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ABSTRACT
While automatic image annotation remains an actively
pursued research topic, enhancement of image search
through its use has not been extensively explored. We
propose an annotation-driven image retrieval approach and
argue that under a number of different scenarios, this is
very effective for semantically meaningful image search.
In particular, our system is demonstrated to effectively
handle cases of partially tagged and completely untagged
image databases, multiple keyword queries, and example
based queries with or without tags, all in near-realtime.
Because our approach utilizes extra knowledge from a
training dataset, it outperforms state-of-the-art visual
similarity based retrieval techniques. For this purpose, a
novel structure-composition model constructed from Beta
distributions is developed to capture the spatial relationship
among segmented regions of images. This model combined
with the Gaussian mixture model produces scalable
categorization of generic images. The categorization results
are found to surpass previously reported results in speed
and accuracy. Our novel annotation framework utilizes the
categorization results to select tags based on term frequency,
term saliency, and a WordNet-based measure of congruity,
to boost salient tags while penalizing potentially unrelated
ones. A bag of words distance measure based on WordNet
is used to compute semantic similarity. The effectiveness of
our approach is shown through extensive experiments.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing Methods; I.4.9 [Image
Processing and Computer Vision]: Applications

General Terms
Algorithm, Design, Experimentation, Performance.
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1. INTRODUCTION
The volume of digital imagery, acquired directly through

imaging devices or indirectly by digitization, is expanding
rapidly. In this scenario, the ability to automatically
annotate large volumes of images and make them available
for semantically meaningful image retrieval can come in very
handy. For example, our interactions with the museum
community revealed that due to shortage of manpower,
there is an immediate need for a system that could
automatically annotate their large picture archives and
provide a searchable interface internally and for public
usage. To this end, a number of attempts have been
made at automated image annotation [1, 3, 4, 8, 12, 13,
17, 22]. While many interesting ideas have emerged and
promising results reported, the direct use of automated
annotation for image search has received less attention. The
usual assumption is that good annotation automatically
leads to a good image search experience. Moreover, most
proposed annotation systems either do not scale well or do
not explicitly report annotation speed. These factors make
their potential usefulness in real-world image search systems
susceptible to doubt.

Ideally, if all images in a database were reliably tagged,
keyword based querying would be synonymous with text
search. The need for visual content based searching
arises primarily because (1) large image databases are
seldom fully tagged (e.g., the Yahoo! Flickr image
database), and (2) the tags are often unreliable or
inconsistent (e.g., surrounding text treated as tags, for Web
images). In this work, we propose a scalable image search
system built atop an automatic annotation framework, and
demonstrate its effectiveness from a retrieval perspective.
In particular, we consider three scenarios: (1) the database
is partially tagged, and keyword-based or tagged image
queries are made on the untagged portion, (2) the database
is partially tagged, and example-based untagged image
queries are made on the tagged portion, and (3) the
database is untagged, and example-based image queries
are made, given that a visually coherent tagged image
database (i.e., a knowledge base) is available at one’s
disposal. To achieve fast, semantically meaningful retrieval
of images under these scenarios, we propose a novel
image categorization method using Beta distributions and
the Gaussian mixture model, which forms the basis for
automatic annotation. The annotation process involves
a novel WordNet-based [23] tag selection strategy which
implicitly performs generative model combination as well.
Extensive image search experiments are performed and



compared with alternative retrieval strategies involving a
state-of-the-art image retrieval system. We summarize our
main contributions as follows:

• To the best of our knowledge, this is the first
work demonstrating through extensive experiments
how near-realtime annotation can actually help in
image search. The use of annotation for retrieval
under circumstances of untagged databases, multiple
keyword queries, and untagged image-based queries is
demonstrated and contrasted with alternative retrieval
strategies in each case. Our method is found to
significantly outperform competing strategies.

• A novel structure-composition (S-C) model based on
Beta distributions is proposed for capturing the spatial
structure and composition of generic image categories.
This model is found to be useful in capturing visual
composition of challenging picture categories. An
efficient single-pass algorithm for extracting the S-C
model features from images is presented.

• The S-C model, together with a Gaussian mixture
model for capturing representative color and texture,
is shown to produce near-realtime categorization with
as many as 600 different categories, and outperform
best reported image categorization results.

• A novel annotation strategy is proposed which takes
into consideration the evidence provided by the
categorization results for potential tags, the chance
occurrence of such words, and the congruity of a word
among the pool of candidate words, as evidenced by
the WordNet ontology.

Our experiments are performed on 54, 000 images from the
commonly used [1, 3, 4, 8, 12, 13, 17, 22, 20, 21, 14, 19] Corel
Stock Photo CDs, and 1, 000 publicly annotated images
obtained from Yahoo! Flickr.

1.1 Related Work
One way to group past attempts at automatic image

annotation is by whether prior image categorization forms
the basis for annotation. Some approaches [1, 8, 12, 13, 22,
20] deal directly with the problem of annotation, providing
labels to either each region or the whole image. Others [4,
17] treat the problem of annotation in two independent
stages, first categorizing the images and then associating
labels to them using the top ranked categories. In the latter
case, image categorization becomes a critical step and needs
to be reliable in order to generate useful annotation. Generic
image categorization has been attempted previously, using
techniques including Bayes point machines [4], multi-
resolution hidden Markov models [17], multiple instance
learning [5], generative/discriminative modeling [18],
random sub-windows [21], and Bayesian Modeling [7].

