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THE BIGGER PICTURE Despite being trained on extensive datasets, current computer vision systems lag
behind human children in learning about the visual world. One possible reason for this discrepancy is the
fact that humans actively explore their environment as embodied agents, sampling data from a stable visual
world with accompanying context. Bearing some resemblance to human childhood experience, contrastive
learning is a machine-learning technique that allows learning of general features without having labeled
data. This is done by grouping together similar things or objects and separating those that are dissimilar.
Contrastive learning methods can be applied to multiple tasks, for example, to train visual learning agents.
Improving thesemachine-learning strategies is important for the development of efficient intelligent agents,
like robots or vehicles, with the ability to explore and learn from their surroundings.
SUMMARY
Visual learning often occurs in a specific context, where an agent acquires skills through exploration and
tracking of its location in a consistent environment. The historical spatial context of the agent provides a sim-
ilarity signal for self-supervised contrastive learning. We present a unique approach, termed environmental
spatial similarity (ESS), that complements existing contrastive learning methods. Using images from simu-
lated, photorealistic environments as an experimental setting, we demonstrate that ESS outperforms tradi-
tional instance discrimination approaches. Moreover, sampling additional data from the same environment
substantially improves accuracy and provides new augmentations. ESS allows remarkable proficiency in
room classification and spatial prediction tasks, especially in unfamiliar environments. This learning para-
digm has the potential to enable rapid visual learning in agents operating in new environments with unique
visual characteristics. Potentially transformative applications span from robotics to space exploration.
Our proof of concept demonstrates improved efficiency over methods that rely on extensive, disconnected
datasets.
INTRODUCTION

One of the central challenges faced by both artificial and natural

cognitive visual systems is the ability to map pixel-level inputs,

such as those obtained through eyes or cameras, onto compo-

sitional, internal representations that inform decisions, actions,
Patterns 5, 100964,
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and memory processes. In the recent two decades, significant

progress has been made in understanding vision, notably due

to the rise of statistical models1,2 and particularly deep neural

networks.3 These advances have fostered myriad real-world ap-

plications across a wide range of fields, spanning from biomed-

icine to emotion recognition.4–7
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The process of learning for computational cognitive visual sys-

tems often involves the use of vast image datasets that are orga-

nized into categories, such as specific types of animals or vehi-

cles, or particular concepts, such as surface materials,8

aesthetics,9 or product defects.10 General-purpose image un-

derstanding might use massive datasets, sometimes with bil-

lions of images labeled with thousands of discrete linguistic

terms,11,12 but otherwise lack contextual information. For

example, two social-media-crawled images labeled as ‘‘French

bulldogs’’ might both depict different dogs or two views of the

same dog. Despite these limitations, these datasets have helped

to drive a new generation of deep-learning approaches to com-

puter vision, leading to significant improvements in image cate-

gorization performance following the release of models such as

AlexNet.3 These advances have been achieved through incre-

mental improvements in both the scale and the complexity of

networks and datasets.

Despite these improvements, deep-learning solutions for vision

still lack the robustness of human performance, even for the rela-

tively simple task of image recognition.While they performwell on

specific target datasets such as ImageNet,11 such models strug-

gle to generalize to other, even highly similar, tasks.13 Moreover,

they lag behind human performance in object classification14

and are susceptible to adversarial attacks in ways humans are

not.15 Scaling datasets up is not proving an effective remedy for

these shortcomings.12 Another drawback of current approaches

is that the immense size of large datasets limits the ability to

conduct experiments due to restricted access to the images

and necessary computing resources, and concerns arise about

the environmental toll of the energy used in training.

Human-inspired contextual learning in computer vision
To approach this problem, we draw inspiration from the nature of

