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Surface Defect Detection and Evaluation for
Marine Vessels using Multi-Stage Deep Learning

Li Yu*, Kareem Metwaly*, James Z. Wang, and Vishal Monga

Abstract—Detecting and evaluating surface coating defects
is important for marine vessel maintenance. Currently the
assessment is carried out manually by qualified inspectors using
international standards and their own experience. Automating
the processes is highly challenging because of the high level of
variation in vessel type, paint surface, coatings, lighting condition,
weather condition, paint colors, areas of the vessel, and time in
service. We present a novel deep learning-based pipeline to detect
and evaluate the percentage of corrosion, fouling, and delamina-
tion on the vessel surface from normal photographs. We propose a
multi-stage image processing framework, including ship section
segmentation, defect segmentation, and defect classification, to
automatically recognize different types of defects and measure
the coverage percentage on the ship surface. Experimental results
demonstrate that our proposed pipeline can objectively perform
a similar assessment as a qualified inspector.

Index Terms—Defect detection, marine vessel, deep learning,
image segmentation, multi-label classification.

I. INTRODUCTION

Detecting and evaluating surface coating defects are im-
portant procedures in the maintenance and repair of marine
vessels. Defects, such as corrosion and fouling, have to be
blasted before repainting so that it maintains the hull integrity
and assures the surface poses little resistance to the water.
Visual inspection of defects is typically carried out at shipyards
by trained human inspectors. This procedure, however, can
be costly and subjective. The quality of defect assessment
depends largely on the experience and attentiveness of the
inspectors. An automatic defect detection system is thus highly
desired to achieve comparable accuracy as humans but with
higher efficiency and consistency.

The problem of automatic detection and evaluation of vessel
surface defects, however, is highly challenging because of the
high level of variation in vessel type, paint surface, coatings,
lighting condition, weather condition, paint colors, areas of
the vessel, and time in service. The same set of algorithms is
expected to provide accurate results for all types of vessels,
under any reasonable photographic imaging condition, for any
exterior surface area photographed, and regardless of the types
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and colors of the coating layers used on the vessel and time
the existing coatings have been in service. It is unlikely one
can develop a conventional algorithm that can have such a high
level of robustness. Thus, we take a data-driven approach using
deep learning.

In this work, we propose a multi-stage deep learning frame-
work to automatically detect three types of defects–corrosion,
delamination, and fouling–from images of marine vessels and
estimate the percentage of defect coverage over different
sections of the marine vessel. To train the networks, we also
manually annotated hundreds of images and built a complete
dataset for the analysis of different stages of the framework.
To our knowledge, this is the first effort to build a real-world
dataset of this scale and comprehensiveness and to develop
a fully automatic defect detection and evaluation system that
includes ship segmentation, ship section segmentation, defect
detection, and defect classification.

A. Related Work

Over the past years, researchers have tried to incorporate
computer vision techniques into the assessment of surface de-
fects of marine vessels. Navarro et al. [1] introduced a sensor
system that estimates the gray-scale histogram of background
and determines defect pixels by a threshold. Aijazi et al. [2]
explored the HSV color space to separate the illumination
invariant color component from the intensity so that histogram-
based distributions and thresholds can be more effective to
help spot corrosion of different shapes and sizes. Jalalian et
al. [3] focused on the hue channel, instead of the complete
HSV, that they utilized the Gaussian mixture model to estimate
the circular hue histograms and the probability distribution
of local entropy values [4] to identify segments of defects.
Texture features are also used in the detection of defects.
In [5], wavelet transform was adopted to reconstruct the image
representation in terms of the frequency of components. High-
frequency components, which usually happen at the coarse
appearance, can be separated from low-frequency components,
which correspond to flat and fine appearance. Bonnı́n-Pascual
et al. [6] combined color histograms and morphological prop-
erties to detect corrosion and cracks, in which they exploited
a percolation model [7] with a region-growing procedure to
identify dark, narrow, and elongated sets of connected pixels.

Though effective, these earlier methods fall short in the
following three aspects. First, the classical computer vision
techniques only consider shallow color or texture features.
They are not robust to changes in size, shape, illumination,
etc. The existence of large, continuous defects can hardly
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be detected by these local-feature-based methods. Second,
the reliance on handcrafted features makes the algorithms
difficult to tune the parameters and learn from large amounts
of labeled data. Deep neural networks, on the other hand, have
many more parameters to be tuned than traditional methods,
giving more capability and flexibility to capture more complex
features. Third, previous work only focused on the detection
of rust and corrosion, whereas other defects on the surface
of marine vessels, such as delamination and fouling, are also
important in vessel maintenance.

The rise of deep learning has yielded a new generation of
image segmentation algorithms with remarkable performance
improvements. FCN [8] is one of the first fully convolutional
networks to generate segmentation maps for images. Chen et
al. [9] extended the FCN by adding the conditional random
field (CRF) to help localize segment boundaries and achieved
higher accuracy than pure FCNs. SegNet [10] builds on an
encoder-decoder architecture to include an encoder for feature
extraction and a decoder with upsampling layers for pixel-wise
classification. Inspired by FCNs and encoder-decoder models,
Ronneberger et al. [11] proposed the well-known UNet for
medical image segmentation, which has multiple variations
such as VNet [12] and UNet++ [13]. Mask RCNN [14]
is another class of segmentation models that uses a region
proposal network (RPN) to propose bounding box candidates
and extract the region of interest (RoI). It also has mul-
tiple extensions, including PANet [15], MaskLab [16], and
CenterMask [17]. The DeepLab family [18], [19] approaches
differently by adopting the dilated convolution [20] (a.k.a.
“atrous” convolution) to address the decreasing resolution
problem along with the network layers and the Atrous Spatial
Pyramid Pooling (ASPP) to capture objects at multiple scales.

