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Abstract

Modern medicine is a field that has been revolutionized by the emergence of computer and
imaging technology. It is increasingly difficult, however, to manage the ever growing enormous
amount of medical imaging information available in digital formats. Numerous techniques have
been developed to make the imaging information more easily accessible and to perform analy-
sis automatically. Among these techniques, wavelet transforms have proven prominently useful
not only for biomedical imaging but also for signal and image processing in general. Wavelet
transforms decompose a signal into frequency bands, the width of which are determined by a
dyadic scheme. This particular way of dividing frequency bands matches the statistical proper-
ties of most images very well. During the past decade, there has been active research in applying
wavelets to various aspects of imaging informatics, including compression, enhancements, analy-
sis, classification, and retrieval. This review represents a survey of the most significant practical
and theoretical advances in the field of wavelet-based imaging informatics.

1 Introduction

With the steady growth of computer power, rapidly declining cost of storage, and ever-increasing
access to the Internet, digital acquisition of biomedical images has become increasingly popular
in recent years. A digital image is preferable to analog formats because of its convenient sharing
and distribution properties. This trend has motivated research in imaging informatics [45, 48],
which was nearly ignored by traditional computer-based medical record systems because of the
large amount of data required to represent images and the difficulty of automatically analyzing
images.

Besides traditional X-rays and mammography, newer image modalities such as Magnetic Reso-
nance Imaging (MRI) and Computed Tomography (CT) can produce up to several hundred slices
per patient scan. Each year, a typical hospital can produce several terabytes of digital and digitized
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medical images. Currently, storage is less of an issue since huge storage capacities are available at
low cost. However, effective usage of large-scale biomedical image databases remains as a challenge
for imaging informaticians.

Wayvelets, studied in mathematics, quantum physics, statistics, and signal processing, are basis
functions that represent signals in different frequency bands, each with a resolution matching its
scale [7]. They have been successfully applied to image compression, enhancements, analysis,
classification, and retrieval.

The outline of this paper is as follows. In Section 2, the concepts and definitions of wavelet
transforms are introduced. In Section 3, previous research in the area of wavelet applications is
summarized. Finally, conclusions are drawn and future directions are suggested in Section 4.

2 Wavelet transforms

When constructing basis functions of a transform, the prime consideration is the localization,

, the characterization of local properties, of the basis functions in time and frequency. The
signals we are concerned with are 2-D color or gray-scale images, for which the time domain is
the spatial location of a pixel, and the frequency domain is the intensity or color variation around
a pixel. An effective transform reflects intensity or color variations compactly in a small portion
of transformation coefficients. With reduced components critical for representing an image, an
image can be stored more efficiently and analyzed more easily. In this section, we compare a
few representative transforms and their properties. Due to limit of space, we discuss the general
concepts of wavelets here. Theories related to the development of wavelets can be found in several
references [14, 16, 18, 19].

2.1 Fourier transform

Fourier transforms [9, 21] are not strange to image informaticians. In 1807, mathematician Joseph
Fourier declared that any 27-periodic function f(z) is the sum of its Fourier series. That is,
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where coefficients ag, ay, and by (K =1,2,3,...) are computed by the following equations
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is an orthonormal basis for the space of functions decomposable to the Fourier series on the interval
[0, 27].



For discrete time signals, f[n] can be expressed by a summation of discrete Fourier basis as
follows
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where F[k], referred to as the Fourier coefficients of f[n], are determined by Eq. 6. The mapping
from f[n] to F[k] is called the Discrete Fourier Transform (DFT). An alternative to the DFT is
the Discrete Cosine Transform (DCT), which is often preferred because coefficients are guaranteed
to be real numbers.

The Discrete Fourier Transform is widely used in signal and image processing, and has proven
effective for numerous problems because of its frequency domain localization capability. It is ideal
for analyzing periodic signals because the Fourier expansions are periodic. However, it lacks spatial
localization due to the infinitely extending basis functions. Spline-based methods are efficient for
analyzing the spatial localization of signals containing only low frequencies.

Many image applications share an important goal with image compression, i.e., to reduce the
number of bits needed to represent the content of the original image. We now study the advantages
and disadvantages of using the DCT transform for image compression.

