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Abstract

We have developed an algorithm, called SST (Sequence Search Tree), that searches a
database of DNA sequences for near exact matches, in time proportional to the logarithm of
the database size n. In SST, we partition each sequence into fragments of �xed length called
\windows" using multiple o�sets. Each window is mapped into a vector of dimension 4k

which contains the frequency of occurrence of its component k-tuples, with k a parameter
typically in the range 4�6. Then we create a tree-structured index of the windows in vector
space, using tree structured vector quantization (TSVQ). We identify the nearest-neighbors
of a query sequence by partitioning the query into windows and searching the tree-structured
index for nearest neighbor windows in the database. This yields an O(log n) complexity for
the search. SST is most e�ective for applications in which the target sequences show a
high degree of similarity to the query sequence, such as assembling shotgun sequences or
matching ESTs to genomic sequence. The algorithm is also an e�ective �ltration method.
Speci�cally, it can be used as a preprocessing step for other search methods to reduce the
complexity of searching one large database against another. For the problem of identifying
overlapping fragments in the assembly of 120,000 fragments from a 1.5 megabase genomic
sequence, SST is 17 to 35 times faster than BLAST when we consider both building and
searching the tree. For searching alone (i.e., after building the tree index), SST is 50 to 100
times faster than BLAST.

1 Introduction

In the current e�orts to generate and interpret the complete genome sequences of humans and
model organisms, large scale searches for near exact matches are frequently performed. Examples
include programs that assemble DNA from shotgun sequencing projects which initially search
for overlapping fragments, large scale searches of EST databases against genomic databases to
determine the location of genes, and cross species genomic comparisons between very closely
related genomes. Faster algorithms are needed because of the time and cost of performing these
large-scale sequence-similarity searches using even the fastest of the extant algorithms.
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1.1 Previous related research

We now review previous results related to the SST algorithm for sequence alignment, tree-
structured indexes, and k-tuple encoding and �ltration. In this discussion we shall refer to the
length of a query sequence by the letter \m". The size of the database refers to the sum of the
lengths of all the sequences in the database, and is represented by the letter \n".

1.1.1 Sequence alignment

Extant widely-used sequence-similarity-�nding programs include Needleman -Wunsch [1], Smith-
Waterman [2], FASTA [3, 4], and BLAST [5, 6].

The Needleman-Wunsch algorithm performs global sequence alignment using a dynamic pro-
gramming algorithm. Its computational complexity is O(m � n).

The Smith-Waterman algorithm is a heuristic approximation to the Needleman-Wunsch al-
gorithm which identi�es regions of local sequence similarity. Its computational complexity is
O(m � n), with a coe�cient of complexity smaller than Needleman-Wunsch.

The FASTA algorithm identi�es regions of local sequence similarity by �rst identifying can-
didate similar sequences based on shared k-tuples and performs local alignment with the Smith-
Waterman algorithm. Its computational complexity is O(m � n), with a constant smaller than
the Needleman-Wunsch or Smith-Waterman algorithms.

The BLAST algorithm identi�es regions of local sequence similarity by �rst identifying candi-
date similar sequences that have k-tuples in common with the query sequence, and then extending
the regions of similarity. Its computational complexity is O(n).

Myers implemented a sub-linear algorithm that �nds long matches with less than a speci�ed
fraction of errors [7]. Chang and Lawler also implemented a sub-linear expected-time search
algorithm [8]. These algorithms index the occurrences of k-tuples in the database, giving sub-
linear complexity. Because each tuple of the query may occur in many sequences in the database
these algorithms still require examination of a substantial portion of the sequence database, and
the search time still grows linearly with the size of the database. The developers of BLAST
evaluated an indexing scheme similar to that described by Myers, but chose not to include it in
the �nal versions of the program [5, 6].

1.1.2 Sequence clustering

Several previous researchers have created clusters of sequences (including tree-structured indexes)
or have performed other complete pairwise comparisons of sequence databases [9, 10, 11, 12,
13, 14]. With the exceptions discussed below, these earlier algorithms have used conventional
sequence alignment methods such as BLAST or FASTA (rather than the k-tuple method used
in SST) to determine pairwise distances between sequences, and thus are limited by the speed of
those alignment methods. In most cases, these previous researchers were concerned with creating
a classi�cation of proteins, rather than with enabling fast searches.