Deep learning has been successfully applied to the field of
defect or anomaly detection, such as the defects in pantograph
slides [21] and road damage [22]. For the detection of surface
defects of marine vessels, we adopt the UNet as the base
model because our task is more similar to the tasks in medical
image segmentation where objects don’t have fixed size,
shape, or boundary. In typical computer vision applications,
objects carry clear semantic meanings. Take the working
datasets of DeepLab [18] as an example, the PASCAL VOC
2012 [23] and Cityscapes [24] contain mostly well-defined
object classes such as car and person. On the other hand, the
coating defects of marine vessels often have intertwined and
ambiguous boundaries between different defect types or with
the background.

B. Contributions

We summarize our contributions as follows.
• We constructed a first-of-its-kind complete dataset for

defect detection and evaluation of the surface of marine
vessels, from images. It contains 730 images with pixel-
level defect annotations and 350 images with ship section
annotations.

• We proposed a fully automatic evaluation system to detect
defects and calculate defect coverage. The system con-
sists of four deep learning modules: whole ship segmenta-

tion, ship section segmentation, defect segmentation, and
defect classification.

Fig. 1: Sections of a ship viewed from the starboard (STBD)
and the port side (PS). The three levels we used are Top
Side (TS), Boot Top (BT), and Vertical Side (VS). Diagrams
courtesy of the PPG Industries, Inc.

The novel aspects of the individual modules are listed below.
• We proposed to segment three horizontal sections, namely

Top Side (TS), Boot Top (BT), and Vertical Side (VS)
(Figure 1), of a ship by predicting the two boundaries,
which converts 2D segment prediction into 1D curve
prediction. It reduced the requirement for labeled data
and increased consistency in block predictions.

• We utilized a teacher-student training scheme in defect
segmentation to overcome the shortage of labeled data
and the problem of coarse or incomplete labels. The
teacher model was first trained on manually labeled defect
data and used to generate pseudo labels. The pseudo
labels were then combined with the original labels to form
more accurate and complete labels. The student model
trained on the new labels outperformed the teacher model.

• We adopted spatial transformer networks (STN) [25] as
feature extractors and proposed a multi-head architecture
for multi-label prediction. STNs can effectively estimate
affine transformations such that input image patches are
warped for better feature extraction. A delamination de-
tection head was added aside to the general head to cope
with the need to detect the more challenging delamination
defects.

The remainder of the paper is organized as follows. Sec-
tion II describes the details of different defects and our
collected datasets. Section III sketches the multi-stage deep
learning pipeline and the subsequent Sections IV and V present
the architectures of individual modules. Experiment results,
including ablation studies and comparisons with baseline
models, are reported in Section VI . Finally, we conclude and
suggest future work in Section VII.

II. THE DATASET

We collaborated with the PPG Industries, Inc. (PPG) and
collected a fully annotated real-world dataset. Figure 2 shows



3

some typical examples of corrosion, delamination, and fouling.
They may occur in different sections of a marine vessel, as
illustrated in Figure 3. Figure 3(a) displays the labels annotated
by our collaborators from PPG, with different colors indicating
different types of defects. To calculate the percentage of defect
coverage over different sections of the ship, we need to identify
sections of the ship from an image. Figure 3(b) shows the
labels of three different sections. From top to bottom, they
are TS, BT, and VS sections. We labeled around 730 images
for defect detection and 350 images for section segmentation.
Because the annotators have to manually classify defects and
carefully trace the boundaries, the process demands expertise
in marine coating and is time-consuming.

These photographs were collected by field inspectors over
the years as they were doing on-site vessel inspections. Be-
cause the images were taken not for the purpose of computer-
based analysis, there was no set standard on photo-taking. This
poses a serious challenge to computer-based analyses because
the developed algorithms must be robust enough to handle any
reasonable in-the-wild photo-taking condition.

(a)

(b)

(c)

Fig. 2: Typical defects of (a) corrosion, (b) delamination, and
(c) fouling.

III. MULTI-STAGE APPROACH OVERVIEW

The multi-stage approach for defect detection mainly con-
sists of four stages, as shown in Figure 4. They are whole ship
detection, section segmentation, defect segmentation, and clas-
sification. Stages 1 and 2 are required for extracting the region
corresponding to the ship and subsequently different sections
of the ship. Stages 3 and 4 perform defect segmentation and
classification respectively. We contend that performing this as
two-serial steps is superior to a single multi-class segmentation
algorithm, because a region may contain multiple defect types.
That is, an object in an image can have two labels, making
typical multi-class segmentation models unsuitable.

IV. WHOLE SHIP AND SECTION SEGMENTATION

In order to evaluate the percentage of three defect types
on different sections of the ship, we first isolate the ship
within the image and segment different sections. To isolate
the ship, we use an UNet [11] based image segmentation
algorithm. The whole ship segmentation model is trained under

(a)

(b)

Fig. 3: Example defect labels and ship section labels: (a)
corrosion (red), delamination (yellow), and fouling (green);
(b) TS (red), BT (yellow), and VS (green). The ship name is
blocked in black for preserving confidentiality.

Ship Seg. Defect Cls.

Stage 1 Stage 2

Stage 3

Stage 4

Section Seg.