human visual learning and how it differs from contemporary com-

puter vision. During their first year or two of life, children are

typically extensively exposed to a narrow range of specific visual

objects within a highly familiar and constrained context. Many

children in modern households spend the first year of their life pri-

marily in one or two buildings, viewing a limited set of spaces, sur-

faces, faces, and objects from various perspectives and lighting

conditions (e.g., sunlight, cloudy light, artificial illumination). Head-

cam data reveal that only three specific faces comprise the vast

majority of face exposure for many children in Western house-

holds in the first year of their life.16 Moreover, children view a

comparatively small number of objects, many of which are seen

only within a specific context, such as a toaster on a particular

kitchen counter with a certain wall texture. Even the total number

of views of the world by a human child is comparatively small

compared with the number of images in large datasets. Children

typically make around 90 million visual fixations by the age of 2

(derived based on an average fixation rate of approximately

1.4/s17), which ismuch smaller than the hundreds ofmillions or bil-

lions of images in the larger datasets. A similar disparity exists for

the training of large language models.18

This limited exposure to a narrow range of objects in one

context that we see in children would result in poor performance

for standard deep-learning approaches that typically require

balanced exposure to a wide range of objects in different back-

grounds to avoid learning skewed statistical relationships. To
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avoid this problem, large datasets rely onmany exemplars of ob-

jects on a wide range of backgrounds,19 but it is unknown how

children learn to effectively parse the visual environment without

such diverse visual experiences. To help address this gap, we

hypothesize that, through the use of environmentally contextual-

ized learning, computer systems can be designed to learn repre-

sentations that are flexible enough to perform well on general-

ized tasks such as natural image classification from smaller,

less diverse datasets. Our work here provides a step in this direc-

tion by showing that including the spatial position of image sam-

ples within an environment can measurably improve perfor-

mance on a task like ImageNet classification relative to an

algorithm that uses only instance discrimination for training.

Lessons from human visual development
The field of developmental psychology offers insights into what

is missing from contemporary machine vision learning. While

viewing the world, children harness a wealth of environmental in-

formation about how their bodies deliberately sample informa-

tion through controlled orientation of their senses and their inter-

actions with the world.20–22 Inspired by these findings, we take

an interdisciplinary step by introducing a new learning approach

to self-supervised contrastive learning in which the environment

is considered as the data source. This approach allows us to

repeatedly sample the same objects in the same rooms from

slightly varying positions using a notional agent that occupies a

specific location at each time point. For example, while a house

has a limited set of locations and objects, the number of possible

visual patterns that can be experienced within it is vast, given the

ability to move such an agent around to experience varying light-

ing conditions over time and to vary physical properties of the

sensors such as focal depth. Figure 1 illustrates such visual

differences.

In humans, this mechanism may emerge early in the develop-

mental process, perhaps even before a child begins to move

independently (i.e., self-locomotion), if they are passively moved

and track self-motion through sources such as optic flow, vestib-

ular input, and other senses. This kind of visual learning precedes

and enables higher-order learningmechanisms that infer proper-

ties about labeled categories,23,24 causal interactions,25 and

physical reasoning.26–28

Improving self-supervised learning
Self-supervised learning approximates some aspects of

early human visual experience by learning visual patterns

from unlabeled images. One such algorithm, called contrastive

learning,29–31 trains networks to detect when two images are

algorithmically derived augmentations of a base image (i.e.,

positive pairs). However, this approach lacks the ability to

represent real-world similarity in the training process. Two

source images from nearly identical views of an object would

be treated as completely distinct by this approach, since they

are different instances. On the other hand, human visual

learning is thought to exploit the similarity between proximal

samples within the environment to develop a smooth latent rep-

resentation that connects different views of the same object.32

Such similar images are a natural by-product of perception by

any agent that traverses an environment in which objects

persist over time, thereby providing a variety of changes in
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Figure 1. The impact of position on the

appearance, lighting, and camera distance/

focal length of an image

(A) The perspective of a room can greatly influence

its appearance when rendered from different posi-

tions in the ThreeDWorld simulated environment.

(B) The natural lighting of a scene can significantly

alter its appearance when captured at different

times of the day. Photos courtesy of Federico

Adolfi.

(C) The head and facial features of a statue may

appear differently when captured with different

focal lengths. Photos courtesy of James Z. Wang.
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perspective, lighting conditions, and so on. The information

that can be extracted from sequential samples by these agents

is much richer than what can be gained through instance

discrimination alone.