The DCT is used in the JPEG (Joint Photographic Experts Group) compression encoding and
decoding (codec) standard. In order to improve spatial localization, JPEG divides images into 8 x 8
non-overlapping pixel blocks and applies the DCT to each block. The system quantizes each of the
64 frequency components uniformly using a quantization step specified by a table designed according
to the human visual system (HVS)’s sensitivity to different frequencies. A smaller quantization step,
or equivalently higher quantization accuracy, is used to quantize a frequency component to which
the HVS is more sensitive. Entropy encoding using Huffman codes is applied to further reduce bits
needed for representing an image.

Although spatial domain localization is improved by the windowed DCT, processing the 8 x
8 non-overlapping blocks separately results in boundary artifacts at block borders, as shown in
Figure 1. Compression methods based on another set of orthogonal systems, the wavelets, typically
generate much less visible artifacts at the same compression ratio.

2.2 Haar wavelet

Orthonormal wavelet bases are an evolution of the Haar bases [39]. In 1909, A. Haar described
orthonormal bases (in an appendix to his thesis), defined on [0, 1], namely ho(z), h1(z), ...... s hn (),
..., other than the Fourier bases, such that for any continuous function f(z) on [0,1], the series

> < fohy > hy(z) (8)
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converges to f(z) uniformly on [0, 1]. Here, < u,v > denotes the inner product of v and v:
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where v is the complex conjugate of v, which equals v if the function is real-valued.



Figure 1: The Fourier transforms create visible boundary artifacts.

One version of Haar’s construction [39, 7, 8] is as follows:
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There are limitations in using Haar’s construction. Because Haar’s base functions are dis-
continuous step functions, they are not suitable for analyzing smooth functions with continuous
derivatives. Since images often contain smooth regions, the Haar wavelet transform does not provide
satisfactory results in many applications.

2.3 Daubechies’ wavelets

Many other types of wavelets have been developed to improve the Haar wavelet transform. One
representing type of basis for wavelets is that of Daubechies’. For each integer r, the orthonormal
basis [13, 27, 36, 37] for L%(R) is defined as

brj(x) = 2024, (P 0 — k), jk € Z (12)

where the function ¢,.(z) in L?(R) has the property that {¢,(z — k)|k € Z} is an orthonormal
sequence in L?(R). Here, j is the scaling index, k is the shifting index, and r is the filter index.
Then the trend f;, at scale 277, of a function f € L*(R) is defined as

Fil@) =" < frdrjn > brjn(@). (13)
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The details or fluctuations are defined by
dj(z) = fip1(z) — fi(z). (14)

To analyze these details at a given scale, we define an orthonormal basis 1, (z) with properties
similar to those of ¢,(z) described above.
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Figure 2: Plots of some analyzing wavelets. First row: father wavelets, ¢(x). Second row: mother
wavelets, 1(z)

¢r(x) and 1, (x), called the father wavelet and the mother wavelet, respectively, are the wavelet
prototype functions required by the wavelet analysis. Figure 2 shows several popular mother
wavelets. Wavelets such as those defined in Eq. 12 are generated from the father or the mother
wavelet by changing scale and translation in time (or space in image processing).

Daubechies’ orthonormal basis has the following properties:

e ¢, has the compact support interval [0, 2r + 1]

e 1, has about r/5 continuous derivatives

o [ p(x)dz =..= [ z"(z)dz =0.

Daubechies’ wavelets provide excellent results in image processing due to the above properties.
A wavelet function with compact support can be easily implemented by finite length filters. More-
over, the compact support enables spatial domain localization. Because the wavelet basis functions
have continuous derivatives, they decompose a continuous function more efficiently with edge arti-
facts avoided. Since the mother wavelets are used to characterize details in a signal, they should
have a zero integral so that the trend information is stored in the coefficients obtained by the father
wavelet. A Daubechies’ wavelet representation of a function is a linear combination of the wavelet
basis functions.

Daubechies’ wavelet transforms are usually implemented numerically by quadratic mirror fil-
ters [39, 3, 10]. Multiresolution analysis of the trend and fluctuation of a function is implemented
by convolving it with a low-pass filter and a high-pass filter that are versions of the same wavelet.
The Haar wavelet transform is a special case of Daubechies’ wavelet transform with r» = 2, which
is termed as Daubechies-2 wavelet transform.