Semantically meaningful content-based image retrieval
(CBIR) [24] incorporating user feedback have been
explored [9, 10, 19]. Performance of automatic annotation
given single word queries have been reported [3, 8].
Enhanced image retrieval given partially annotated image
databases have been proposed [16]. In [27], the utilization
of textual annotations for Web image retrieval has been
reported. The use of WordNet for pruning irrelevant
keywords from automatically annotated sets has been shown

effective [14]. While public domain systems for human
annotation of pictures (e.g., Yahoo! Flickr) remain popular,
we also witness developments from within the research
community (e.g., the CMU ESP Game, the IBM EVA
system [25]).

Figure 1: Three common scenarios for real-world
image retrieval.

1.2 Bridging the Gap
Our motivation to ‘bridge’ the annotation-retrieval gap

is driven by a desire to effectively handle challenging cases
of image search in a unified manner. These cases are
schematically presented in Figure 1, and elucidated below.

• Scenario 1: Either a tagged image or a set of
keywords is used as query, the latter being a popular
modality in public domain search engines such as
Google Images and Yahoo! Images. Problem arises
when part or whole of the image database (e.g., Web
images) is not tagged, making this portion inaccessible
through text queries. We study the effectiveness of
our annotation algorithm in tagging the database and
subsequently performing multiple keyword retrieval.
Results are compared with those obtained by an
intuitive CBIR-based retrieval strategy.

• Scenario 2: An untagged image is used as query, with
the desire to find either semantically related images or
documents from a database or the Web. We study the
effectiveness of our annotation algorithm in tagging
the query image and subsequently performing text-
based retrieval. Results are compared with those
obtained by a CBIR-based retrieval strategy.

• Scenario 3: The query image and part/whole
of the image database are untagged. This is
the case that best motivates CBIR, since the only
available information is visual content. We study
the effectiveness of our annotation algorithm in
tagging the query image and the image database, and
subsequently performing text-based retrieval. Results
are compared with those obtained by a CBIR system.

Additional goals include the ability to generate precise
annotations of pictures in real time. It is noted that
most proposed annotation systems assess performance based
on the quality of annotation alone. In our case, this is
only part of the goal. Our prime challenge is to have
the annotations help generate semantically meaningful and
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Figure 2: Our annotation-driven retrieval approach.

precise retrieval. To this end, we develop our approach as
follows. We first aim to build a near-realtime categorization
algorithm capable of producing accurate results. Here, the
term near-realtime refers to a performance between one
and ten seconds per image. We regard our annotation
system as near-realtime because it is within this range while
other annotation systems reported in literature are not.
We then proceed to generate annotation on the basis of
categorization, ensuring high precision and recall. With this
annotation system in place, we assess its performance as
a means of image retrieval under the scenarios described
above. In each case, we contrast performance with
alternative CBIR-based approaches, in the absence of
supervised categorization/annotation but with access to a
CBIR system. An overview of our approach is presented in
Figure 2.

2. MODEL-BASED CATEGORIZATION
We employ a generative modeling based approach for

accurate, near-realtime categorization of generic images.
Generative model based categorization implies training
independent statistical models for each image category given
a small set of training images. Assignment of category labels
to unseen images is then a process of interpreting the set of
likelihoods of the image features being generated by each
trained category model. In our system, two heterogeneous
generative models (per image category) provide evidence for
categorization from two different aspects of generic images.
We generate final categorization of images by combining
the evidence from these models. Heterogeneity in this
context implies that the two models make independent
categorization errors, making the evidence combination
advantageous. This idea will be elaborated upon later.

Formally, let there be a feature extraction process or
function � that takes in an image I and returns a collection
of D feature vectors, each of dimension V , i.e., �(I) has
dimension D × V , D varying with each image. Given
C categories and N training images per category, each of
C models Mk, k = 1, ..., C with parameters θk are built
using training images Ik

i , i = 1, ..., N , by some parameter
estimation technique. Suppose the collection of feature
vectors, when treated as random variables {X1, ..., XD},
can be assumed conditionally independent given model
parameters θk. For a test image I , given that �(I) =
{x1, ..., xD} is extracted, the log-likelihood of I being

generated by model Mk is

�1(I |Mk) = log p(x1, ..., xD|θk) =
DX

d=1

log p(xd|θk) . (1)

Assuming equal category priors, a straightforward way to
assign a category label y to I would be to have y(I) =
arg maxk �1(I |Mk). Now consider that we have another
set of C generative models trained on a different set of
image features and with a different underlying statistical
distribution. Suppose the log-likelihoods generated by these
models for the same image I are {�2(I |M1), ..., �2(I |MC)}.
Each category of generic images is typically described by
multiple tags (e.g., tiger, forest, and animal for a tiger
category). Given a large number of categories, many of
them having semantic/visual overlaps (e.g., night and sky,
or people and parade), the top ranked category alone from
either model may not be accurate. One way to utilize
both models in the categorization process is to treat them
as two experts independently examining the images from
two different perspectives, and reporting their findings. The
findings are not limited to the two most likely categories for
each model, but rather the entire set of likelihoods for each
category, given the image. Hence, an appropriate model
combination strategy ρ(·) may be used to predict the image
categories in a more general manner:

y(I) = ρ
“

�1(I|M1), ..., �1(I|MC), �2(I|M1), ..., �2(I|MC)
”