To perform an exhaustive pairwise search of all sequences in the protein sequence database,
Gonnett et al. created a tree-structured index of all the protein sequences and all their subse-
quences (a Patricia tree), and used Needleman-Wunsch as their measure of similarity between
sequences [9]. The size of the resulting tree, and the use of Needleman-Wunsch as the similarity
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measure, resulted in a computationally intensive algorithm.

Yona and colleagues created hierarchical clusters of the known protein sequences by k-means
clustering and metric space embedding [14]. Their intent was to build a global view of protein
sequence space, rather than to enable fast searches for similar sequences. In particular, the
metric space embedding scheme in their algorithm is computationally intensive, and would be
impractical for fast sequence similarity searches.

1.1.3 Tree-structured indexes

Tree-structured indexes have been used previously to provide fast access to databases, and to
allow compression of data for rapid transmission. Tree-structured vector quantization (TSVQ)
uses a tree-structured index to encode vectors that can be transmitted more quickly than the
original data [15], albeit with some loss of information (lossy compression). TSVQ can be
viewed as a nearest-neighbor search algorithm, and was the inspiration for the tree-structured
index used in SST. Agrawal et al. describe a method to reduce a high-dimensional set of vectors
into a lower-dimensional set that retains most of the information, which can then be used to
create a tree-structured index into the database [16]. Vector representations and tree-structured
indexes have been used widely for database access and data transmission, but to our knowledge
these methods have not been used for DNA and protein sequence databases, except for the work
of Gonnett and of Yona described above.

1.1.4 K-tuple encodings and �ltration

K-tuple encodings have been used frequently in sequence analysis and in conjunction with �l-
tration methods. We have already noted their use in FASTA and in BLAST, and describe here
their use in FLASH, RAPID, and QUASAR. The FLASH algorithm [17] uses a form of k-tuple
encoding that provides multiple indexes into the database per position in the sequence. The
tuples used in FLASH are very descriptive and have a low probability of matching randomly in
the database. This yields a high e�ciency in screening for candidate database matches.

The RAPID algorithm [18] �nds k-tuple matches in each sequence compared to the query
sequence (and hence is linear in complexity). Instead of performing a (computationally expen-
sive) alignment as is done in BLAST, RAPID uses a table of word-frequencies computed from
the database of sequences and calculates the probability that a set of matching words occur by
chance. This approach yields a smaller coe�cient of complexity than occurs in BLAST, but also
remains linear.

The QUASAR algorithm [19] partitions the database into blocks of equal length, analogous
to the \windows" used in SST. It then searches each database block for all occurrences of each
k-tuple from the query (q-gram, in their nomenclature), and increments a counter for each block
whenever it contains a k-tuple from the query. A lower-bound on the minimum number of k-
tuples in a block provides a �lter to identify blocks that are similar to the query sequence. The
number of blocks which need to be accessed for every q-gram can be linear in the database size.

The use of k-tuple frequency for approximate matching of texts, and in �ltration schemes
has also been used and analyzed in [20, 21, 22, 23].

SST di�ers from the previous algorithms in that it combines an e�cient embedding of se-
quence fragments (windows) into metric space, using k-tuple frequency encoding, with a tree-
structured index for that space. SST's tree-structured index eliminates large portions of the
database from consideration during searches, and requires us to search only a small fraction of
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the database to �nd sequences with high similarity to the query sequence. The construction of
the index has an average computational complexity which is O(n logn) while the search of the
index has an average complexity O(m logn).

2 The SST algorithm

We now describe the details of the SST algorithm. Sections 2.1, 2.2 and 2.3 describe the steps
in constructing the tree index. These steps need to be performed only once for each database.
Section 2.4 describes how the database index is searched.

2.1 Data-base partitioning with sliding windows

In the �rst step each sequence in the database is partitioned into overlapping windows, which
consist of subsequences of nucleotides of �xed length W . The measure of overlap between
windows is determined by a parameter � which is typically in the range 5 � � � W=2. The
windows consist of the nucleotides beginning at position j ��, and ending at position j ��+W ,
with j = 0; 1; 2 : : : ;W=�� 1 (Figure 1). Typical values of W are in the range 25� 1000.