Defect Seg.

Fig. 4: The multi-stage pipeline used in our system.

the assumption that only a single prominent ship exists in an
image. Those less prominent or partially blocked ships will be
ignored. This ensures that we focus on one ship in each image
for defect detection and evaluation.

For ship section segmentation, we propose to view the
three sections (i.e., TS, BT, and VS) as separated by two
curves between TS and BT, and BT and VS, so that section
segmentation is transformed from predicting 2D maps to



4

predicting 1D boundaries. An RNN-based line smoothing
module is introduced to ensure consistency and smoothness
of the predicted 1D line boundaries. We base our model on
HorizonNet [26], which was proposed to predict room layouts
from panoramic images, and made some major changes to
adapt to our scenario. The following subsections will describe
the model architecture and some modifications.

A. Network Architecture

The architecture for section segmentation is illustrated in
Figure 5. The input is the cropped ship area from whole ship
segmentation and the output are two 1D vectors representing
the two boundary curves TS/BT and BT/VS. The input image
is cropped and resized to 640 × 480 so that we can have
fixed-sized input and output. We use a ResNet-based [27]
convolutional neural network (CNN) as a feature extractor
to extract the feature maps at four different scales. A height
compression module is adopted to compress the feature maps
at the vertical direction, which is achieved by four consecutive
down-sampling convolutions. Each convolution layer has a
stride of 2 at the vertical dimension and a stride of 1 at the
horizontal dimension with proper padding to make sure that
the height gets compressed while the width is maintained.
The resulting flat feature vectors are then aligned to the same
width and stacked into a large feature map. Different from the
HorizonNet which aligns the width with direct interpolation,
we use a fully connected layer to convert the width of feature
maps into a uniform sequence length of 160. After we get
the large feature map of size 256× 160, we can use a linear
layer (fully connected layer) to generate the desired output.
However, as indicated in HorizonNet, we found the immediate
output is not smooth and suffers from some defects. Thus we
use a Bidirectional LSTM [28] to smooth the concatenated
feature map, before generating the final curve lines.

B. Range-Aware Loss Function

As can be seen from Figure 5, the boundary between TS
and BT or between BT and VS does not always span the
full width of 640 pixels, even though we have cropped the
ship and resized it to fit into the entire input image. The
missing part of the green line (big chunk on the top and small
chunk on the right) should not be considered in evaluating the
performance of our model. Because different ships come with
different lengths or spans of boundaries, we cannot make the
model accept ground truth labels with variable length while
predicting the two curves with exact length. In fact, both the
ground truth and predicted labels of our model are of the shape
2×640. To alleviate the mismatch of real boundary length and
the fixed-length required by the model, we propose a range-
aware loss function that applies a mask over the range of the
real boundary and only calculates loss for the range during
training. The loss function can be defined as:

L =

2∑
i=1

640∑
j=1

m(i, j)|yti,j − y
p
i,j | , (1)

where i ∈ {1, 2} is the index for the two boundaries and j ∈
[1, 640] is the position index in the width direction. m(i, j) ∈

CNN

120x160 60x80 30x40 15x20

8x160 4x80 2x40 1x20

Height Compression

Width Alignment

8x160 4x160 2x160 1x160

256x160 BiLSTM 512x160

2x4x160
Visualize

Linear Layer

Fig. 5: Architecture of the section segmentation network.

{0, 1} is a mask function to indicate if a prediction ypi,j for the
ith boundary at the jth position needs to be evaluated. Note
that sometimes there are only two sections or even one section
in an image, which means we may have one or zero boundary
as ground truth, we set m(i, j) as all zeros for the missing
boundaries and thus the predictions for them are ignored.

C. Data Processing and Augmentation

As mentioned in Section II, the raw dataset contains both
high-quality images (e.g. of size 4000 × 3000) and highly-
compressed, low-quality images (e.g. of size 400 × 300), we
have to preprocess the data before they can be used for
training. For whole ship segmentation, we resize raw images
and labeled ship masks into a uniform size 640×480 and use
them as input. The output ship masks are of the same size.
We then use the predicted ship masks to crop ship areas and
resize the ships again to size 640×480. The cropped ships and
correspondingly processed section boundary labels, as shown
in Figure 5, are finally used for ship section segmentation.

We also perform active data augmentation in section seg-
mentation to make the best use of the 350 labeled images.
Because the raw images were photos taken from various
angles and distances from the ships, the ship areas presented
in images can be various portions of the entire ships, from
different perspectives. To enrich the diversity of training data
and to make the trained model more robust, we randomly
rotate and shift the ship areas within a small range and repeat
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(a)

(b)

Fig. 6: Examples of weak labels: polygons too coarse (a) and
not complete (b). Different colors indicate different types of
defects, with red for corrosion, green for delamination, and
blue for fouling.

it several times. Moreover, ships come in different colors, with
the majority of ships in red color while others in blue color or
white color. We believe the color of ships should not affect the
determination of the three sections, so we also flip the RGB
color channels to BGR as a special data augmentation strategy.
As a result, we can generate 3,074 images for training.

V. DEFECT SEGMENTATION AND CLASSIFICATION

A. Defect Segmentation

We apply weakly-supervised learning to the segmentation
of defects, as we find the quality of labels is not always
consistent. Some labels tend to be more “coarse” than others.
Take the large blue polygon in Figure 6(a) as an example, it
is supposed to mark those black areas of the ship on the left
as fouling, but unnecessarily includes the pale regions which
should be regarded as background. On the other hand, some
areas with defects are neglected and unlabeled. The ship in
Figure 6(b) has a broad, greenish fouling defect at the bottom,
but it is only partially labeled. The blue polygon on the right
covers a small part of fouling.