. (2)

For a large number of generic image categories, building
a robust classifier is an uphill task. Feature extraction is
extremely critical here, since it must have the discriminative
power to distinguish between a broad range of image
categories, no matter what machine learning technique is
used. We base our models on the following intuitions:
(1) For certain categories such as sky, marketplace, ocean,
forests, Hawaii, or those with dominant background colors
such as paintings, color and texture features may be
sufficient to characterize them. In fact, a structure or
composition for these categories may be too hard to
generalize. (2) On the other hand, categories such as
fruits, waterfall, mountains, lions, and birds may not have
dominating color or texture but often have an overall
structure or composition which helps us identify them
despite heavily varying color distributions. In [17], the
authors use 2-D multi-resolution hidden Markov models
(2-D MHMMs) to capture the inter-scale and intra-scale
dependence of block-based color and texture based features,
thus characterizing the composition/structure of image
categories. Problems with this approach are that the
dependence modeling is over relatively local image regions,
the parameter estimation algorithm involves numerical
approximation, and the overall categorization process is
slow. While our work is inspired by similar motivations, we
aim at near-realtime and more accurate categorization. We
thus build two models to capture different visual aspects, (1)
a structure-composition model that uses Beta distributions
to capture color interactions in a very flexible but principled
manner, and (2) a Gaussian mixture model in the joint color-
texture feature space. We now elaborate on each model.

2.1 Structure-Composition (S-C) Models
The idea of building such a feature arose from a desire to

represent how the colors interact with each other in certain



Figure 3: The idea behind the S-C model is
illustrated. The perimeters of the segments are
denoted Θ, while the border lengths between pairs of
segments are denoted ∆. Intuitively, ∆/Θ ratios for
the orange, light-blue (sun and sky) and white, light-
blue (clouds and sky) pairs equal 1 since sun and
cloud perimeters coincide with their borders shared
with sky. The ratio is typically close to zero when
segments are barely touching, and near 1 when a
segment is completely contained within another. We
model these ratios for all pairs of quantized colors
in order to capture the structure or composition of
image categories.

picture categories. The average beach picture could be
described by a set of relationships between different colored
regions, e.g., orange (sun) completely inside light-blue (sky),
light-blue sharing a long border with dark-blue (ocean),
dark-blue sharing a long border with brown (sand) etc.
For tiger images, this description could be that of yellow
and black regions sharing very similar borders with each
other (stripes) and rest of the colors interacting without
much pattern or motif. Very coarse texture patterns such
as pictures of beads of different colors (not captured well
by color distribution or localized texture features such as
wavelets) could be described as any color (bead) surrounding
any other color (bead), some color (background) completely
containing most colors (beads), and so on. This idea led to
a principled statistical formulation of rotational and scale
invariant structure-composition (S-C) models.

Given the set of all training images across categories,
we take every pixel from each image, converted to the
perceptually uniform LUV color space. We thus have a
very large population of LUV vectors in the R

3 space
representing the color distribution within the entire training
set. The K-means geometric clustering with uniform
initialization is performed on a manageable random sub-
sample to obtain a set of S cluster centroids {T1, ..., TS},
e.g., shades of red, yellow etc. We then perform a nearest-
neighbor based segmentation on each training image I by
assigning a cluster label to each pixel (x, y) as follows:

J(x, y) = arg min
i
|Iluv(x, y)− Ti| . (3)

In essence, we have quantized the color space for the

entire set of training images to obtain a small set of
representative colors. This helps to build a uniform model
representation for all image categories. To uniquely identify
each segment in the image, we perform a two-pass 8-
connected component labeling on J . The image J now has P
connected components or segments {s1, ..., sP }. The many-
to-one into mapping from a segment si to a color Tj is stored
and denoted by the function G(si). Let χi be the set of
neighboring segments to segment si. Neighborhood in this
sense implies that for two segments si and sj , there is at least
one pixel in each of si and sj that is 8-connected. We wish to
characterize the interaction of colors by modeling how each
color shares (if at all) boundaries with every other color.
For example, a red-orange interaction (in the quantized
color space) for a given image category will be modeled by
how the boundaries are shared between every red segment
with every other orange segment for each training image,
and vice-versa (Figure 3). More formally, let (x, y) ⊕ B
indicate that pixel (x, y) in J is 8-connected to segment B,
and let N(x, y) denote the set of its 8 neighboring points (not
segments). Now we define a function ∆(si, sj) which denotes
the length of the shared border between a segment si and its
neighboring segment sj , and a function Θ(si) which defines
the total length of the perimeter of segment si,

∆(si, sj) =
X

(x,y)∈si

In((x, y)⊕ sj), sj ∈ χi , and (4)

Θ(si) =
X

(x,y)∈si

In(N(x, y) �⊂ si) , (5)

where In(·) is the indicator function. By this definition
of N, inner borders (e.g., holes in donut shapes) and
image boundaries are considered part of segment perimeters.
We want to model the ∆/Θ ratios for each color pair
by some statistical distribution. For random variables
bounded in the [0, 1] range, the Beta distribution is a flexible
continuous distribution defined in the same range, with
shape parameters (α, β). The Beta density function is
defined as

f(x; α, β) =
1

B(α, β)
xα−1(1− x)β−1, given (6)

B(α, β) =

Z 1

0

vα−1(1− v)β−1dv =
Γ(α)Γ(β)