This aspect of environmentally driven learning transforms the

statistical consistency of the world, which might be seen as a

disadvantage in some traditional deep-learning approaches,

into a valuable signal for understanding the physical properties

of how light and materials interact for arrangements of objects

and surfaces in a visually rich environment, as guided by infor-

mation about location. This approach is inspired by embodied

perspectives on human perception33 and learning.22,34 While a

wholly embodied approach would have agents actively engage

with their surroundings, and learning would co-occur with

behavior, our method is conducted after the agent has sampled

a large set of images. In this approach, positive pairs reflect var-

iations due to both typical augmentations and small shifts in

viewing position. Thereby, we use the relative positions of the

agent at the time two given images were sampled as a proxy

of their image similarity. The mechanism we envision does not

rely on externally derived labels or even the notion of what ob-

jects are. In a cognitive framework, this kind of learning serves

as a foundation for subsequent learning, at which point the ability

to perceive the significance of verbal labels begins to influence

visual learning.35
Our environmental spatial similarity
approach
Our proposed algorithm demonstrates

improved efficiency in learning how to visu-

ally categorize objects compared with an

existing contrastive learning method. We

define increased efficiency as improving

accuracy on a downstream ImageNet task

while keeping the size of themodel, dataset

volume, training epochs, augmentations,

and downstream task fixed. Our approach

involves adjusting the momentum contrast

(MoCo) algorithm29 to leverage spatial

context information obtained through simu-

lated images collected in a single environ-

ment to determine which images from a

randomly sampled dictionary are positive

pairs. In MoCo, a positive pair is two aug-

mentations derived from the same source

image. In our proposed approach, a posi-
tive pair is two images that were proximal in spatial and rotational

coordinates. For each key image, there could exist more than one

positive pair. We term this approach environmental spatial similar-

ity with multi-binary positive pairs (ESS-MB). We demonstrate

across a variety of conditions that the training process using

spatial context to mark positive pairs is more efficient than the

same-instance discrimination found in MoCo v.2. We further

extended the binary representation of similarity to a continuous

one to assign differentiated weights to positive pairs, called the

multi-weighted version (ESS-MW), resulting in a further modest

enhancement in the downstream performance.

We highlight five convergent findings that support the effective-

ness of this approach. First, by examining various spatial similarity

thresholds, we identify that there is a point of peak performance.

Using such a threshold, our approach’s pretraining on a set of

102,197 (abbreviated as ‘‘100K’’) images collected during one

traversal of an environment leads to enhanced downstream accu-

racy in an ImageNet classification task compared with the MoCo

model pretrained on the same image set, with a further improve-

ment using a loss function that is weighted by spatial proximity.

This approach is complementary to other contrastive learning

models. Second, our approach’s superior performance gen-

eralizes to both a smaller dataset collected from the same

environment and one from a different environment. Third, by

accumulating more images of similar views within the same
Patterns 5, 100964, May 10, 2024 3



Figure 2. The simulated environments and the trajectories used by the embodied agent to generate the datasets
(A) The Archviz House.

(B) The Apartment.

(C–E) The trajectories for House14K, Apt14K, and House100K, respectively.

(F and G) Three example images from the House and Apt environments, respectively. During training, random batches were sampled from these trajectories.

Images were considered similar if they were spatially close to each other.
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environment,weobserve enhancedaccuracy, evenwith the same

total amount of training. Moreover, we explore a new form of

augmentation afforded by ray tracing with varying light sources

and multiple downstream tasks. Last, the model with our

approach outperforms the MoCo model on room classification

and spatial localization tasks, especially in unseen environments.

All critical comparisons in our experiments were conducted thrice

to offer a confident accuracy range, factoring in the stan-

dard error.

RESULTS

Simulated datasets provide a source of spatial similarity
To create a dataset that exhibits environmental consistency, we

used a simulation approach that leverages state-of-the-art ray

tracing within the Unity framework. Simulations provide us and

other researchers the agility to experiment, allowing testing of
4 Patterns 5, 100964, May 10, 2024
the effect of highly specific, parametric variations in the image

set—something not feasible with real-world image sets. Building

on the ThreeDWorld platform,36 we simulated an agent moving

through a fully furnished, detailed house and apartment,

capturing images at closely spaced intervals. In this environ-

ment, ray tracing was used to simulate the transmission of light

rays from virtual sources, which bounce and scatter to create

realistic perspectives, reflections, shadows, and material prop-

erties such as glossiness that mimic the appearance of real gloss

in human psychophysics.37

The Archviz House (referred to as ‘‘House’’) and the Apartment

(referred to as ‘‘Apt’’) are both simulated building interiors pro-

vided by the ThreeDWorld platform. Each is furnished with a

set of objects (e.g., furniture, laptop, and cup). The House was

enhanced with an additional set of 48 objects, and the Apt was

enhanced with 101 objects, all of which were sourced from a

library of 3D objects using a JSON file.