To mitigate the negative effects of weak annotations, we pro-
pose to utilize a teacher-student training scheme for the defect
segmentation task. Similar to GrabCut [29] and BoxSup [30],
which start with bounding box annotations and gradually up-
date segmentation masks via iterative model training, we train
one model on source labels and use the predictions as input to
train another model. As plotted in Figure 7, a teacher model
is trained on the original label data, to generate pseudo labels.
The predicted labels will get combined with the original labels
and then be used to train a student model. Both teacher and
student models are UNet-like image segmentation models [11],
with ResNet34 [27] as the backbone. We choose UNet because
it is widely used in medical image segmentation tasks and the

Teacher

Student

Pseudo labels

Fig. 7: The teacher-student training scheme.

form of defects in our dataset resembles more of the objects in
medical imaging rather than those in natural scenes. A shallow
backbone ResNet34 is used instead of deeper feature extractors
such as ResNet50 or DenseNet121 [31], as defects are mostly
local features which demands less high-level feature extraction
and learning.

For training of the teacher model, we slice image-and-label
pairs into patches of size 224×224 and remove those without
defects or with defect areas less than one percent of the patch.
We observed in the labeled data and during experiments that
the problem of missing labels is more prominent than coarse
labels. The existence of false backgrounds (unlabeled defects)
in training data would impact more on the performance than
false foregrounds (background labeled as defects). This is
reasonable because the areas that are viewed and labeled by
human annotators are more reliable than the others that are
unattended. That is, though labeled polygons may contain
excess regions, they are more accurate than unlabeled regions.
As a result, around half of the patches are removed.

After the teacher model is trained for a few epochs, it
is used to predict defect labels on the training images. The
predicted labels are then combined with the original labels
as a new set of labels to generate a new set of training
data. Note that by taking the union of pseudo and human
labels, we only attempt to solve the problem of missing labels.
As aforementioned, it is more prominent than the problem
of coarse labels. We also attempted to take the intersection
of predicted and human labels at patches containing mostly
fouling (coarse labels happen more in fouling than other two
defects), the segmentation result, however, was worse than
only using human labels. It suggests that even trained on
refined data, the teacher model is not able to predict all real
fouling correctly. We have to keep the coarse polygons in the
source labels to ensure better training of the student model.
Finally, the student is trained on updated labels and let run for
full epochs to get the final model.

B. Defect Classification

For defect classification, we use a multi-label algorithm
rather than a multi-class one. It enables the detection and
classification of overlapping different types of defects rather
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than only detecting the most prominent one as in the multi-
class analogue. In other words, we answer three different
Yes/No questions for different defect types, respectively, rather
than answering one question with the type of defect.

Moreover, in analyzing defect categories, we have noticed
that delamination is the most challenging one to detect. There-
fore, we use an additional feature extractor (dubbed Delami-
nation Feature Extractor or DFE) in the network architecture
which pays more attention to features related to the detection
of delamination defects. To ensure the effectiveness of the
added (delamination) feature extractor, we regularize the loss
function in training such that the added feature extractor is
generating complementary information rather than the same
features of the main (general) feature extractor.

Last but not least, we prepend the two feature extractors
with spatial transformer networks (STN) [25]. STN can be
used to estimate the parameters of affine transformations that
can be used to warp the input image patch before passing
by the feature extractors. This effectively enables both feature
extractors to have different patches as inputs, where each gen-
erated patch focuses on the most relevant region of the original
input patch. Besides, it enables the network to adaptively crop
the input patch to the region that only has defects, i.e. focusing
on the most important region of a patch. Thus, we have a better
classification of the input image patch.

1) Network architecture: As depicted in Figure 8, the
network takes patches of images. The preceding defect seg-
mentation network detects regions of interest (RoI) for defects.
Then, we consider patches of the input images where we
have an RoI ratio > 0.1, i.e. we only consider patches of
the input image where the defect segmentation suspects that
more than 0.1 of the area of the patch is marked as defected.
This way the classification algorithm would select patches
that have a reasonable area of defects rather than selecting
patches arbitrarily. We empirically consider patches of size
64 × 64 as it is not too large to cause mosaic artifact in the
final classification image while being not too small to allow
utilization of information from surrounding pixels (such as
texture and edges).

Each input patch pass through two STN networks (more
details in Section V-B3) that enable the following feature
extractors to have different inputs focusing on different regions
of the input image patch, if needed. The structure of the STN
network is shown in Table I. The output of each STN is a
warped copy of the input image patch. We use Densenet-
121 [31] as the backbone for our feature extractors which is
initially pre-trained over the ImageNet dataset [32]. Densenet
is a deep architecture that has skip connections between each
layer and all the following layers in each dense block. This
ensures the flow of information from one layer to deeper
layers, thus mitigating the vanishing gradient problem with
deeper architectures [33]. We do not use deeper than Densenet-
121 to save computational resources while mitigating the
overfitting problem that arises with deeper architectures with
limited training data [34]. After extracting the features, an
average pool operation is used to eliminate the height and
width dimensions, thus we end up with a one-dimensional
vector of length 1024. The average pool operation enables

Delam.
Classifier

Corrosion
Classifier

Fouling
Classifier

Delam.
Feat.
Ext.

Gen.
Feat.
Ext.