Γ(α + β)
, (7)

where Γ(x) =
R ∞
0

tz−1e−tdt is the well-known Gamma
function. Our goal is to build models for each category
such that they consist of a set of Beta distributions for
every color pair. For each category, and for every color
pair, we find each instance in the N training images in
which segments of that color pair share a common border.
Let the number of such instances be η. We then compute
the corresponding set of ∆/Θ ratios and estimate a Beta
distribution (i.e., parameters α and β) using these values for
that color pair. The overall structure-composition model for
a given category k thus has the following form:

k 1 2 ... S

1 n/a α, β, η ... α, β, η
2 α, β, η n/a ... ...
... ... ... ... α, β, η
S α, β, η ... α, β, η n/a



Note that it is not possible to have segments with the
same color as neighbors. Thus parameters of the form
α(i, i), β(i, i) or η(i, i) do not exist, i.e., same color pair
entries in the model are ignored, denoted by ‘n/a’. Note
also that the matrix is not symmetric, which means the color
pairs are ordered, i.e., we treat yellow-orange and orange-
yellow color interactions differentially, for example. Further,
the number of samples η used to estimate the α and β are
also stored with the corresponding entries as part of the
model. The reason for doing so will be evident shortly.

For the estimation of α and β, a moment matching
method is employed for its computational efficiency. Given
a set of η(i, j) ∆/Θ samples for a given color pair (i, j),
having values {x1, ..., xη(i,j)}, the parameters are estimated
as follows:

α(i, j) = x̄
““

x̄(1−x̄)

s2

”
− 1

”
β(i, j) = (1− x̄)

““
x̄(1−x̄)

s2

”
− 1

”
Here x̄ = 1

η(i,j)

Pη(i,j)
k=1 xk, s2 = 1

η(i,j)

Pη(i,j)
k=1 (xk − x̄)2 .

There are two issues with estimation in this manner, (1)
the estimates are not defined for η ≤ 1, and (2) for low
values of η, estimation is poor. Yet, it is realistic for some
categories to have few or no training samples for a given
color pair, where estimation will be either poor or impossible
respectively. But, low occurrence of neighboring segments
of certain color pairs in the training set may or may not
mean they will not occur in test images. To be safe, instead
of penalizing the occurrence such color pairs in test images,
we treat them as “unknown”. To achieve this, we estimate
parameters α′

k and β′
k for the distribution of all ∆/Θ ratios

across all color pairs within a given category k of training
images, and store them in the models as prior distributions.

During categorization, we segment a test image in exactly
the same way we performed the training. With the
segmented image, we obtain the set of color interactions
characterized by ∆/Θ values for each segment boundary.
For a given sample x = ∆/Θ coming from color pair (i, j) in
the test image, we compute its probability of belonging to
a category k. Denoting the stored parameters for the color
pair (i, j) for model k as α, β and η, we have

Psc(x|k) =

j
f(x|α′

k, β′
k), η ≤ 1

η
η+1

f(x|α, β) + 1
η+1

f(x|α′
k, β′

k), η > 1

where Psc is the conditional p.d.f. for the S-C model.
This is typically done in statistics when the amount of
confidence in some estimate is low. A weighted probability
is computed instead of the original one, weights varying with
the number of samples used for estimation. When η is large,
η/(η + 1) → 1 and hence the distribution for that specific
color pair exclusively determines the probability. When η
is small, 1/(η + 1) > 0 in which case the probability from
the prior distribution is given considerable importance. This
somewhat solves both the problems of undefined and poor
parameter estimates. It also justifies the need for storing
the number of samples η as part of the models.

The S-C model is estimated for each training category
k ∈ {1...C}. Each model consists of 3S(S − 1) parameters
{αk(i, j), βk(i, j), ηk(i, j)}, i ∈ {1...S}, j ∈ {1...S}, i �= j,
and parameters for the prior distribution, α′

k and β′
k

as explained. This set of parameters constitute θk, the
parameter set for category k. The feature extraction process

�(I) generates the ∆/Θ ratios and the corresponding color-
pairs for a given image I . We thus obtain a collection of
D (varying with each image) feature vectors {x1, ..., xD},
where each xd = {∆d/Θd, id, jd}. We assume conditional
independence of each xd. Hence, using equation (1), we
have

�sc(I |Mk) =
DX

d=1

log Psc

`
∆d/Θd|θk(id, jd)

´
. (8)

2.1.1 Fast Computation of S-C model Features
We wish to have a low complexity algorithm to compute

the ∆/Θ ratios for a given image (training or testing). As
discussed, these ratios can be computed in a naive manner
as follows: (1) Segment the image by nearest neighbor
assignments followed by connected component labeling. (2)
For each segment, compute its perimeter (Θ), and length
of border (∆) shared with each neighboring segment. (3)
Compute the ∆/Θ ratios and return them (along with the
corresponding color pairs) for modeling or testing, whichever
the case. This algorithm can be sped as follows. Denote the
segment identity associated with each pixel (x, y) by s(x, y).
Each (x, y) is either (1) an interior pixel, not bordering any
segment or the image boundary, (2) a pixel that is either
bordering two or more segments, or is part of the image
boundary, or (3) a pixel that has no neighboring segments
but is part of the image boundary. Pixels in (1) do not
contribute to the computation of ∆ or Θ and hence can
be ignored. Pixels in (2) are both part of the perimeter of
segment s(x, y) and the borders between s(x, y) and each
neighboring segment sk (i.e., (i, j) ⊕ sk). Pixels in (3)
are only part of the perimeter of s(i, j). Based on this, a
single-pass algorithm for computing the S-C feature vector
{x1, ..., xD} of an image I is presented in Figure 4.