Table 1. Comparison between the baseline and ESS on House environment with modified thresholds

Pretext dataset

Training stage

Positive pairs

Pretext task Downstream ImageNet classification

Model Threshold Training loss Y Training loss Y Test loss Y Test accuracy (%) [

House100K Baseline N/A 1 4.43 ± 0.02 4.71 ± 0.03 4.72 ± 0.03 17.36 ± 0.36

House100K ESS-MB (0.4, 6) 1.3 3.78 ± 0.01 4.68 ± 0.03 4.71 ± 0.03 17.56 ± 0.34

House100K ESS-MB (0.8, 12) 6.3 4.00 ± 0.00 4.67 ± 0.00 4.75 ± 0.01 18.05 ± 0.04*

House100K ESS-MB (1.6, 24) 29.3 4.57 ± 0.00 4.86 ± 0.03 4.97 ± 0.02 16.92 ± 0.19

House100K ESS-MB (0.8, N/A) 60.5 4.81 ± 0.00 5.02 ± 0.04 5.14 ± 0.03 15.92 ± 0.15

House100K ESS-MB (N/A, 12) 292.4 5.97 ± 0.00 4.94 ± 0.01 4.88 ± 0.01 15.55 ± 0.15

House14KLong Baseline N/A 1 3.72 ± 0.00 5.18 ± 0.01 5.17 ± 0.01 12.44 ± 0.12

House14KLong ESS-MB (0.5, 7.5) 6.6 3.87 ± 0.00 5.09 ± 0.00 5.11 ± 0.01 13.44 ± 0.08*

House14K Baseline N/A 1 5.19 ± 0.09 6.79 ± 0.52 6.92 ± 0.55 9.46 ± 0.79

House14K ESS-MB (0.25, 3.75) 2.6 5.23 ± 0.02 5.89 ± 0.09 5.96 ± 0.10 11.09 ± 0.29

House14K ESS-MB (0.5, 7.5) 6.6 5.19 ± 0.01 5.59 ± 0.01 5.63 ± 0.01 11.61 ± 0.16*

House14K ESS-MB (1.0, 15) 20.6 5.41 ± 0.06 5.62 ± 0.05 5.66 ± 0.04 11.07 ± 0.10

Apt14K Baseline N/A 1 5.29 ± 0.10 17.37 ± 10.45 18.30 ± 11.61 5.54 ± 0.88

Apt14K ESS-MB (0.3, 4.5) 2.4 5.41 ± 0.04 9.28 ± 1.78 9.31 ± 1.69 6.87 ± 0.48

Apt14K ESS-MB (0.6, 9) 6.7 5.40 ± 0.02 6.55 ± 0.06 6.55 ± 0.02 8.47 ± 0.09*

Apt14K ESS-MB (1.2, 18) 21.2 5.58 ± 0.07 6.46 ± 0.11 6.54 ± 0.15 8.28 ± 0.29

‘‘Threshold’’ indicates that if a sample’s position and rotation difference relative to the key samples is below (x meters, y degrees), it is designated as a

positive sample. The column ‘‘positive pairs’’ shows the average number of positive samples in the dictionary for each threshold. ‘‘N/A’’ indicates that

one ormore thresholdswere omitted from the similaritymetric. ‘‘House14KLong’’ indicates that the number of pretext training epochswas increased to

equate total training between the 14K and the 100K datasets. [ denotes that higher values of this term are preferable. Y denotes that lower values of

this term are more favorable. Numbers after ± represent the standard error of the mean, rounded to a minimum of 0.01. The best downstream clas-

sification result on each dataset is denoted by an asterisk.
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We generated three basic datasets, House14K, House100K,

and Apt14K, where the numbers 14K and 100K refer to the

approximate number of samples. These datasets were collected

under the default lighting condition of ThreeDWorld. Every sam-

ple is a 2243224 egocentric image captured by the avatar,

accompanied by its respective position and rotation. These sam-

ples were generated from prerecorded avatar trajectories

created by a human user navigating the buildings via keyboard

controls. Figure 2 shows the two simulated environments, the tra-

jectories for all three datasets, and some example images

captured within both settings. Within the House environment,

we also varied the simulated lighting conditions of simulation to

generate House100KLighting and House14KLighting datasets

as described in the experimental procedures.
ESS has superiority over instance discrimination
To investigate whether our ESS approach improves visual

learning, we conducted a study comparing contrastive learning
Table 2. Result of ESS-MW with various thresholds on