Delam.
Head
(DH)

General
Head
(GH)

 

Paramer
Estimator

Grid
Generator

Resampler

Sampling 
Grid

Input
Image
Patch Warped

Patch

Fig. 8: Architecture of the defect classification network.

the network to work with any arbitrary size because the
latter layers are fully connected. The structure of the feature
extractors is detailed in Table II. The extracted two feature
vectors are denoted by FD and FG for Delamination-specific
features and general features, respectively. FG passes then by
two fully-connected layers (named General Head or GH) with
a ReLU activation to reduce the feature size to 256. Similarly,
we concatenate FG and FD and pass it by Delamination
Head (DH) to reduce the size to 256. At the last stage,
three fully connected networks of two layers are used as
the last classification stage for each class independently. The
first layer has a ReLU activation function while the last one
has a Sigmoid activation. Therefore, the outputs of the sub-
networks p1, p2 and p3 are three values that range from 0 to 1
which represents the probabilities of different type of defects
(Corrosion, Fouling or Delamination). The details of the GH,
DH, and the classifier sub-networks are shown in Table III.

2) Delamination Feature Extractor and regularization:
Since delamination defects are the most difficult type of
defects to detect and classify, we use an additional feature
extractor specifically for delamination defects. The sole pur-
pose of that special feature extractor is to find additional
features that would make it easier to detect delamination
defects. However, to ensure the validity of the added feature
extractor and that it is performing its expected objective, we
add a regularization term to the loss function which ensures
that the newly extracted features are complementary to the
features extracted by the general feature extractor. Therefore,
our customized training loss function is as follows.

L =
3∑
i=1

wiL(i)
BCE(li, pi) + λ · |CosSim (FG, FD)| , (2)

where L(i)
BCE(li, pi) is the Binary Cross Entropy [35] which is

defined as:

L(i)
BCE(li, pi) = li log pi + (1− li) log(1− pi) , (3)

where li ∈ {0, 1} is the ground-truth label of class i ∈
{1, 2, 3} representing corrosion, fouling, and delamination,
respectively. pi is the predicted output of class i which takes
values between 0 and 1. We multiply each BCE loss term
with a weight value wi to compensate for the imbalance in
the labeled dataset. We set w1 = 1, w2 = 2 and w3 = 4. This
way we implicitly give more focus to fouling and delamination
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TABLE I: Structure of the Spatial Transformer Networks (STNs)

STN.1 STN.2 STN.3 STN.4 GridGen Resampler

Input Image Patch
64× 64× 3

STN.1 STN.2 STN.3 STN.4 [Image Patch, GridGen]

Structure
[
7× 7 conv.

ReLU

] [
5× 5 conv.

ReLU

] [
3× 3 conv.

ReLU

] [
1× 1 conv.

avg-pool

]
Sample Grid

Generator
2D interpolation based
on the sampling grid

Output 64× 64× 100 64× 64× 100 64× 64× 50 1× 1× 6 64× 64× 1 64× 64× 3

TABLE II: Structure of the feature extractors sub-networks – General Feature Extractor and Delamination Feature Extractor

Base Dense.1 Trans.1 Dense.2 Trans.2 Dense.3 Trans.3 Dense.4

Input Warped Image Patch
64× 64× 3

Base Dense.1 Trans.1 Dense.2 Trans.2 Dense.3 Trans.3

Structure
[

7× 7 conv.
3× 3 max-pool

] [
1× 1 conv.
3× 3 conv.

]
× 6

[
1× 1 conv.

2× 2 avg-pool

] [
1× 1 conv.
3× 3 conv.

]
× 12

[
1× 1 conv.

2× 2 avg-pool

] [
1× 1 conv.
3× 3 conv.

]
× 24

[
1× 1 conv.

2× 2 avg-pool

] [
1× 1 conv.
3× 3 conv.

]
× 16

Output 16× 16× 64 16× 16× 256 8× 8× 128 8× 8× 512 4× 4× 256 4× 4× 1024 2× 2× 512 1× 1× 1024

TABLE III: Structure of the classifiers

General Head Delamination Head Classifiers
GH.1 GH.2 DH.1 DH.2 C.1 C.2

Input FG GH.1 [FG, FD] DH.1 GH.2 or DH.2 C.1

Structure

1024→ 512 Linear
ReLU

Dropout

 512→ 256 Linear
ReLU

Dropout

 2048→ 512 Linear
ReLU

Dropout

 512→ 256 Linear
ReLU

Dropout

 256→ 128 Linear
ReLU

Dropout

 [
128→ 1 Linear

σ

]
Output 512× 1 256× 1 512× 1 256× 1 128× 1 1

defects in the training process over the corrosion defects,
because corrosion defects are the easiest type of defects to
classify in comparison to delamination and fouling defects.

The regularization term CosSim (FG, FD) is the cosine
similarity [36] between the extracted features from the general
feature extractor FG and the delamination feature extractor
FD. λ is a regularization parameter to tune the importance of
the regularization term in the training process in comparison
to the BCE loss term. We set λ to 1 through training by
cross-validation [37]. The objective of the cosine similarity
regularization is to ensure that FD 6= α · FG for some scale
factor α. Therefore, FD carries complementary information
to FG which helps in the final classification stage. CosSim
measures the angle between the two latent feature vectors and
attempts to maximize it by minimizing the inner product of the
two latent vectors. In other words, we train our network in a
weakly-supervised manner since the size of the training set is
not large enough. CosSim (x, y) = xT y/max (||x|| · ||y||, ε) .
The inner product is divided by max (||x|| · ||y||, ε) for nor-
malization, where ε = 10−4 for numerical stability.