Pair(1...P, 1...P) ← 0 [P = No. of segments]
Perim(1...P)← 0
for each pixel (x, y) in I

k← 0; Z← φ
for each 8-neighbor (x′,y′) ∈ D(x,y)

if (x′,y′) is inside image boundary
if s(x′,y′) �= s(x,y) and s(x′,y′) is unique

Z ← Z ∪ s(x′, y′)
k← 1

else
k← 1

for each s′ ∈ Z
Pair(s(x,y), s′)← Pair(s(x,y), s′) + 1

if k = 1
Perim(s(x,y))← Perim(s(x,y)) + 1

[Now Generate ∆/Θ ratios : �(I) = {x1, ..., xD}]
d← 0
for i ← 1 to P

for j ← 1 to P
if Pair(i, j) > 0 [(i,j) segments shared border]

d← d + 1
∆d ← Pair(i, j);Θd ← Perim(i)
xd ←∆d/Θd

return [xd,G(i),G(j)]
[G(·) - maps segment to color]

Figure 4: Single-pass algorithm for computing S-C
model features.

The set of ordered triplets [xd, G(i), G(j)] can now
be used to build Beta distributions with parameters



α(G(i), G(j)) and β(G(i), G(j)), provided the number of
samples η(G(i), G(j)) > 1. Besides the two-pass connected
component labeling, only a single scanning of the image
is required to compute these features. It is not hard to
see that this algorithm can be embedded into the two-pass
connected component labeling algorithm to further improve
speed. Note that though the asymptotic order of complexity
remains the same, the improved computational efficiency
becomes significant as the image database size increases.

2.2 Color-Texture (C-T) Models
Many image categories, especially those that do not

contain specific objects, can be best described by their
color and texture distributions. There may not even exist
a well-defined structure per se, for high-level categories
such as China and Europe, but the overall ambience
formed the colors seen in these images often help identify
them. A mixture of multivariate Gaussians is used to
model the joint color-texture feature space for a given
category. The motivation is simple; in many cases,
two or more representative regions in the color/texture
feature space can represent the image category best.
For example, beach pictures typically have one or more
yellow areas (sand), a blue non-textured area (sky), and
a blue textured region (sea). Gaussian mixture models
(GMMs) are well-studied, with many tractable properties
in statistics. Yet, these simple models have not been widely
exploited in generic image categorization. Recently, GMMs
have been used effectively for outdoor scene classification
and annotation [18]. After model estimation, likelihood
computation at testing is typically very fast.

Let a Gaussian mixture model have λ components, each
of which is parameterized by θk = {ak, µk, Σk}, k = 1...λ,
where a is the component prior, µ is the component mean,
and Σ is the component covariance matrix. Given a feature
vector x ∈ R

m, the joint probability density function of
component k is defined as

f(x|θk) =
1

ζ
exp

“−(x− µk)T Σ−1
k (x− µk)

2

”
where ζ =

p
(2π)m‖Σk‖. Hence the mixture density is

f(x) =
Pλ

k=1 akf(x|θk). The feature vectors in the C-
T model are the same as those used in [17], where a
detailed description can be found. Each training image
is divided into 4 × 4 non-overlapping blocks, and a 6-
dimensional feature vector x is extracted from each block.
Three components are the mean LUV color values within
the block, and the other three are moments of Daubechies-
4 wavelet based texture coefficients. Our feature extraction
process � for the color-texture model thus takes in an image
I and computes �(I) = {x1, ..., xD}, xi ∈ R

6, D depending
on the image dimensions.

The parameters of GMMs are usually estimated
iteratively using the Expectation-Maximization (EM)
algorithm, since there is no closed form solution to its
maximum likelihood based estimate. Here, for each category
c, the feature vectors �(Ic

i ) (or a subset) obtained from
each training image Ic

i , i = 1...N are used for building
model Mc. We use Bouman’s ‘cluster’ package [2] to do the
modeling. This package allows λ to be specified, and then
adaptively chooses the number of clusters less than or equal
to λ, using Rissanen’s minimum description length (MDL)
criteria. Thus we use the feature set {�(Ic

1), ...,�(Ic
N )} and

λ to generate C models Mc, c = 1...C. A test image
I is thus represented by a collection of feature vectors
�(I) = {x1, ..., xD}, xd ∈ R

6. Here, our conditional
independence assumption given model Mc is based on
ignoring spatial dependence of the block features. However,
spatial dependence is expected to be captured by the S-
C model. Thus, based on Eq. 1, the log-likelihood of Mc

generating I is

�ct(I |Mc) =
DX

d=1

log(
λX

k=1

ac
kf(xd|µc

k, Σc
k)) . (9)

For both models, the predicted sets of categories for a
given image I are obtained in rank order by sorting
them according the likelihood scores �sc(I |·) and �ct(I |·)
respectively.