AACCGGTTACGTACGT

AACCGGTTACGTACGT

AACCGGTTACGTACGT

W=6

2∆

Figure 1: A database sequence is partitioned into overlapping windows of length W = 6. The
overlap parameter � = 2.

Each query sequence is partitioned into non-overlapping windows. The search for a query
sequence consists of �nding database windows that are similar to the query windows, as will be
described in the next subsections.

2.2 Mapping windows into vector space

In order to build the tree index used by SST, it is necessary to map each window into a �nite
dimensional vector space. We begin by choosing a tuple size k, and by associating an integer
I with each of the 4k k-tuples of nucleotides a1a2 � � � ak, ai 2 fA,C,G,Tg. This is done in a
standard fashion using the formula

I(a1a2 � � �ak) =
kX
l=1

4lM(al);
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M(al) =

8>>><
>>>:

0 if al = A;

1 if al = C;

2 if al = G;

3 if al = T:

Tuples containing the undetermined symbol \N" are ignored. We now map each database window

to the vector in R4
k

who's I 'th entry is the number of occurrences of tuple I in that window.
For example, with k = 2 the window fAACCGGg in Figure 1 is mapped to the vector

(1100011000100000)T :

The tuple size k ranges between 2 and 10 but is typically 4 or 5, chosen for reasons described in
Section 4.

The L1 distance (Manhattan distance) between the image of two windows in vector space
is the number of k-tuples which occur in one of the windows and not in the other. Since each
window has W � k+1 component k-tuples, their distance can be used to determine the number
of k-tuples shared by the two windows. This in turn provides a lower bound for the edit distance
between the windows [23], [22]. The correspondence between the L1 distance in vector space
and the edit distance in sequence space is utilized in SST to �nd near exact matches to query
windows, by seeking nearest neighbors in metric space.

We note that the mapping procedure described in this section is easily modi�ed to deal with
other alphabets such as the 20 letters used for protein sequences or a reduced alphabet.

2.3 Tree structured index for database windows

The mapping described in the previous section transformed the problem of �nding near exact
matches to query windows in the database to that of �nding nearest neighbors in vector space.
This search can be done very e�ciently by constructing a tree-structured index in vector space.

To create the tree-structured index, we recursively search the data for clusters that provide
binary (or higher-order) partitions. A variety of methods are available for �nding such clusters
and building the tree. One suitable method is Tree-Structured Vector Quantization [15] using
k-means clustering which we have used and describe here.

1. Select two centroids xA, xB and their corresponding partitions of the data into disjoint
sets A and B using the following iterative procedure

� Choose two initial values for xA and xB .

� For each vector y in the database compute the L1 distances

dA(y) = kxA � yk1; dB(y) = kxB � yk1:

Assign y to the set A if dA(y) < dB(y), and to the set B otherwise.

� Compute

DA =
X
y2A

dA(y); DB =
X
y2B

dB(y):

� Compute the new centroids

xA =

P
y2A y

jAj
; xB =

P
y2B y

jBj
:
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� Repeat until the change in DA and DB is less than a small threshold, or no vectors
change partition.

2. Recursively partition the sets A and B generated above using the same algorithm.

3. The recursion terminates when the number of vectors in a set is smaller then a speci�ed
tolerance or when the algorithm fails to fragment a cluster into two substantial new clusters.

The leaves of the tree partition the k-dimensional space, and each leaf contains the set of
vectors that are nearest-neighbors to the centroid for that node. We note that the depth of the
tree is proportional to the logarithm of the number of windows and the number of windows is
proportional to the size of the database. Hence the average complexity of the tree construction
is O(n log n).

2.4 The search procedure.

For each query, the SST algorithm �nds similar database sequences by searching for database
windows that are similar to at least one of the query windows. This search is done e�ciently in
vector space using the tree structured index as follows.

Begin at the root of the tree. At each non-terminal node there are two branches (for the
case of a binary tree), which are represented by their respective centroid. Select the branch
whose centroid is the lesser distance from the query vector. Proceed recursively until reaching a
terminal node. The vectors in the terminal node represent the database windows which are the
nearest neighbors to the query window.