The transform of signal z(n), n € Z by the Haar’s wavelet is provided by

Fy(a(n)) = %(m(n) +z(n+1)) (15)
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Figure 3: Comparison of Haar’s wavelet and Daubechies’ wavelets on a 1-D signal. (a) original
signal (ze ™) of length 1024 (b) coefficients in high-pass bands after a 4-layer Haar transform (c)
coefficients in high-pass bands after a 4-layer Daubechies-3 transform (d) coefficients in high-pass
bands after a 4-layer Daubechies-8 transform

Fy ((n)) = %(x(m —(n+1) (16)

The corresponding low-pass filter is {%, %} and the high-pass filter is {%, —%}

In fact, averaging on adjacent samples is equivalent to using transform coefficients obtained by
the low-pass filter of the Haar’s wavelet. Daubechies’ wavelets transforms with » > 2 are analogous
to weighted averaging which better preserves the trend information in signals if we consider only
the low-pass filter part. Various experiments and studies [46] have shown that in many cases
Daubechies’ wavelets with > 2 result in better performance than the Haar’s wavelet.

Figure 3 shows a comparison of the Haar wavelet, equivalent to averaging, and the Daubechies-8
wavelet. We notice that the signal with a sharp spike is better analyzed by Daubechies’ wavelets
because much less energy or trend is stored in the high-pass bands. Daubechies’ wavelets are better
suited for natural signals or images than the Haar wavelet. In many image applications, we want
to represent as much energy in the image as possible in the low-pass band coefficients. When using
the Haar wavelet, we lose more trend information if we ignore the high-pass bands.

In general, Daubechies’ wavelets with long-length filters give better energy concentration than
those with short-length filters. However, processing discrete images using long-length wavelet fil-
ters often causes border problems. Usually we need to determine the filter to be used base on
applications.

3 Applications of wavelets in imaging informatics

Wavelets have been successfully used in many signal processing applications such as electrocardio-
gram (ECG) [25, 12] and speech [26]. In this paper, we focus on their applications in imaging
informatics.

There is a wealth of prior work in the field of imaging informatics using wavelets. Space limi-
tations do not allow us to present a broad survey in detail. We constrain ourselves to highlighting
some of the work that may be most representative.

3.1 Compression and progressive transmission

Because of the high compressibility of the biomedical images, data compression is desirable for
efficient transmission and storage. For example, the success of a telemedicine system or a Picture



Archive and Communications Systems (PACS) system relies critically on the speed images or video
clips are transmitted. Usually the network bandwidth is limited and the amount of data stored in a
biomedical image is enormous. Real statistical clinical-quality evaluations have shown that wavelet-
based image compression algorithms can result in 10-fold efficiency without visible artifacts [1].

We now survey the family of wavelet-based progressive image compression algorithms. The
progressive property is preferred because it allows users to recover images gradually from low to
high quality. An image can be encoded losslessly, but the user can choose a bit rate sufficient for
his or her particular needs by simply using part of the encoded bit stream.

Image compression is a major application area for wavelets. Because the original image can
be represented by a linear combination of the wavelet basis functions, similar to Fourier analysis,
compression can be performed on the wavelet coefficients.
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Figure 4: A 3-level wavelet transform of an MRI image slice using Daubechies’ wavelet. Plotted
dots indicate non-zero wavelet coefficients after thresholding.

The wavelet transform offers good time and frequency localization. Information stored in an
image is decomposed into averages and differences of nearby pixels. For smooth areas, the difference
elements are near zero. The wavelet approach is therefore a powerful tool for data compression,
especially for functions with long-range slow variations and short-range sharp variations [49]. The
time and frequency localization of the basis functions are adjusted by both scale index 7 and position
index k. We may decompose the image even further by applying a wavelet transform several times
recursively.