3. ANNOTATION AND RETRIEVAL
The categorization results are utilized to perform image

annotation. Tagging an image with any given word entails
three considerations, namely (1) frequency of occurrence of
the word among the evidence provided by categorization, (2)
saliency of the given words, i.e., as is traditional in the text
retrieval community, a frequently occurring word is more
likely than a rare word to appear in the evidence by chance,
and (3) the congruity (or fitness) of the word with respect
to the entire set of words under consideration. Suppose we
have a 600 category training image dataset (the setting for
all our retrieval experiments), each category annotated by
3 to 5 tags, e.g., [sail, boat, ocean] and [sea, fish, ocean],
with many tags shared among categories. Initially, all the
tags from each category are pooled together. Tag saliency is
measured in a way similar to computing inverse document
frequency (IDF) in the document retrieval domain. The
total number of categories in the database is C. We count
the number of categories which contain each unique tag
t, and denote it by F (t). For a given test image I , the
S-C models and the C-T models independently generate
ranked lists of predicted categories. We choose the top 10
categories predicted by each model and pool them together
for annotation. We denote the union of all unique words
from both models by U(I), which forms the set of candidate
tags. Let the frequency of occurrence of each unique tag t
among the top 10 model predictions be fsc(t|I) and fct(t|I)
respectively.

WordNet [23] is a semantic lexicon which groups English
words into sets of synonyms and records the semantic
relations among the synonym sets. Based on this ontology,
a number of measures of semantic relatedness among words
have been proposed. A measure that we empirically observe
to produce reasonable relatedness scores among common
nouns is the Leacock and Chowdrow (LCH) measure [6],
which we use in our experiments. We convert the relatedness
measure rLCH from a [0.365, 3.584] range to a distance
measure dLCH in the [0, 24] range using the mapping
dLCH(t1, t2) = exp(−rLCH(t1, t2) + 3.584) − 1 for a pair
of tags t1 and t2. Inspired by the idea proposed in [14], we
measure congruity for a candidate tag t by

G(t|I) =
dtot(I)

dtot(I) + |U(I)|Px∈U(I) dLCH(x, t)
(10)

where dtot(I) =
P

x∈U(I)

P
y∈U(I) dLCH(x, y) measures

the all-pairwise semantic distance among candidate tags,



generating scores in the [0, 1] range. Essentially, a tag that
is semantically distinct from the rest of the words predicted
will have a low congruity score, while a closely related
one will have a high score. The measure can potentially
remove noisy and unrelated tags from consideration. Having
computed the three measures, for each of which higher scores
indicate greater support for inclusion, the overall score for
a candidate tag is given by a linear combination as follows:

R(t|I) = a1f(t|I) +
a2

log C
log

“ C

1 + F (t)

”
+ a3G(t|I) (11)

Here, a1+a2+a3 = 1, and f(t|I) = bfsc(t|I)+(1−b)fct(t|I) is
the key model combination step for the annotation process,
linearly combining the evidence generated by each model
toward tag t. Experiments show that combination of the
models helps in annotation significantly over either model.
The value of b is a measure of relative confidence in the S-C
model. A tag t is chosen for annotation only when its score is
within the top ε percentile among the candidate tags, where
ε intrinsically controls the number of annotations generated
per image. Hence, in the annotation process, we are required
to specify values of four parameters, namely (a1, a2, b, ε).
We perform annotation on a validation set of 1000 images
and arrive at desirable values of precision/recall for a1 = 0.4,
a2 = 0.2, b = 0.3, and ε = 0.6.

3.1 Performing Annotation-driven Search
We retrieve images using automatic annotation and the

WordNet-based bag of words distances. Whenever tags are
missing in either the query image or the database, automatic
annotation is performed, and bag of words distance between
query image tags and the database tags are computed. The
images in the database are ranked by relevance based on
this distance. We briefly describe the bag of words distance
used in our experiments, inspired by the average aggregated
minimum (AAM) distance proposed in [16]. The WordNet-
based LCH distance dLCH(·, ·) is again used to compute
semantic distances between bags of words in a robust
manner. Given two bags of words, Wi = {wi,1, ..., wi,mi}
and Wj = {wj,1, ..., wj,nj }, we have the distance between
them

bd(Wi, Wj) =
1

2mi

miX
k=1

d(wi,k , Wj) +
1

2mj

mjX
k=1

d(wj,k, Wi) (12)

where d(wi,k, Wj) = minwj,l∈Wj dLCH (wi,k, wj,l). Naturally,bd(Wi, Wi) is equal to zero. In summary, the approach
attempts to match each word in one bag to the closest word
in the other bag and compute the average semantic distance
over all such closest matches.

4. EXPERIMENTAL RESULTS
Experiments are performed at all three stages, (1) image

categorization, (2) categorization-based annotation, and
(3) annotation-driven image retrieval under the scenarios
described in Section 1.2. A set of 54, 000 Corel Stock
photos encompassing 600 image categories, and a 1000-
image database from Yahoo! Flickr form the datasets for
our experiments. The S-C and C-T models for the 600
categories are built on a training set of 24, 000 images, 40
images per category. Each category is tagged with 3 − 5
words, identical to the tagging in [17]. For the S-C models,
S = 20 color clusters are used (refer to Section 2.1).
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Figure 5: Categorization accuracies for the 10-
class experiment are shown. Performance of
our combined S-C + C-T model is shown with
varying number of mixture components in the C-
T model. Previously reported best results shown
for comparison.