The SST algorithm �nds most of the nearest neighbors but is not guaranteed to �nd all the
nearest neighbors of a query sequence. In particular, sequences that lie near the boundary of a
partition may be closer to another sequence immediately across the boundary line than they are
to any other sequence within the partition; we indicate the false negative rate for one experiment
below.

Additional processing such as alignment of the query to the database sequence with one of
the standard alignment tools is possible.

3 Computational implementation

We now describe computer implementation strategies for the SST algorithm which signi�cantly
improve the speed and the scalability of the algorithm. These strategies include computation on
sub-trees, sampling in the construction of the k-means tree, the use of sparse vector representa-
tion, �nite precision arithmetic and a compressed format for the database windows.

As the number of sequences increases, it becomes impossible to store the whole tree index
in RAM. To minimize disk access during the computation we perform the tree construction
and search on sub-trees. For example, when searching one database against another, we �rst
search all query windows against the top part of the tree, say the �rst 9 levels. This generates
29 = 512 groups of windows. Now, each group is searched against its respective subtree. Disk
access occurs only once for each subtree because it is small enough to �t into RAM. The subtree
approach can be generalized to an arbitrary number of levels. Moreover, it provides a foundation
for parallelizing the algorithm because adjacent subtrees can be processed independently on
di�erent processors.
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The speed of the tree construction can be substantially enhanced by computing the centroids
based on a sample of the windows in each cluster, rather than using all of them. We �nd that
a sample of 1000 sequences to estimate two centroids provides a substantial improvement in the
speed at a relatively low cost in the error rate; where higher accuracy is required, larger samples
are useful.

The computation of the centroids requires the use of 
oating point arithmetic. However, 
oat-
ing point operations are more expensive than integer arithmetic. Hence, in our implementation
we use 16 bit �nite precision arithmetic.

All frequency vectors are very sparse. They have at most W � k + 1 non-zero entries while
their dimension is 4k. Typical values are W = 50, k = 5, 45 = 1024 � 46. The use of sparse
vector representation allows us to store only the non-zero entries, by storing pairs (index, value),
instead of storing the whole vector. This representation saves a substantial amount of space in
both RAM and disk. In addition, substantial computations are saved by using sparse vector
arithmetic, for example in the computation of the distance of each vector from a centroid.

Database windows overlap and therefore have large portions in common. We use a compressed
format for the windows which takes advantage of this overlap. The storage required for all
windows of a database in this format is independent of both the window size W and the o�set
size �. The storage required by this format is about 2 bytes per nucleotide.

4 Application of SST to shotgun sequence assembly

We now illustrate the performance of SST by applying it to the task of detecting overlapping
fragments in shotgun sequence assembly. We also compare the speed of SST to BLAST in order
to highlight the computational complexity of SST.

In our simulations, we fragmented a 1.5 megabase piece of genomic DNA (sequenced by
the Human Genome Center Institute of Medical Science University of Tokyo, contig CN00029)
several times using a Poisson process with � = 300 nucleotides. From the pool of fragments we
generated three sets of 30675, 61350 and 122700 sequences, respectively, thus simulating 6-fold,
12-fold, and 24-fold coverage of the 1.5 megabase genomic DNA. Fragments smaller than 50 base
pairs were rejected as is the practice in sequence assembly and fragments larger than 350 base
pairs were also rejected to simulate a common length limit in sequencing. We then used SST
and BLAST2 (with no gaping option, all other parameters taken as default values) to determine
which of the sequences overlap.

In the computation with SST, we used a window size W = 50 and an o�set step � = 5. We
repeated the computation for several values of the tuple size k, speci�cally k = 3; 4; 5; 6. Table
1 presents the results of SST on each of these sets. We report the number of sequences, tuple
size k, the time required to construct the tree (\Construction"), the time required to search the
tree using every sequence as a query sequence (\Query"), and the sum of the construction time
and the query time (\Total"). We also report the true-positive rate, the false-negative rate, the
true-negative rate, and the false-positive rate (determined by comparing putative hits identi�ed
by BLAST or SST to the known fragments of the genomic sequence).