Figure 4 shows the multi-scale structure in the wavelet transform of an image. An original
MRI image of 256 x 256 pixels is decomposed into a 3-level wavelet transform of 256 x 256 coef-
ficients. Coefficients in a 1-level wavelet transform are organized into 4 bands, emphasizing low
frequency trend information, vertical-directional fluctuations, horizontal-directional fluctuations,
and diagonal-directional fluctuations, respectively. The low frequency band of coefficients can be
further decomposed to form higher-level wavelet transforms. The figure shows wavelet transforms
after thresholding near zero. Most of the high frequency coefficients are of near-zero values. Note
that information about the shape, intensity, and surface texture are well preserved and organized
in different scales for analysis.

Since wavelet transforms decompose images into several resolutions, the coefficients, in their own
right, form a successive approximation of the original images. For this reason, wavelet transforms
are naturally suited for progressive image compression algorithms. In 1992, DeVore et al. discovered
an efficient image compression algorithm by preserving only the largest coefficients (which are scalar
quantized) and their positions [15]. In the same year, Lewis and Knowles published their image



compression work using 2-D wavelet transform [29] and a tree-structured predictive algorithm to
exploit the similarity across frequency bands of the same orientation. There is also other work in
the same period of time [2].

Many current progressive compression algorithms apply quantization on coefficients of wavelet
transforms which became more widely used after Shapiro’s [44] invention of the zero-tree structure,
a method to group wavelet coefficients across different scales to take advantage of the hidden corre-
lation among coefficients. A major breakthrough in performance was achieved. Much subsequent
research has taken place based on the zero-tree idea, including a very significant improvement made
by Said and Pearlman [43], referred to as the S & P algorithm. This algorithm was applied to a
large database of mammograms by a group of researchers at Stanford University [1, 40] and was
shown to be highly efficient even by real statistical clinical-quality evaluations.

An important advantage of the S & P algorithm and many other progressive compression
algorithms is the low encoding and decoding complexity. No training is needed since trivial scalar
quantization of the coefficients is applied in the compression process. However, by trading off
complexity, the S & P algorithm was improved by tuning the zero-tree structure to specific data [20].
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Figure 5: Multiresolution progressive browsing of pathology slides of extremely high resolution.
The HTML-based interface is shown. The magnification of the pathology images is shown on the
query interface.

A progressive transmission algorithm with automatic security filtering features for on-line medi-
cal image distribution using Daubechies’ wavelets has been developed by Wang, Li, and Wiederhold
of Stanford University [52]. Figure 5 shows sample image query results with the HTML-based client
user interface.

Other work in this area include the work by LoPresto et al. on image coding based on mixture
modeling of wavelet coefficients and a fast estimation-quantization framework [33], the work by
Villasenor et al. on wavelet filter evaluation for compression [50], and the work by Rogers and
Cosman on fixed-length packetization of wavelet zerotree [42].

A recent study by a group of radiologists in Germany [41] concluded that only wavelets provided
accurate review of low-contrast details at a compression of 1:13, tested among a set of compression
techniques including wavelets, JPEG, and fractal.

3.2 Enhancements

Image smoothing, denoising and other enhancements are also significant applications of wavelets
in imaging informatics. Radiology images are typically noisy and of low contrast because of the
physical limitations of the acquiring devices. Efficient image enhancement is often desired by
radiologists.



Image enhancement methods are also often used as pre-processors for image analysis, image
classification, and image retrieval applications. For example, in order to extract meaningful features
from a noisy medical image and index it in a medical image database, we must perform a series
of image enhancement operations such as image denoising and image normalization to the original
image.

A successful image denoising algorithm should preserve the useful information in the image
while removing machine-introduced noise. Wavelet is suitable for denoising because a noise signal
usually has greatly different frequency properties from those of an image signal, which are reflected
by wavelet transform coefficients.

Weaver et al. of the Dartmouth-Hitchcock Medical Center in New Hampshire are among the
first to use wavelets in denoising of medical images [59]. Their method does not reduce the sharpness
of edges. However, a major problem is the elimination of small structures that are similar in size
to the noise to be removed.

