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ABSTRACT

Over the years, researchers in the image analysis commu-
nity have successfully used various statistical modeling meth-
ods to segment, classify, and annotate digital images. In this
paper, we propose a 3-D hidden Markov model (HMM) for
volume image modeling. A computationally efficient algo-
rithm is developed to estimate the model. The 3-D HMM is
applied to volume image segmentation and tested using syn-
thetic images with ground truth. Experiments have demon-
strated that 3-D HMM outperforms Gaussian mixture model
based clustering by an order of magnitude in accuracy.

1. INTRODUCTION

In recent years, we see an explosion of digital image usages
in a number of application domains. Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT) scanners
in hospitals can produce high-resolution 3-D images of the
human brain or the human body so that physicians and ra-
diologists can look inside their patients non-invasively. At
airports, 3-D CT scanners are being installed to monitor lug-
gages checked in by travelers to detect explosive materials.
Hyper-spectral imaging techniques are employed by mili-
tary for field surveillance and detection of hidden targets.
The amount of information generated by these volume scan-
ners is so enormous that it becomes inevitable for computers
to help analyze, segment, and classify these images.

Conventional 2-D image modeling paradigms may not
always be effective in volume image analysis as there is
a third dimensional linkage that they cannot capture. Re-
searchers have strived to extend existing algorithms for mod-
eling and analyzing large-scale multi-dimensional data. The-
ories and methodologies related to Markov random fields
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(MRF) have played important roles in the construction of
many statistical image models for image segmentation and
texture analysis. 3-D MRFs have been applied to medical
image segmentation [6]. Among other modeling paradigms,
hidden Markov models (HMM) have particularly demon-
strated high effectiveness in modeling digital signals cap-
tured from physical world. Several variations of HMM have
been explored as modeling techniques in speech recogni-
tion, image and video understanding [1]. To effectively ac-
count for statistical dependence in 2-D images, researchers
extended 1-D HMMs to pseudo 2-D HMMs and pseudo 3-D
HMMs for face recognition [2, 3]. The 2-D multiresolution
HMM [4] captures the intra-scale and inter-scale statistical
dependencies in 2-D images. 2-D multiresolution HMMs
have been successfully used for supervised image segmen-
tation [4] and automatic image annotation [5].

Given the great potential demonstrated by the HMM
paradigm in various applications, it seems most natural to
extend 2-D HMM to 3-D HMM for volume image analysis.
In this paper, we construct a 3-D HMM to capture three-
dimensional statistical dependence in volume images and
hence enhance existing modeling techniques. 3-D HMM is
an effort to bridge the gap which naturally appears when
2-D imaging solutions are applied to volume images.

In Section 2, we describe the construction of the 3-D
HMM. Section 3 elaborates the proposed estimation algo-
rithm. In Section 4, experiments and their results are pro-
vided. We present our conclusions and suggest future re-
search directions in Section 5.

2. BASIC ASSUMPTIONS OF 3-D HMM

In this section, we present the 3-D HMM in its general form.
A point (i; j; k) wherei, j andk are coordinates along the
X , Y andZ axes respectively will be called a3-D point.
A three dimensional array of finite and equally spaced 3-D
points (alongX , Y andZ axes) in space will be referred to
as3-D grid. Additionally, we define aframeas the collec-
tion of 3-D points on any plane parallel to theX-Y plane.
A frame is indexed by itsZ coordinate. The size of any 3-D
grid that we consider will bew � w � w and the set of all
points in a grid will be denoted byC. Figure 1(a) shows a 3-
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< i. The aim of the 3-D HMM is to
model the distribution of the collection of feature vectors
fui;j;k; (i; j; k) 2 Cg at all the 3-D points in a grid. Ev-
ery point is assumed to exist in one of a finite set of states.
Denote the state at(i; j; k) by si;j;k, which is unobservable.
Let the number of states beM . The model imposes sta-
tistical dependence amongui;j;k through the states. As in
a typical HMM, the states are assumed to follow a certain
Markovian property. The observed feature vectorsui;j;k are
conditionally independent given the states. Specifically, the
following assumptions are made.
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is the set
of states and feature vectors of all points preceding
(i; j; k) in the lexicographic order. In addition,p =
si;j;k�1 , m = si�1;j;k andn = si;j�1;k . Given any
point (i; j; k), the three neighboring points that affect
it are shown in Figure 1 (a).

2. Given the statesi;j;k of a point(i; j; k), the feature
vectorui;j;k follows a multivariate Gaussian distribu-
tion parametrized by a covariance matrix and a mean
vector determined by the state. For a statel, we de-
note the corresponding covariance matrix and mean
vector by�l and�l. Recall that the probability den-
sity function (pdf) of a d-dimensional Gaussian dis-
tribution is
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3. If the state of point(i; j; k) is known, its observed
featureui;j;k is conditionally independent of the rest
of the points in the 3-D grid.