3) Spatial Transformer Network (STN): Before passing
the input image patch by the two feature extractors, we
first pass it by two STNs to perform affine transformations
[38] to make it easier for each feature extractors to find the
most relevant features. The Spatial Transformer Network [25]
estimates 6 parameters to perform an affine transformation
which consists of 4 parameters to perform rotation and scaling
R and 2 parameters for translation τ as follows.(

x
(n)
j

y
(n)
j

)
= Tθ

((
xj
yj

))

=

(
rxx rxy
ryx ryy︸ ︷︷ ︸

R

tx
ty

)
︸ ︷︷ ︸

τ

×

 xj
yj
1

 ,
(4)

where xj&yj are the coordinates of pixel j of the original
input patch and x(n)j &y

(n)
j are the new coordinates.

Utilization of the STN modules in DFE-NET allows each
feature extractor to obtain different features. It makes the
problem much easier for the subsequent classifier subnetwroks.
As depicted in Figure 8, each STN warps the input image
differently. For instance, delamination defects usually depend
on information related to edges (as it is a result of the
detachment of the paint from the surface). Therefore, warping
the input image patch to see edges more prominently will make
the detection process of delamination defects easier. This is
performed by STND. However, corrosion and fouling defects
usually depend on information related to the texture and colors
(not edges unlike delamination). Therefore, STNG needs to
warp the image differently to focus on the texture not the
boundary changes from one surface to another.

VI. EXPERIMENTAL RESULTS

A. Ablation Study

We have performed an extensive set of ablation studies
to verify and validate the importance of each module. We
start by discussing the effectiveness of some modules related
to the final classification network such as the additional
encoder for delamination defects, the regularization term in
the loss function, and the STN modules. Then, we study the
effectiveness of employing the section segmentation results in
the classification process as well.

1) Effectiveness of the Delamination Feature Extractor
and regularization in the classification network: To study
the effectiveness of the special feature extractor, that is the
Delamination Feature Extractor (DFE), we train the classifica-
tion network for 20 epochs by randomly choosing 500 images
for training and 20 images for testing and repeating the same
training/test split for three times then we calculate the average
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TABLE IV: Effectiveness of the Delamination Feature Extrac-
tor and Regularization on the detection of Corrosion Defects

without DFE with DFE
no regularizer with regularizer

Accuracy 0.7636 0.7834 0.8009
B. Accuracy 0.7854 0.7923 0.8153

F1-Score 0.7872 0.8076 0.8319

TABLE V: Effectiveness of DFE and Regularization on the
detection of Delamination Defects

without DFE with DFE
no regularizer with regularizer

Accuracy 0.6347 0.6789 0.7103
B. Accuracy 0.5756 0.6250 0.6455

F1-Score 0.5099 0.5808 0.6061

values of accuracy, balanced accuracy (B. Accuracy), F1-score
and confusion matrices as follows.

ACCURACY =
TP + TN

TP + TN + FP + FN
, (5)

B. ACCURACY =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
, (6)

F1 = 2
PRECISION · RECALL

PRECISION + RECALL
, (7)

PRECISION =
TP

TP + FP
, (8)

RECALL =
TP

TP + FN
, (9)

where TP, TN, FP, and FN are acronyms for True Positive,
True Negative, False Positive, and False Negative, respectively.

Tables IV to VI show the performance of the classification
network for Corrosion, Delamination, and Fouling defects re-
spectively in different scenarios: i) without DFE, ii) with DFE
but no regularization term in the training loss function and iii)
with DFE and regularization term in the training loss function.
In addition, Tables VII to IX show the average confusion
matrices values of the test sets at different cases of using
DFE and regularization term for Corrosion, Delamination, and
Fouling Defects, respectively.

The results indicate that the added Delamination Feature
Extractor (DFE) can boost the performance of the network
for the delamination type of defects that are most challenging
to detect and classify. Moreover, it also boosts the overall
performance of the network for other types of defects; namely
corrosion and fouling. A justification for such a behavior can
be that the General Feature Extractor (GFE) is now giving
more focus to corrosion and fouling types of defects since the
DFE is solely focusing on delamination defects. Moreover,
since corrosion and fouling defects are generally identified by
the texture of the defect unlike delamination which is typically
identified by the boundaries, the GFE is focusing on extracting
features related to the texture while the DFE is focusing on
extracting features related to changes at the edges of a defect.

2) Effectiveness of the STN modules in the classification
network: We also perform another ablation study to confirm
the viability of the STN module. Although we have noticed
that the STN module is not as important as the novel DFE

TABLE VI: Effectiveness of the Delamination Feature Extrac-
tor and Regularization on the detection of Fouling Defects

without DFE with DFE
no regularizer with regularizer

Accuracy 0.7387 0.7697 0.7883
B. Accuracy 0.7436 0.7866 0.7953

F1-Score 0.7528 0.7759 0.8013

TABLE VII: Confusion matrices of corrosion defects for
different cases of using DFE and regularization.

(a) without DFE
Prediction

(−) (+)

L
ab

el (−
)

0.85 0.15

(+
)

0.28 0.72

(b) DFE w/o regul.
Prediction

(−) (+)

0.85 0.15

0.23 0.73

(c) DFE with regul.
Prediction

(−) (+)

0.87 0.13

0.24 0.76

module and regularization in terms of increasing the accuracy
and balanced accuracy, it was able to give a consistent increase
in those metrics for all types of defects. The reason for that
better classification could be the limited training set which
gives more importance to the STN module. To elaborate, STN
module’s sole purpose is to learn an affine transformation
performed over the input patch so that it can be classified
accurately down the line. Its importance magnifies with the
smaller size of the training set.