Yu et al. of Stanford University developed a translation- and direction-invariant denoising
algorithm for both 2-D and 3-D images using wavelets [62]. The denoising process is essentially
a signal extraction process. Wavelet-based approach is quite different from traditional filtering
approaches because of its nonlinear property. A typical wavelet-based denoising algorithm has the
following steps: (1) perform a suitable wavelet transform of the noisy data; (2) perform a soft
thresholding of the wavelet coefficients where the threshold depends on the noise variance; (3)
coefficients obtained from step 2 are then padded with zeros to produce a matrix and the matrix is
inverted to obtain the signal estimation. Examples have shown that this approach suppressed the
noise effectively while maintaining features in the original signal.

Other recent work in wavelet-based image denoising include the work by Stoschek and Hegerl
on denoising of electron tomographic reconstructions [47], the work by Weaver on monotonic noise
suppression used to improve the sensitivity of fMRI activation maps [60], the work by Zong et al.
on speckle reduction and contrast enhancement of echocardiograms [64].

Laine et al. have used wavelets for contrast enhancement and feature extraction of digital
mammography [28]. Lu and Healy of Dartmouth College developed another contrast enhancement
technique for medical images using a multiscale wavelet-based edge representation [34]. They used
the edge detection and classification properties of wavelet-type representations. Experiments have
been conducted on various imaging modalities. One particular diagnostic application is the tracking
of heart wall thickness during the cardiac cycle [23].

3.3 Analysis and classification

T2-weighted MS lesions T2-weighted MS lesions

Figure 6: Automatic classification of MRI images. No pre- or post-processing.

Image classification is a technique for classifying images or areas of images into several categories.



In the medical domain, image classification can be categorized into global classification and local
classification, based on the targeted tasks.

e Global classification

One example is to discern images with lesions (abnormal cases) and images without lesions
(normal cases).

e Local classification or image segmentation

One example is to identify the regions, or set of pixels, representing certain objects (e.g., the
lesions, the blood vessels). Figure 6 shows an example of a local classification process. In this
example, the computer algorithm circled possible multiple sclerosis lesions after analyzing
wavelet transforms of the multi-spectrum MRI images.

In many applications, global classification is achieved by local classification and statistical analysis.

Lucier et al. of Purdue University developed a wavelet-based segmentation algorithm for digital
mammograms [35]. However, the less advanced Haar wavelet transform is used in the algorithm.
Their study has shown that the artifacts in the compressed images were seen as totally artificial
and were not misinterpreted by the radiologist as calcifications. The compressed images were also
processed by a wavelet method to extract the calcifications. Despite several false-positive signals
in highly compressed images, all true clusters were successfully segmented.

Similar success have been achieved by Wei et al. of the University of Michigan [61], Zheng et
al. of the Texas A&M University [63], Li et al. of the University of South Florida [32], and Mata
Campos et al. of Spain [38].

Recently, Wang et al. of Stanford University developed a wavelet-based unsupervised multires-
olution segmentation for images with low depth of field such as digital microscope images [55].
The algorithm is designed to separate a sharply focused object-of-interest from other foreground or
background objects. The algorithm is fully automatic in that all parameters are image independent.
This work represents context-dependent classification of individual blocks of the image.

Resolution 1

Resolution 2

Figure 7: The hierarchical statistical dependence across resolutions.

Wavelets incorporated with multiresolution models have resulted in great performance in many
image processing tasks. One example is the two-dimensional multiresolution hidden Markov model
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(2-D MHMM) developed by Li, Gray, and Olshen [30] for image classification and compression.
In conventional block-based classification algorithms, an image is divided into blocks and the class
of each block is determined independently according to features extracted from this block. To
improve classification by incorporating context information efficiently, features at multiple resolu-
tions are extracted using wavelet transforms in particular. Then the 2-D MHMM is proposed to
characterize both inter-resolution and intra-resolution statistical dependence among image blocks.
Figure 7 illustrates the inter-resolution dependence in the 2-D MHMM. Other examples of mul-
tiresolution models using wavelets include the multiscale random field model developed by Bouman
and Shapiro [4] and the hidden Markov model for wavelet coefficients developed by Crouse, Nowak,
and Baraniuk [11].

