput. Syst. Sci., 28(2):260–269, 1984.

[21] V. Pratt. Shellsort and sorting networks. Ph.D. thesis,
Stanford University, 1971.

[22] S. Rivoire, M. A. Shah, P. Ranganathan, and
C. Kozyrakis. Joulesort: a balanced energy-efficiency
benchmark. InSIGMOD Conference, pages 365–376,
2007.

[23] D. L. Shell. A high-speed sorting procedure.Commun.
ACM, 2(7):30–32, 1959.

[24] Terasort. Sort benchmark home page.
http://sortbenchmark.org/, 2009.

[25] C. D. Thompson. Area-time complexity for vlsi. In
STOC ’79: Proceedings of the eleventh annual ACM
symposium on Theory of computing, pages 81–88, New
York, NY, USA, 1979. ACM.

[26] J. D. Ullman and M. Yannakakis. The input/output
complexity of transitive closure.Ann. Math. Artif.
Intell., 3(2-4):331–360, 1991.

[27] L. G. Valiant. A bridging model for parallel
computation.Commun. ACM, 33(8):103–111, 1990.

[28] L. G. Valiant. A bridging model for multi-core
computing. InESA, pages 13–28, 2008.

APPENDIX

A. Proof of Lemma 4.5

We prove here Lemma 4.5 which is restated as Lemma A.1
below.

11

Lemma A.1. Suppose that a functionC(n) is such thatC(n) =
anlog1+b

s n, wherea andb are constants. Suppose thati1+i2+
. . . + in = n3/2 and

max(i1, i2, . . . , in) ≤ n

where theij ’s are all positive integers. Then, the following
holds:

C(i1) + C(i2) + . . . + C(in) ≤ n1/2C(n)

PROOF. The proof essentially emanates from the following
claim:

Claim 1: Ifi1+i2+. . .+in = n3/2 andmax(i1, i2, . . . , in) ≤
n whereij are all positive integers then

i1 log1+b
s i1 + i2 log1+b

s i2 + . . . + in log1+b
s in ≤

(2/3)1+bn3/2 log1+b
s n3/2

Proof of Claim 1.

The proof of Claim 1 uses Lemma A.2 and it is easy:

i1 log1+b
s i1 + i2 log1+b

s i2 + · · ·+ in log1+b
s in ≤

Σij logs ij logb
s n ≤ 2/3n3/2 logs n3/2 logb

s n =

(2/3)1+bn3/2 log1+b
s n3/2

Lemma A.2. If i1 + i2 + . . . + in = n3/2 and

max(i1, i2, . . . , in) ≤ n

whereij are all positive integers then

i1 logs i1 + i2 logs i2 + . . . + in logs in < n3/2 logs n

PROOF. The proof is a straightforward consequence of Claim
2:

Claim 2: Under the assumption that1/n3/2 ≤ pi ≤ 1/n1/2

andΣp1 = 1, the following holds:

p1 logs p1 + p2 logs p2 + . . . + pn logs pn < −1/2 logs n (1)

Before we prove Claim 2, we show how we finish the proof of
the lemma based on the claim. We replace in the claim eachpi

with ni/n3/2 and using the fact thatn1+n2+. . .+nn = n3/2,
we get immediately the desired inequality.

Proof of Claim 2: We know from Information Theory that
if we tend to "unbalance" thepis (i.e., change the value of
the large ones to larger and the small ones to smaller while
keeping their sum equal to 1) then the quantity on the left
above becomes larger (actually the proof of this statement is
not too complicated but we omit it because it is tedious and
is contained in most textbooks). Thus, since we know that
1/n3/2 ≤ pi ≤ 1/n1/2, we change allpis either to1/n1/2 or
to 1/n3/2. Suppose we changex pis to 1/n1/2 andy pis to
1/n3/2. We want to hold:

x + y = n andx/n1/2 + y/n3/2 = 1. We solve and get:

x = (n1/2 − 1)/(1− 1/n) andy = (n− n1/2)/(1− 1/n)

