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Fig. 6. Effects of parameter selection of K and ε. The horizontal axis denotes different values of ε, while lines with different colors denote different K
values.

VI. CONCLUSIONS

We proposed a submodular algorithm to select informative
frames from videos in crowd counting task. This method
avoids traditional blind and exhaustive annotation by exploit-
ing most representative and diverse images from crowd image
sequences. Semi-supervised regression is performed on the
selected images and the remaining unlabeled images. Exten-
sive experiments with multiple datasets have demonstrated the
effectiveness of the proposed algorithm, and shown the practi-
cal application in intelligent transportation systems. Moreover,
the proposed submodular method can be integrated with other
regression methods, and has the potential to be incorporated
into other applications, for intelligent transportation systems
and beyond.
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