3.4 Retrieval

Content-based image retrieval (CBIR) is a technique for retrieving relevant images from an image
database on the basis of automatically-derived image features. CBIR functions differently from text-
based image retrieval. Features describing image content, such as color histogram, color layout,
texture, shape and object composition, are computed for both images in the database and query
images. These features are then used to select the images that are most similar to the query. High-
level semantic features, such as the types of objects in the images and the purpose of the images
are extremely difficult to extract. Derivation of semantically-meaningful features remains a great

challenge.
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Figure 8: A sample query result. The first image is the query.

CBIR is critical in developing patient care digital libraries. McKeown, Chang, Cimino, and
Hripcsak [22] of Columbia University plan to develop a personalized search and summarization
system over multimedia information within a healthcare setting. Efficient CBIR is an important
core technology within such systems.

CBIR can be applied to clinical diagnosis and decision making. Currently, more and more hos-
pitals and radiology departments are equipped with PACS. Efficient content-based image indexing
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and retrieval will allow physicians to identify similar past cases. By studying the diagnoses and
treatments of past cases, physicians may be able to better understand new cases and make better
treatment decisions. Wong of the University of California at San Francisco has edited a book on
the recent advances in the field of medical image databases [58].

CBIR can also be applied to large-scale clinical trials. As brain MRI image databases used in
clinical research and clinical trials (e.g., for tackling multiple sclerosis) become larger and larger
in size, it is increasingly important to design efficient and consistent algorithms that are able to
detect and track the growth of lesions automatically. Brammer of the Institute of Psychiatry in
London recently published their work on analyzing clinical trial functional MRI data [5]. In their
experiments, they found that wavelet analysis was able to identify small signal changes against a
noisy background and that most other techniques failed. By manipulating the wavelet coefficients
in the spatial dimensions, activation maps can be constructed at different levels of spatial smoothing
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Figure 9: The result of a hand-drawn sketch query.

Within bioinformatics, CBIR can be used for managing large-scale protein image databases
obtained from 2-D electrophoresis gels. Presently, the screening process on very large gel databases
is done manually or semi-automatically at pharmaceutical companies. With CBIR. techniques, users
may be able to find similar protein signatures based on an automatically-generated index of the
visual characteristics.

And lastly, we can exploit CBIR in biomedical education. Medical education is an area that has
been revolutionized by the emergence of the Web and its related technologies. The Web is a rich
medium that can increase access to educational materials and can allow new modes of interaction
with these materials. We may utilize CBIR to organize images of slides prepared for use in medical
school pathology courses [53].

The Pathfinder system developed by Wang et al. at Stanford University [54, 31] is a multipur-
pose wavelet-based image retrieval system. It is based on the SIMPLIcity [56, 57, 51] content-based
image retrieval system. It has proven effective in searching biomedical images such as digitized
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pathology slides. The Pathfinder system is a multiresolution region-based searching system. Ex-
periments with a database of 70,000 pathology image fragments have demonstrated high retrieval
accuracy and high speed. The algorithm can be easily combined with wavelet-based progressive
pathology image transmission and browsing algorithms [53]. Figure 8 shows a sample query result.
The user supplied a query with a round-shaped cell. The Pathfinder system successfully found im-
ages across different resolution, each with one or more round cells and similar visual characteristics,
and ranked them according to their visual similarity to the query image. Figure 9 shows the result
of a hand-drawn sketch query.

4 Conclusions and future directions

In this paper, we reviewed a set of important mathematical tools for signal/image processing —
the wavelet transforms, with emphasis on their applications in imaging informatics. Representative
work has been identified in image compression, enhancements, analysis, classification, and retrieval.
Compared to other tools such as the Fourier transform, the wavelet transforms often provide better
spatial domain localization property, critical to many imaging applications.

The application of wavelets to imaging informatics is only a decade old. Wavelets have demon-
strated their importance in almost all areas of signal processing and image processing. In many
areas, techniques based on wavelet transforms represent the best available solutions. In the coming
years, we expect to see more and more successful wavelet-based techniques in the field of imaging
informatics. We expect hybrid schemes incorporating wavelets and other statistical techniques to
achieve greater success. Theoretical research inspired by wavelets has lead to new techniques such as
ridgelet [6] and edgelet [24] transforms that are more promising in certain situations. Explorations
on these new frontiers are likely to bring us more successful applications in imaging informatics.
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