To validate this conclusion, we have performed a limited
training case study, where we have only used 100, 200, and
300 sets of images for training and used 30 images as a test
set. Then, we measured the accuracy, balanced accuracy, and
F1-score for each set. The results of each test set are depicted
in Figure 9, where the average is taken over the three types
of defects. As can be shown from the figure, albeit the STN
module boosts the performance, but its effect is much more
significant by reducing the training dataset size. Because The
network (without STN module) cannot generalize well with
a smaller training set and it is much prone to overfitting.
Therefore, the STN module has a similar-to regularization
effect in the case of a smaller training set. As shown in
Figure 9, the STN module allows the network to have much
more graceful decay in performance when the size of the

TABLE VIII: Confusion matrices of delamination defects for
different cases of using DFE and regularization.

(a) without DFE
Prediction

(−) (+)

L
ab

el (−
)

0.68 0.32

(+
)

0.53 0.47

(b) DFE w/o regul.
Prediction

(−) (+)

0.72 0.28

0.47 0.53

(c) DFE with regul.
Prediction

(−) (+)

0.75 0.25

0.46 0.54

TABLE IX: Confusion matrices of fouling defects for different
cases of using DFE and regularization.

(a) without DFE
Prediction

(−) (+)

L
ab

el (−
)

0.72 0.28

(+
)

0.24 0.76

(b) DFE w/o regul.
Prediction

(−) (+)

0.76 0.24

0.20 0.80

(c) DFE with regul.
Prediction

(−) (+)

0.77 0.23

0.18 0.82
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TABLE X: Mean IoU of TS/BT/VS

Method TS BT VS
UNet [11] 0.7459 0.4669 0.5360
HorizonNet [26] 0.7827 0.5717 0.6800
Ours 0.8542 0.6641 0.7535

TABLE XI: Mean IoU, precision, and recall rates

Method IoU Precision Recall
UNet [11] 0.4924 0.6373 0.6523
Ours 0.5205 0.6314 0.7725

training set is reduced by a factor of 3.
3) Utilization of the section segmentation output in the

classification process: We have noticed that the distribution
of defects varies depending on the location; whether at TS, BT,
or VS. Prominently, Fouling defects never happen in the the
TS section of the ship because TS is not under water where the
fouling organisms are. At post-processing, we remove all foul-
ing from the TS section. We show four different examples of a
test set in Figure 10. Notably, the network (without employing
section segmentation results) detects incorrect fouling defects
in the top section of the ship (TS), while it is typically rare to
occur. Therefore, the results of the network after employing
the section segmentation results are much more consistent and
close to the ground truth labels.

B. Results

1) Ship section segmentation: We compare our model with
two baselines, UNet and HorizonNet. The result is evaluated
as mean IoU of TS, BT, and VS over 35 test samples, as
shown in Table X. From the mean IoUs, we know our method
is consistently better than the two baselines. Note that the
prediction from our model is two 1D vectors and they have to
be combined with the whole ship segmentation to get the 2D
segmentation map.

2) Defect segmentation: We also compare the result in
defect segmentation with one baseline UNet. Since we use
UNet architectures for both teacher and student models, the
baseline here is equal to the teacher model. For the compari-
son, we selected 60 vessel images and the result is evaluated
as three metrics: mean IoU, precision, and recall, as shown
in Table XI. Because of the improvement of labels from the
teacher model, our student model achieves a better recall rate
and IoU. The precision does not improve much because the
inclusion of pseudo labels inevitably introduced noise that
makes the student tends to predict more defects than the
teacher. This leads to the rise in recall rate at the sacrifice
of the precision score.

3) Defect classification: To the best of our knowledge,
there is no current published method that can detect defects
of marine vessels. Therefore, it is not possible to compare
the performance of our network with another state-of-the-art
method. However, to have a justified and fair evaluation of
our classification algorithm, we compare DFE-NET with both
ResNet [27] and DenseNet [31] based implementation without
the novel DFE additional encoder nor the STN module.
Moreover, to ensure the reliability of the network in a real-
life scenario, we compare the performance of our network to

human experts in the detection of defects in marine vessels
for 60 non-labeled images of marine vessels.

Tables XIII to XV show the confusion matrices of different
types of defects for our network in comparison to DenseNet-
and ResNet-based architectures. The results are calculated over
50 labeled test images. It is clear that our network performs
better than ResNet and DenseNet based networks; mainly due
to the DFE and the STN module as has been discussed in
Sections VI-A1 and VI-A2.

The second experiment that we have performed is to test
the performance of DFE-NET compared to human experts.
With the help of experts in the field from PPG, we were
able to obtain the percentages of defects in each section of
60 vessel images. These results were calculated by 6 human
experts in the analysis of vessel defects. Table XII shows
the predicted percentage of defects of different methods in
comparison with the human experts. It is noteworthy that not
all of the images have all sections of the vessel. Therefore,
the average of defects at a section is taken considering only
images that contain this section only. For instance, an image
may not contain a TS section. Thus, we will not include it in
the statistical calculations of the percentage of the defected
area of the TS section. This leads to an effectively lower
number of images for the statistical analysis and thus less
confidence in the results. However, it is not that significant, as
the number of images that includes a specific section is more
than 40, which is more than enough for high confidence in
the analysis. Figure 11 shows four examples from the test set,
where DFE-NET was successful to obtain results that match
the provided labeled data.