House100K environment

Training

stage Pretext task Downstream ImageNet classification

Threshold

Training

loss Y

Training

loss Y

Test

loss Y

Test

accuracy (%) [

(0.8, 12) 3.92 ± 0.003 4.62 ± 0.001 4.67 ± 0.004 18.39 ± 0.082

(0.4, 6) 3.77 ± 0.004 4.98 ± 0.326 4.67 ± 0.024 18.03 ± 0.114

(1.6, 24) 4.26 ± 0.003 4.72 ± 0.011 4.82 ± 0.013 17.61 ± 0.135
models based on our approach with a self-supervised technique

using the identical training set. Our approach modifies the MoCo

v.2 algorithm by Chen et al.29 Because instance discrimination

can learn only if two images are different augmentations of the

same image, it overlooks the degree of similarity or difference

between distinct images. For the ESS-MB approach, we find

similar images in the dictionary for each key image based on

the agent’s position and rotation and record them as positive

pairs. Each positive pair contributes equally to the calculation

of the loss function. In the ESS-MW approach, each positive

pair is given a weight for loss calculation based on the position

and rotation difference between the two images.

We compare our ESS-MB with MoCo v.229 when trained on

our simulated datasets, specifically the House100K, where im-

ages selected for training are randomized in sequence. Unless

otherwise specified, ESS-MB indicates a variant of MoCo v.2

that incorporates ESS-MB.

Pretext training for the baseline MoCo v.2 model29 used the

same House100K dataset, with the same dictionary size,

augmentation techniques, epoch count, batch size, and down-

stream ImageNet task. All simulations were executed thrice on

four NVIDIA RTX A6000 GPUs, with average results and stan-

dard error subsequently computed.

With ESS-MB, the thresholds for distance and rotation similar-

ity serve as adjustable parameters, fine-tuning the spatiotem-

poral boundaries of environmental consistency. At extremely

narrow thresholds (e.g., 0.001 m or degrees), ESS-MB closely

mirrors the instance discrimination as used in MoCo. As pre-

sented in Table 1, the threshold of 0.8 m and 12� yielded the

best downstream performance, with a classification accuracy
Patterns 5, 100964, May 10, 2024 5



Table 3. Comparison of the ESS-MB with various contrastive learning models trained on House100K

CL model ESS-MB CL backbone

Pretext task Downstream ImageNet classification

Training loss Y Training loss Y Test loss Y Test accuracy (%) [

SimCLR – ResNet-50 0.15 ± 0.01 4.88 ± 0.01 4.84 ± 0.01 16.81 ± 0.05

SimCLR U ResNet-50 0.59 ± 0.01 4.70 ± 0.01 4.79 ± 0.01 17.71 ± 0.13*

DCL – ResNet-50 3.75 ± 0.06 4.67 ± 0.01 4.71 ± 0.01 17.62 ± 0.11

DCL U ResNet-50 3.86 ± 0.00 4.66 ± 0.01 4.69 ± 0.02 18.15 ± 0.10*

CLSA – ResNet-50 11.44 ± 0.00 4.16 ± 0.03 4.06 ± 0.03 24.77 ± 0.33

CLSA U ResNet-50 11.23 ± 0.00 3.89 ± 0.01 3.83 ± 0.01 27.77 ± 0.22*

NNCLR – ResNet-18 3.39 ± 0.24 1,555 ± 8.26 7.03 ± 0.15 3.55 ± 0.03

MoCo v.2 U ResNet-18 3.89 ± 0.10 5.75 ± 0.01 5.71 ± 0.01 7.96 ± 0.08*

MoCo v.3 – ViT 1.87 ± 0.01 4.58 ± 0.02 4.47 ± 0.02 19.27 ± 0.21

MoCo v.3 U ViT 2.11 ± 0.00 4.57 ± 0.01 4.46 ± 0.01 19.84 ± 0.13*

CL stands for contrastive learning. TheUmeans ESS-MB is implemented on a specified contrastive learning model. We compare NNCLR with ESS-

MB on MoCo v.2, as NNCLR’s different definition of positive pairs complicates the direct application of ESS-MB on NNCLR. The better downstream

classification result for each model type is denoted with an asterisk.
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of 18:05% and degraded performance with both higher and

lower threshold values. To gauge the relative importance of

both rotation and position, we retrained the model with these

variables omitted from the threshold and found that the exclu-

sion of either variable caused a comparable dip in accuracy.