A k-tuple size of 3 yields the fastest time for construction and query, but a k-tuple size of 6
yields the smallest error rate. We see that, for SST, the times for a complete pairwise search of
the database scale linearly with the number of sequences. We also note that the true negative
rate is, to �ve decimal places, 1 in all cases. This highlights the e�ectiveness of SST as a �ltration
scheme.
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# Seqs K Total Construction Query TPR FNR TNR FPR
30675 3 00:10:12 00:06:56 00:03:16 0.893 0.107 0.99998 2.092e-05
61350 3 00:22:33 00:15:36 00:06:57 0.886 0.114 0.99998 1.842e-05
122700 3 00:46:56 00:31:52 00:15:04 0.881 0.119 0.99998 1.529e-05
30675 4 00:11:37 00:07:24 00:04:13 0.932 0.068 0.99999 1.069e-05
61350 4 00:26:11 00:17:37 00:08:34 0.926 0.074 0.99999 9.805e-06
122700 4 00:50:50 00:32:50 00:18:00 0.924 0.076 0.99999 8.404e-06
30675 5 00:13:52 00:08:24 00:05:28 0.956 0.044 0.99999 6.642e-06
61350 5 00:36:49 00:19:00 00:17:49 0.953 0.047 0.99999 6.222e-06
122700 5 01:08:22 00:35:21 00:33:01 0.951 0.049 0.99999 5.950e-06
30675 6 00:23:04 00:13:04 00:10:00 0.963 0.037 0.99999 5.284e-06
61350 6 00:45:53 00:26:37 00:19:16 0.960 0.040 0.99999 5.018e-06
122700 6 01:34:50 00:52:21 00:42:29 0.957 0.043 1.0000 4.793e-06

Table 1: SST results with 30675, 61350 and 122700 fragments, simulating a 6-fold, 12-fold and
24-fold coverage, respectively. The time for tree construction, tree search and total time are
displayed for k = 3� 6. The true positive rate (TPR), false negative rate (FNR), true negative
rate (TNR), and false positive rate (FPR) are also displayed.

Table 2 shows the time to search the data with BLAST2 versus SST. We choose a k-tuple
size of 5 as a reasonable compromise between speed and error rate. For overlaps of size 50, as
used in this experiment, BLAST2 has 100 percent true positive and true negative rates. We see
that, for BLAST2, the times for a complete pairwise search of the database scale quadratically
with the number of sequences.

# of fragments Blast search time BLAST time per query SST time per query
30675 02 : 03 : 09 0:2409 0.0164
61350 07 : 27 : 47 0:4379 0.0186
122700 28 : 10 : 25 0:8266 0.0173

Table 2: The time to determine overlapping sequences using BLAST and SST. The third and
fourth columns is the time per query for BLAST and SST respectively.

It is useful to consider the average search time per sequence for SST versus BLAST2. Columns
three and four of Table 2 shows these data for BLAST2, and SST respectively as a function of
the number of sequences in the database. We see a linear increase in search-time per sequence
with BLAST2 as the database grows, while the search-time per sequence for SST is nearly
constant. Thus, search time per sequence is nearly independent of the database size with the
SST algorithm. Figure 2 depicts this information graphically.

5 Discussion

SST is most e�ective for applications in which the target sequences show a high degree of simi-
larity to the query sequence, such as assembling shotgun sequences or matching ESTs to genomic
sequence. For some applications, such as assembly of shotgun sequences, it is su�cient to identify
the set of nearest-neighbor sequences. For other applications, it is desirable or necessary to align
the nearest-neighbor sequences to the query sequence using an algorithm such as Needleman-
Wunsch or Smith-Waterman. Since SST �lters most true negatives only a small number of
sequences are returned for each query, and such alignments can be done relatively quickly.

In the example presented here, for 120,000 sequences, SST is 25 to 50 times faster than
BLAST 2. Because SST scales logarithmically with the number of sequences, while BLAST2
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Figure 2: The ordinate is the time per query and the abscissa is the number of sequences. The
two timings for SST are for query only and for query and construction.

scales linearly, we estimate that for a database of one million sequences SST will be 250 to 500
times faster than BLAST2, with similar gains for yet larger sequence collections.
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