3. PARAMETER ESTIMATION

For the 3-D HMM, we need to estimate the transition prob-
abilitiesap;m;n;l, p;m; n = 1; � � � ;M , the mean vectors�l,
and the covariance matrices�l for each statel. The Viterbi
training approach used to estimate 1-D HMM is adopted.

We denote the collection of parameters collectively as
 and mark the iteration step by a superscript (the initial
parameter set being (0)). In order to update (t+1) from
 (t), we first identify the combination of states (s�i;j;k) with
the maximum a posteriori (MAP) probability, conditioned
on the observed vectors and parameters (t). The param-
eters ( (t+1)) are then computed by assuming statess�i;j;k
are the true underlying states. If the true states were known,
the maximum likelihood estimation of the parameters would
be easy to obtain. The mean vector�l and the covariance

matrix �l are simply the sample mean and sample covari-
ance matrix of all the observed vectorsui;j;k whose states
s�i;j;k = l. The transition probabilitiesap;m;n;l are com-
puted by the empirical frequencies. In our experiment, k-
means clustering is used to generate an initial set ofs�i;j;k.

Subject to the constraint
PM

l=1 ap;m;n;l = 1 for anyp,
m, andn, the transition probabilities compriseM3(M � 1)
free parameters. Due to the large number of parameters
even with a moderateM , we regularize the transition prob-
abilities by a partial 3-D dependence. In particular, if the
dependence along theZ axis is ignored, the model is re-
duced to a 2-D HMM and the transition probabilities are
�am;n;l , wherem = si�1;j;k , n = si;j�1;k andl = si;j;k .

The 3-D transition probabilities are regularized towards
the 2-D probabilities by a linear combination:

~a
(t+1)
p;m;n;l = �a

(t+1)
p;m;n;l + (1� �)�a

(t+1)
m;n;l : (1)

The parameter� 2 [0,1] controls the extent of 3-D depen-
dence. The value� = 1 corresponds to a pure 3-D model
while � = 0, a pure 2-D model. It is shown in the experi-
ment that an intermediate value of� is often preferable.

The key computational issue in Viterbi training is to
solve the MAP statesfs�i;j;k : (i; j; k) 2 Cg under a given set
of parameters. For 1-D HMM, the MAP sequence of states
can be solved by the Viterbi algorithm. For 3-D HMM,
there areMw3

possible combinations of states. The Viterbi
algorithm enables us to avoid exhaustive search along the
Z axis. However, it is still necessary to consider all the
possible combinations of states in every frame. Thus the
computational complexity of searching for the optimal set
of states using the Viterbi algorithm is at least
(wM2w2

).
To address the computational difficulty, we propose the fol-
lowing locally optimal algorithm to search for states with
the maximum a posteriori probability.
Proposed Algorithm

Define the set of points with a fixedY andZ coordinate
in a 3-D grid as a row denoted byRj;k = f(i; j; k) : 0 �
i � (w � 1)g. Let D = f(j; k) : 0 � j � w � 1; 0 �
k � w � 1g. Denote the sequence of states and observed
vectors in rowRj;k by sj;k anduj;k respectively. Rows are
processed in the lexicographic order defined as:(j0; k0) <
(j; k) if k0 < k or k0 = k, j0 < j. In the following algo-
rithm, we denote the states (in rowRj;k) obtained at passt
by stj;k. The approach is illustrated in Figure 1(b).

1. Initializet 0.

2. Initializek  0 , j  0.

3. If (t = 0) Sj;k = fst
j0;k0

; (j0; k0) < (j; k)g.

Fj;k = fuj0;k0 ; (j
0; k0) � (j; k)g.

If ( t > 0)

Sj;k = fst
j0;k0

; (j0; k0) < (j; k)g [ fs
(t�1)

j0;k0
; (j0; k0) > (j; k)g.

Fj;k = fuj0;k0 ; (j
0; k0) 2 Dg.



(i,j,k)

X 

Z

a row

Y

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

Row by row adjustment

row 0

row w−1

row 0

row w−1

{

. . . . . .

Initialization

{

Frame 0

Frame W−1

(a) (b)

Fig. 1. (a) A 3-D grid. Given the states of all the points that precede point(i; j; k), only the states of the three indicated neighboring
points affect the distribution of the state at(i; j; k). (b)The process of updating the sequence of states in each row recursively. States and
observed vectors in the shaded rows are included in the condition for solving the sequence of states in a current row that has the maximum
a posteriori probability. After initialization, the scan through all the rows can be repeated in several passes.

4. Search fors�j;k with MAP conditioned onSj;k [Fj;k.

5. stj;k  s
�

j;k, j  j + 1.

6. If j < w, go back to step 3. Otherwise,

(a) j  0, k  k + 1.

(b) If k < w, go back to step 3. Otherwise,

i. t t+ 1.

ii. If t < Pmax, go to step 2. Otherwise, stop.