Supposingx andy are integers, we have:

p1 logs p1 + p2 logs p2 + . . . + pn logs pn

< [(n1/2 − 1)/(1− 1/n)]/n1/2 logs(1/n1/2)

+[(n− n1/2)/(1− 1/n)]/n3/2 logs(1/n3/2) =

−(1/2)(1− (1/n1/2))/(1− 1/n) logs n−

(3/2)((1/n1/2)− 1/n)/(1− 1/n) logs n =

−(1/2) logs n[(1− (1/n1/2) + (3/n1/2)− 3/n)/(1− 1/n)]

< −(1/2)(1 + (1/n1/2)) logs n < −1/2 logs n

If x andy are not integers then we want to hold:

x + y = n− 1 andx/n1/2 + y/n3/2 + w = 1.

Thew denotes the one value that remains and is not equal to
either of the bounds. There is only onew, because, if there are
more, then we can replace the one value to be equal to one of
the bounds and replace another by subtracting the difference.
Then if we solve again, we get a similar analysis as the one
above by replacing thew to one of the bounds to obtain the
upper bound we state in the claim.

This concludes the proof of Claim 2.

B. Constant Depth Merging Network

We shall explain in detail this algorithm in four steps, cor-
responding to the four columns in Figure 4 but we give first
a succinct description of each column (note that in this case
only the two middle columns of Figure 4 are implemented by
merging networks while the first column only filters its input
and the fourth only sums up intermediate ordinals to find the
final ordinal):

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Input OutputFind

Sentinels Sentinels

Merge Merge

From Column 1
Processes (determined

at Step 2)

To Column 3

Determine
Ordinals by
Summation

Two
Sublists

Figure 4: The processes involved in the merging algorithm
of Section 4.7

12

• Each process in Column 1 filters the sorted list in its input
to find the merge-sentinels.

• The process in Column 2 merges two sorted lists (the
merge-sentinels).

• Each process in Column 3 merges two sorted lists.

• Each process in Column 4 determines (by summation) the
ordinal for each element.

SupposingO(s) is the limit on communication for a process,
we shall build a network that merges two sorted lists of size
n = s2 each. In this constant-depth network, the boxes in
Fig. 4 are really single processes (not networks of processes).
In detail the four columns represent the following four steps.

Step 1: Suppose the input is two sorted lists,S1 andS2,
of lengthn = s2 each. Choose the elements ofS1 andS2 at
positions0, s, 2s, . . .; we call them merge-sentinels. Note that,
since each list comes with elements attached to positions, this
step only requires filtering the input; no merging or sorting is
necessary. Each process simply identifies the merge-sentinels
by their associated ordinals, which are divisible bys. Thus,
this column does not require anything for the recursion, and
remains a single column if we apply this algorithm recursively.

Step 2: Each of the processes from Step 1 passes its sentinels
to a single merge process. Technically, the ordinals of the
sentinels need to be divided bys, so the input to the process of
column 2 is truly a sorted list, with ordinals0, 1, 2,

Our goal for the last two steps is to have a processPab for
each paira andb of consecutive merge-sentinels, that merges
all the elements in the range froma to b.3 These processes
are the boxes in the third column. To give these processes
all the input they might need, we do the following: We feed
processPab with the elements ofS1 with rank betweensi to
s(i + 1)− 1 and with the elements ofS2 with rank betweensj
to s(j + 1)− 1, wherei andj are computed from the ranks of
elementsa, b: 1. If a, b are from different lists (i.e., one from
S1 and one fromS2) theni corresponds to the sentinel-rank of
a in the listS1 (supposinga belongs inS1 anda ≤ b) andj
is the sentinel-rank ofb in the listS2 minus one. 2. Ifa, b are
from the same list (suppose this isS1) thenPab gets from list
S1 all the elements in the interval[a, b], i.e., with rank between
the rank ofa and the rank ofb. The elements fed toPab from
the listS2 are computed fromj as we explained above. This
j is computed by subtracting the rank ofa found in Step 2
(i.e., among all2s sentinels) from the rank ofa in S1 as a
merge-sentinel (i.e., the rank ofa in S1 divided bys). Note
that some of the elements in processPab will be either smaller
thana or greater thanb; we will ignore/delete such elements in
the output of each process of Step 3. Lemma B.1 below proves
that we correctly choose the data to feed each processPab.