4) Discussion about multi-label vs. multi-class architecture:
We have adopted a multi-label approach in the classification
process of defects. However, another possible approach is
to use a multi-class approach; which only detects a single
class (the most prominent class) in a patch. The multi-class
approach answers one question: What type of defect in the
patch, corrosion, delamination, or fouling? The multi-label
approach attempts to answer three questions instead: (1) Does
the patch have a corrosion defect? (2) Does the patch have a
delamination defect? and (3) Does the patch have a fouling
defect?

We show here a comparison of both approaches. In conclu-
sion, using a multi-label approach is better than a multi-class
one. There are two reasons for that. First, the percentage of
patches that have overlapping defects (at least two defects)
cannot be neglected. Second, the defect segmentation algo-
rithm may falsely detect defects. Multi-label classification can
further clean some of those erroneously detected defects by
answering its three questions by No.

For the comparison, we have selected 20 images as a test set.
To elaborate on the importance of the multi-label approach,
those selected images have overlapping defects. Thus, many
of the generated patches of those images have multiple labels.
Table XVII shows the accuracy, the balanced accuracy, and
the F1-score in both cases. The multi-label approach is better
for the detection and classification of defects in marine vessels
for the aforementioned reasons.
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Fig. 9: Performance evaluation of the classification network with and without STN module at different sizes of the training
dataset. The shown results are the average over the three defect types.

TABLE XII: Section wise average defect percentage across 60 vessel images. Note that multiple experts rate each image, hence
we first compute the average over the 60 images of each inspector, then we compute the mean and standard deviation over
the average ratings of the inspectors. Experts values are written as mean µ (std. dev. σ).

Defect Corrosion Delamination Fouling
section TS BT VS TS BT VS TS BT VS
Experts 11.08 (3.34) 20.36 (5.09) 8.90 (4.98) 3.84 (1.09) 13.67 (3.90) 25.83 (8.41) 0.42 (0.01) 35.12 (4.80) 66.03 (9.17)

ResNet [27] 6.08 12.08 5.98 2.18 8.07 18.04 3.74 31.08 54.30
DenseNet [31] 8.81 15.30 5.72 3.14 7.94 19.46 5.31 29.50 56.72

DFE-NET 9.84 18.52 8.01 5.20 10.12 22.74 0 38.17 61.82

TABLE XIII: Confusion matrices of corrosion defects for
different architectures.

(a) ResNet-based
Prediction

(−) (+)

L
ab

el (−
)

0.82 0.18

(+
)

0.29 0.71

(b) DenseNet-based
Prediction

(−) (+)

0.84 0.16

0.30 0.70

(c) DFE-NET
Prediction

(−) (+)

0.87 0.13

0.24 0.76

TABLE XIV: Confusion matrices of delamination defects for
different architectures.

(a) ResNet-based
Prediction

(−) (+)

L
ab

el (−
)

0.67 0.33

(+
)

0.54 0.46

(b) DenseNet-based
Prediction

(−) (+)

0.65 0.35

0.58 0.42

(c) DFE-NET
Prediction

(−) (+)

0.75 0.25

0.46 0.54

TABLE XV: Confusion matrices of fouling defects for differ-
ent architectures.

(a) ResNet-based
Prediction

(−) (+)

L
ab

el (−
)

0.71 0.29

(+
)

0.26 0.74

(b) DenseNet-based
Prediction

(−) (+)

0.72 0.28

0.26 0.74

(c) DFE-NET
Prediction

(−) (+)

0.77 0.23

0.18 0.82

TABLE XVII: Numerical results of multi-class approach vs
multi-label approach

Accuracy B. Accuracy F1-Score
Multi-Class 0.62 0.54 0.63
Multi-Label 0.78 0.76 0.72

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we built the first dataset for surface defect
detection of marine vessels and proposed a multi-stage deep
learning framework to evaluate the percentage of three types
of defects over three sections of a ship. The prediction of
sections (TS, BT, VS) of a ship is converted from 2D masks
to 1D boundaries so that less training data is needed and the
result is more consistent. We utilized a teacher-student training
scheme for defect segmentation to tackle the problem of coarse
and incomplete labels. A teacher model is firstly trained on
labeled data and used to generate pseudo labels. The generated
labels are then combined with original labels to train a student
model to achieve better performance. For defect classification,
we proposed a multi-label classification network that includes
two detection heads for challenging defect (delamination)
detection and STNs to estimate affine transformation for input
patches before feature extraction such that patches are warped
for better alignment. Our individual modules achieved better
performance than state-of-the-art methods and comparable
performance to human inspectors.

Aspects of our approach can be further improved. An end-
to-end framework in place of the defect segmentation and
classification modules may be desired and possibly reduce
inference cost. The domain knowledge that fouling usually
happens at the lower part of a ship can be utilized in other
ways. Currently, we make use of it by post-processing to
remove fouling from TS. Future work may consider estimating
the relative position of fouling in the ship and enforce it in
loss function or remove it before final prediction.
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(a)

(b)

(c)

(d)

Fig. 10: Four examples of the test set. From left to right, i) input image, ii) section segmentation results, iii) defect classification
without employing section segmentation, iv) defect classification employing section segmentation and v) ground-truth labels.
The first row of each sample shows the results/labels and the second row shows the overlaid results/labels over the input image.
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Fig. 11: Four examples that the algorithm is doing the same as the provided labeled data.
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