The valuePmax is the pre-selected number of passes the
procedure will scan the 3-D grid. As seen above, the initial
states are obtained by a greedy technique. For each row, the
sequence of states with MAP conditioned on the states in all
the preceding rows and the observed vectors in the preced-
ing and current rows is selected. The difference between the
search for states during initialization and succeeding steps,
lies in the conditioned information as elaborated in the al-
gorithm. 1-D Viterbi is used to search for the MAP states
s
�

j;k at step 4 given by:
argmax

sj;k
[

Pw�1
i=0

�
log bsi;j;k (ui;j;k) + log a�si;j;k�1;si�1;j;k ;�si;j�1;k ;si;j;k

�

+ log a�si;j+1;k�1;�si�1;j+1;k ;si;j;k;�si;j+1;k
+ log asi;j;k;�si�1;j;k+1;�si;j�1;k+1;�si;j;k+1 ]

The conditioned states (assumed given) are denoted by
�s�;�;� in order to distinguish from the statessi;j;k to be opti-
mized. Due to lack of space we have omitted the proof of
the above equation. The complexity of using 1-D Viterbi
to search the optimal states of a row isO(wM2). All w2

rows of a 3-D grid are processed inO(M2w3) time. Thus
the proposed algorithm runs inpolynomial time(in both the

� �1(
1) �2(
2)

0.0 35.67(0.32) 1.35(0.54)
0.2 35.67(0.32) 1.33(0.54)
0.4 35.67(0.32) 1.29(0.52)
0.6 35.67(0.32) 1.49(0.54)
0.8 35.67(0.32) 1.81(0.53)
1.0 35.67(0.32) 1.92(0.55)

Table 1. A comparison study of a 3-D image (black sphere in a
white cube,w=100,� = 0.9) segmentation with varying�. The
values�i(
i) are mis-segmentation rates explained in the text.

number of states and problem size) compared to using un-
constrained Viterbi to search states globally which would
run inexponential time, 
(wM2w2

) as shown before.

4. EXPERIMENTS

We applied 3-D HMM to segment synthetically generated
volume images. Images representing black spheres inside a
white cube and some with a third shade (gray) were gener-
ated as follows. Each color voxel, black (� = 0), white (� =
1) (and gray� = 0.5 for 3 class images), was perturbed by
an additive Gaussian noisesN(0; �2) and the voxel values
were truncated to lie in the interval[�2�; 1 + 2�]. For the
purpose of displaying images, voxel values in the interval
[�2�; 1 + 2�] were scaled to[0; 255].

Segmentation using 3-D HMM and Gaussian Mixture
Model (GMM) based clustering have been compared in Fig-
ure 2. For results shown in the figure,w = 100 and 2-D
frames withz =w=4,w=2 and4w=5 respectively are shown
for the original as well as segmented images. Table 1 com-
pares numerical results of 3-D HMM and GMM based seg-
mentation. Also included are results after k-means cluster-
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Fig. 2. Compare the segmentation performance of 3-D HMM algorithm and clustering using Gaussian Mixture Model. The value of�

used for Experiment (a) is0:9 and for Experiment (b) is0:3
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Fig. 3. A comparison study of a 3-D image (2 black spheres in a
white cube,w=100,� = 0.5) segmentation with increasing�.

ing. In the table,�1 and�2 denote mis-segmentation rates
with k-means and 3-D HMM respectively while
1 and
2
denote boundary mis-segmentation rates. As expected, a
trade-off value of� (here 0.4) yields best segmentation per-
formance. The mis-segmentation rate for the same 3-D im-
age with GMM based clustering is found out to be 37.22.
We see that 3-D HMM outperforms GMM by a very large
margin which is expected as GMM ignores spatial depen-
dency information. Interestingly, for 3-D HMM, nearly 30
to 50% mis-segmentation occurs among boundary points
each time. We argue that boundary points could be con-
sidered as belonging to either class. Mere rounding of dis-
tances (for geometrical shapes generated) puts them in the
class where they belong. Figure 3 shows the performance of
3-D HMM with increasing variance of noise. Comparison
with GMM has been made. It is evident that segmentation
using 3-D HMM is consistent even for large noise. About 50
passes over a 3-D image were sufficient to achieve a stable
segmentation performance. The computer time for a sin-
gle pass over a100 � 100 � 100 image was estimated as
nearly2 seconds on a2:6 GHz Xeon based processor run-
ning Linux. All the results shown were obtained using the
proposed method of estimating parameters. We did not use
unconstrained Viterbi as the computational complexity was
found out to be exponential in Section 3.

5. CONCLUSIONS

We proposed 3-D HMM and suggested a fast parameter es-
timation technique. Next, we demonstrated its performance
on synthetic 3-D images. Performance over a large range of
noise variance was found to be consistent. In the future, we
wish to incorporate 3-D HMM based modeling and learn-
ing into real-world multi-dimensional image applications.
Several manifestations of the third dimensional information
exist in the form of spatial, spectral or temporal as in MRI,
hyper-spectral images and video, respectively.
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