Note that noPab can receive more than2s inputs, which
is fine, because we allowO(s) communication for a process.
Thus, we complete algorithm with:

Step 3: There is one processPab for each pair of consecutive
sentinelsa, b and each process is fed with input from Column 1
as explained above. The process merges the two sorted lists in
its input (technically, it needs first to subtract the ordinal of the
3As a special case, ifb is the first sentinel, thena is “minus infinity.”

first element of each list from the ordinals of the subsequent
elements in order for the ranks to be0, 1, 2, . . . instead of
starting from an arbitrary number). Notice that not all element
fed into Pab need be in the interval[a, b]. The ones that are
not, are simply deleted and the process transmits to Column 4
only the non-deleted elements (it is easy to see that the deleted
elements will occur in some other process of Column 3 as
non-deleted; moreover, because of this deletion, each element
is transmitted only once in the fourth column). Each process
Pab also transmits the number of elements it finds lower than
a among its inputs.

Step 4: Each processP ′ab determines the number of elements
lower thana among the two listsS1 andS2 by adding the rank
of a in its list and the rank ofc in its list, wherec is the closest
to a element of the non-containing-a list (i.e., of the other list).

Lemma B.1. The elements fed into the processPab are the
only elements of the listsS1 and S2 which may be≥ a and
≤ b.

PROOF. 1. Supposea, b are from different lists. Supposea
is fromS1 andb from S2. Then all the elements ofS2 greater
than b are outside the interval[a, b]. Supposec is the first
merge-sentinel ofS2 which is less thanb. Notice thatc < a
becausea is the merge-sentinel next tob in the list of merged
sentinels. Hence all the elements ofS2 less thanc are also less
thana.

2. Supposea, b are both from listS2. Clearly we correctly
chose the elements that lie betweena and b in the list S2.
For the elements chosen from the listS1 we argue as follows:
Let a′, b′ be merge-sentinels of listS1 such that the following
holds: a′ is the first merge-sentinel of listS1 less thana and
b′ is the first merge-sentinel of listS1 greater thanb. Then
a′ < a andb′ > b. Hence all elements ofS1 that either less
thana′ or greater thanb′ are excluded from being in the interval
[a, b]. The rank ofa′ in S1 is computed by subtracting the rank
of a found in Step 2 (i.e., among all2s sentinels) from the
rank of a in S1 as a merge-sentinel (i.e., the rank ofa in S1

divided bys). This computation is correct because the rank
of a in the sentinel list says that there are so many sentinels
precedinga in the total of sentinels (of both lists). The rank of
a as a sentinel inS2 says that there are so manyS2-sentinels
precedinga. Thus the subtraction leaves the number ofS1-
sentinels precedinga, hence it denotes the rank (as a sentinel)
of a′ (the firstS1-sentinel less thana) in S1.

The following theorem states the costs of the constant depth
algorithm. The proof is along the lines of the proof of Theo-
rem 4.3.

Theorem B.2. AlgorithmRMERGE(s2) constructs a network
of processes of depth four which has the following costs: 1)
Total communication cost:O(n) 2) Elapsed communication
cost: O(s) 3) Total processing cost:O(sn) 4) Elapsed pro-
cessing cost:O(s)

C. Merge Sort

The algorithmMM ERGE(S1, S2, . . . , Sm) merges a num-
ber of sorted listsS1, S2, . . . , Sm using algorithmRMERGE.