4.1 Categorization Performance
Typically, fusion of discriminative models can be

performed using a number of different ways, such as those
reported in [15]. For generative models, one way to
perform this kind of fusion is to use fisher kernels to
obtain a discriminative framework from these generative
models, and combine classifiers thereof. Exploration of these
fusion techniques is part of our future work. Instead, we
employ a simple combination strategy [11] that is capable
of producing impressive performance. For an image I , we
rank each category k = 1...C based on likelihoods from
both models to get ranks πsc(k) and πct(k). A linearly
combined score is then obtained for each category, π(k) =
σπsc(k)+(1−σ)πct(k), where σ is chosen through validation.
Finally, the categories are ranked based on these scores, and
the top category is predicted for I .

Categorization performance is assessed based on two
datasets. The first of them is a standard 10-class image
dataset used to assess categorization performance in [5, 18,
21, 17]. Training is performed with N = 40 images per
category, and 10 images per category form the validation
set for choosing a value of σ. A set of 50 images per
category outside of the training/validation set are chosen for
testing. With a chosen value of σ = 0.2, the accuracies are
computed while varying the number of mixture components
λ in the C-T model. These results, along with previously
reported accuracies, are shown in Figure 5. Our combined
model is found to outperform previously reported results
for λ ≥ 6. The best performance is achieved for λ =
10 at 87.4%, which outperforms previous results for this
dataset. Not surprisingly, as λ increases, the mixture models
characterizing each category become increasingly precise.

Our second dataset is the same set of 600 category Corel
images used in the ALIP system [17]. Each of the categories
are manually annotated with 3− 5 labels using 417 unique
words. A C-T model and an S-C model is built for each
category using 40 training images, as done in ALIP. We



Table 1: Categorization results on 27, 000 images for
the 600 category dataset.
Method Top 1 Top 2 Top 3 Top 4 Top 5

S-C + C-T 14.38% 19.25% 22.69% 25.25% 27.25%
ALIP [17] 11.88% 17.06% 20.76% 23.24% 26.05%

compute combined classification accuracies (σ = 0.2, λ =
10) on 27, 000 test images (45 images per category), and
accuracies are computed for top 1−5 matches, as performed
in ALIP. Here, a top r match means that the original
category is within the top r ranked categories.Classification
accuracies on these experiments are summarized in Table 1.
Note that the performance of say the top 5 matches become
important when they are all utilized for image annotation.

Our combined model improves upon the categorization
accuracies reported in [17]. Note that a 2% improvement
amounts to correct categorization of 540 more images. We
now compare the categorization speed. Our system takes
about 26 seconds to build an S-C and 106 seconds to build
a C-T model. To predict the top 5 ranked categories for a
given test image, our system takes 11 seconds. Our system
is orders of magnitude faster than the ALIP system which
takes about 30 minutes to build a model, and 20 minutes
per test image on comparable machines. Other systems do
not report exact computation times; however, the CBSA
system [4] involves estimating Bayes point machines which
is computationally intensive; systems such as [1, 12, 13]
that depend on computationally intensive segmentation
algorithms are bounded by the segmentation speeds both
in modeling and testing.

4.2 Annotation Performance
We generate annotations on both the Corel dataset and

the Yahoo! Flickr dataset using the models trained with
Corel images. The speed of annotation is dependent upon
categorization speed, and hence annotation is near-realtime
as well. With the parameter set specified in Section 3, the
average number of tags generated per image over the 10, 000
randomly chosen Corel images is 7.16. We define annotation
precision and annotation recall as

Annotation Precision =
# {correct tags predicted}

# {tags predicted}

Annotation Recall =
# {correct tags predicted}

# {correct tags} .

The average annotation precision over the 10, 000 Corel
images is 25.38%, while annotation recall is 40.69%. What
this translates to is that on an average, 1 in 4 words
predicted by our system is a correct tag, and 2 in 5 correct
tags are predicted by our system.

The assessment is then extended to an image collection
outside of the training database (Corel), namely 1, 000
tagged Yahoo! Flickr images. The database has
considerable visual coherence with Corel images, hence
our learnt models are used on them for annotation.
Browsing through the results, we found that although most
automatically generated tags are semantically meaningful,
and the results are very encouraging in general, a numerical
precision and recall score would not reflect this well enough.
Many of the original tags are proper nouns (e.g., names
of buildings, cities, and people). Instead, we present a

sampling of the annotations generated by our approach, and
the corresponding Flickr tags. These results can be seen in
Figure 6.

4.3 Annotation-driven Image Search
For retrieval, the assumption is that either the databases

is partially tagged, or the search is performed on an image
database visually coherent with the ‘knowledge base’ (in
our case the learnt models from the Corel dataset). In our
experiments, the Corel image dataset is treated as a partially
tagged image database, where experiments are performed on
other Corel images not used for training the models.

Our retrieval experiments are performed using the 600
trained S-C and C-T models, as described in Section 4.1.
In all cases, annotation is first performed using the
categorization results, as explained in Section 3. We
consider the three image search scenarios described in
Section 1.2. For this purpose, we build an image database
of 10, 000 images chosen from among the 600 tagged Corel
categories using a pseudo-random generator. For each
scenario, we compare results of our annotation-driven image
search strategy with (1) alternative CBIR-based strategies,
and (2) random annotation based retrieval (to serve as
the lower bound of performance). For the CBIR-driven
strategies, we use the IRM distance used in the SIMPLIcity
system [26] to get around the missing tag problem in the
databases and queries. The choice and parameter selection
for the alternative strategies have been chosen empirically
over a range of methods and values (details skipped due to
lack of space). Performance is assessed using the standard
retrieval precision and recall measures used in information
retrieval. Precision is the proportion of retrieved images
that are relevant, and recall is the proportion of relevant
images that are retrieved. An image is considered relevant
if there is an overlap between the original tags of the query
image or query word (as the case may be) and the original
tags of the retrieved image.