13

In the first stage of building the network we use networks
N1, N2, . . . , Nm/2

4 (of appropriate size) where networkNi is
a network built fromRMERGE to merge the two listsS2i−1

andS2i. The output of the networks built at this stage is a
number of listsS′1, S

′
2, . . . , S

′
m/2, where listS′(i+1)/2 is the

merged result of listsSi andSi+1. Thus in the second stage
we need to merge them/2 lists S′1, S

′
2, . . . , S

′
m/2. We repeat

the same procedure as in the first stage, i.e., we build networks
N ′

1, N
′
2, . . . , N

′
m/4, where networkN ′

i is a network built from
RMERGE to merge the two listsS′2i−1 andS′2i. Thus we will
be done afterlog2 m stages.

The following theorem states the costs of a network built
by the algorithmMM ERGE(S1, S2, . . . , Sm). The costs are
measured as functions ofΣ|Si|.
Theorem C.1. We use algorithmMM ERGE(S1, S2, . . . , Sm)
to construct a network of processes. SupposeΣ|Si| = n and
|Si| = s wheres is the upper bound of communication per pro-
cess. The costs of the network are as follows: 1) total commu-
nication cost:O(n log2(n/s) log2 logs n) 2) elapsed commu-
nication cost:O(s log2(n/s) log2 logs n) 3) total processing
cost: O(n log2(n/s) log2 logs n) 4) elapsed processing cost:
O(s log2(n/s) log2 logs n).

PROOF. First, we observe that we haveO(log2(n/s))stages.
We compute the elapsed costs. In the worst case there is a
longest path in the network in which in stagei the elapsed com-
munication cost is equal to the communication cost of a net-
work built byRMERGE(2is). Thus by summing up we have the
elapsed communication cost to beO(s log2(n/s) log2 logs n)
(actually, since we havelog log function, we can assume that
the elapsed communication for each stage isO(s log2 logs n);
thus all we have to do to sum up is multiply by the number of
stages). The elapsed processing cost is computed exactly in
the same way.

In order to compute the total communication cost we com-
pute the total communication cost of each stage. For a certain
stagei, we have that each of theRMERGE networks in this
stage has inputji = 2is and also the summation over all inputs
in this stage is equal ton. Hence, the total communication in
stagei is

Σji log2 logs ji ≤ n log2 logs n

(because(log2 logs ji)/(log2 logs n) < 1, thus, if we divide
both sides bylog2 logs n then the left hand side becomes
smaller thanΣij and hence smaller thann). So the to-
tal communication per stage isO(n log2 logs n). Since we
have O(log2(n/s)) stages, the total communication cost is
O(n log2(n/s) log2 logs n). The total processing cost is com-
puted exactly in the same way.

An asymptotically better algorithm.
Asymptotically we can do better than Theorem 4.8 if we

use in Step 4 of the recursive sort a network built by algo-
rithm MM ERGE which is described above (instead of sorting
networks). In order to compute the costs we need to extend

4If m is odd then the last network is not actually a network but the
list Sm itself.

Theorem C.2 for the case when each|Si| ≥ s. This can be done
using techniques similar to the techniques in Lemma A.1. It
will give the following recurrence for the total communication:

C(n3/2) = (
√

n)C(n) + O(n log2(n/s) log2 logs n)+

lower order terms

The solution is:O(n log2(n/s) log2
2 logs n) which is asymp-

totically better that the one in Theorem 4.8 but, as we explained
in Subsection 4.8, for realistic values ofn ands, the commu-
nication in Theorem 4.8 may be preferable.

The following theorem states the costs for this asymptotically
better sorting algorithm:

Theorem C.2. We construct a network for sortingn elements
using the sorting algorithm of Figure 3, where in the third col-
umn we use the merging networkRMERGE and in the fourth
column we use the networkRMERGE.

This network has the following costs: 1) total communica-
tion cost: O(n log2(n/s) log2

2 logs n), 2) elapsed communi-
cation cost:O(s log2

s n log2 logs n), 3) total processing cost:
O(n log2(n/s) log2

2 logs n) and 4) elapsed processing cost:
O(s log2

s n log2 logs n).

14