Scenario 1: Under this scenario, the database does not
have any tags. Queries may either be in the form of one
or more keywords, or tagged images. Keyword queries
on an untagged image database is a key problem in real-
world image search. In our experiments, a total of 40 pairs
of query words are chosen randomly from among the 417
unique words in our Corel dataset. In our annotation-
driven strategy, we perform retrieval by first automatically
annotating the database, and then retrieving images based
on bag of the words distances (Section 3.1) between query
tags and our annotation. The alternative CBIR-based
strategy used for comparison is as follows: Without any
image as query, CBIR cannot be performed directly on
query keywords. Instead, the system is provided access
to a knowledge base of tagged Corel images. A random
set of 3 images for each query word is chosen from the
knowledge base, and the IRM distances between these
images and the database are computed. The average
IRM distance over the 6 images is then used for retrieval
from the database in each case. These results, along
with retrieval after randomly annotating the database, are
reported in Figure 7(a). Clearly, our method significantly
outperforms the alternative strategy. Moreover, the retrieval
performance with our approach is very encouraging.

Scenario 2: The query is an untagged image, and
the database is tagged. What is interesting is that the



Our
Labels

sky, city, modern,
building, Boston

door, pattern, Europe,
historical building, city

train, car, people, life,
city

man, office, indoor,
fashion, people

Flickr
Labels

Amsterdam, building,
Mahler4, Zuidas

Tuschinski, Amsterdam honeymoon, Amsterdam hat, Chris, cards, funny

Our
Labels

lake, Europe, landscape,
boat, architecture

lion, animal, wild life,
Africa, super-model

speed, race, people,
Holland, motorcycle

dog, grass, animal, rural,
plant

Flickr
Labels

Amsterdam, canal,
water

leopard, cat, snagged
photo, animal

Preakness, horse, jockey,
motion, unfound photo,
animal

Nanaimo Torgersons,
animal, Quinn, dog,
cameraphone

Figure 6: Sample annotation results on Yahoo! Flickr photos.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 7: Precision (above) and Recall (below) scores for annotation-driven image search under three different
scenarios. (a) Keyword queries on an untagged database. (b) Untagged image queries on a tagged image
database. (c) Untagged image queries on an untagged database. Random annotation based results are
provided for visualizing the lower bound on performance.

database may be any kind of document database and
need not be restricted to words. Our annotation-driven
strategy case is performed by first annotating the query

automatically, and then ranking the database using bag of
words distance. Although our experiments are limited to
image databases, this framework provides an opportunity to



search a document database with an untagged image query
as well. A set of 100 randomly chosen query images are
tested on the 10, 000 image database. The alternative CBIR-
based strategy used for comparison is as follows: The IRM
distance is used to retrieve 5 (empirically observed to be
the best) most visually similar images, and the union of all
their tags are filtered using Eq. 11, where f(t|I) is computed
directly from the tags of the 5 images. Retrieval then
proceeds with these annotations in a manner identical to our
approach. The results, along with the random annotation
scheme, are shown in Figure 7(b). As can be observed,
our strategy has a significant performance advantage over
the alternate strategy. Note that the CBIR-based strategy
performs almost as poorly as the random scheme, which can
likely be attributed to the instability of directly using CBIR
for annotation.

Scenario 3: In this case, neither the query image nor
the image database is tagged. A total of 100 random
image queries are tested on the 10, 000 image database.
Our annotation-driven strategy is simply to annotate both
the query as well as the image database automatically,
and then performing bag of words based retrieval. In
the absence of any semantic information, the CBIR-based
strategy used for comparison is essentially a standard use
of the IRM distance to rank images based on the query.
The results, shown in Figure 7(c), essentially highlight the
advantage of performing annotation-based semantic ranking
over performing a straightforward visual similarity based
retrieval. Clearly, the acquired knowledge captured through
the learnt models accounts for this improvement.

5. CONCLUSIONS
We have proposed a novel annotative-driven image

retrieval approach with a demonstrated potential for real-
world usage. Retrieval is driven by WordNet-based bag
of words distances on automatically generated image tags.
Annotation is performed using image categorization. A
novel generative model based near-realtime categorization
method is proposed, which is shown to improve upon best
reported image categorization results. Experimental results
for annotation and retrieval on Corel images and a Yahoo!
Flickr dataset show considerable promise. Annotation-
driven retrieval is found to significantly surpass CBIR-based
retrieval methods in performance on all scenarios considered,
including the case where neither the query nor the database
is tagged. Future work includes moving from near-realtime
to realtime by filtering techniques. In particular, we can
screen the image categories by fast approximation methods,
retaining only a small set for accurate computation. We wish
to assess the performance of our system on Web images as
well. Combining categorization/annotation with traditional
CBIR for image search is a potential new direction.

The research is supported in part by the US National
Science Foundation. We thank David M. Pennock at Yahoo!
for providing test images.
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