For subsequent experiments, the thresholds of 0.8 m and 12�

were retained for the ESS-MB model trained on House100K. A

further improvement in accuracy was obtained by introducing

a modest quantity of ImageNet-style training images to the pre-

text training, after which the downstream accuracy was 23:36%.

More details are provided in the experimental procedures.

Expecting the model to learn more effective information from

the continuous similarity representation, we developed the

ESS-MW approach, which added a weight to each positive

pair in the loss function. The weight increases as the position

and rotation of two samples become closer. As shown in Table 2,

with the thresholds of (0.8, 12), (0.4, 6), and (1.6, 24), ESS-MW

improved the test accuracy by 0:39%, 0:47%, and 0:69%,

respectively, compared with ESS-MB.

These downstream accuracy scores compare favorably with

results from the MoCo model trained on the same dataset,

with average scores from the baseline model trailing behind

the ESS-MB average by a margin exceeding standard errors.

These results suggest that spatial similarity context facilitates

learning from the pretext task on simulated images in a way

that translates to the superior classification of ImageNet images

that the representational backbone model has never been

trained on.

We testedwhether these results generalize to smaller datasets

within the same environment using just 14K images and for

a different environment entirely. Specifically, we used the

House14K and Apt14K datasets. For the House100K dataset,

the most effective threshold settings yielded an average of 6.3

positive pairs in the dictionary for each image. To bring the

average number of positive pairs to around 6.5 for the 14K data-

sets, the best thresholds were found to be 0.5 m and 7.5� for

House14K and 0.6 m and 9� for Apt14K. With these thresholds,

ESS-MB also outperformed MoCo with downstream accuracies

of 11:61% and 8:47%, compared with 9:46% and 5:5% for the

baseline MoCo models trained on the same datasets.
6 Patterns 5, 100964, May 10, 2024
Richer exploration of an environment improves learning
Training with the House100K dataset produces a substantially

higher accuracy on ImageNet classification for both models,

even though both the House14K and the House100K datasets

contain images from the same rooms. The improvement in per-

formance might stem from the larger number of training steps

involved with the House100K dataset. To control for this factor,

we trained the ESS-MB model on the House14K dataset for

1,428 epochs, which is equivalent to the total number of training

steps in the House100K dataset over 200 epochs. Nevertheless,

even when equating training steps, the House14K dataset

yielded lower downstream accuracy than the House100K data-

set, by a margin of 4:61%, as shown in Table 1. These results

support the hypothesis that a more extensive exploration within

a single environment can lead to improved performance, in terms

of both distinguishing features within that environment and the

supervised classification of real-world images.

ESS is complementary to other contrastive learning
approaches
Our ESS approach could be applied to most contrastive

learning models to improve their performance. We further imple-

mented our ESS-MB approach on SimCLR,31 decoupled

contrastive learning (DCL),38 and contrastive learning with stron-

ger augmentations (CLSA)39 on House100K to determine if our

approach improves performance for these algorithms. Note

that nearest-neighbor contrastive learning of visual representa-

tions (NNCLR)40 uses a different way to define the positive pairs,

so that we could not implement ESS-MB on NNCLR. Instead, we

compared ESS-MB on MoCo with NNCLR using the ResNet-

1841 backbone. In addition, we implemented ESS-MB on

MoCo v.342 with the vision transformer (ViT)43 backbone. For

more details, please refer to the supplemental information.

As shown in Table 3, on all five models, our approach outper-

forms the original one. For SimCLR and MoCo v.3, both models

use batch-wise contrast. A total batch size of 1,024 of four

GPUs limits the number of positive and negative pairs that can

be obtained. With the same threshold, there are only 1.6 positive

pairs for each image on average, thus leading to limited influence

on the model performance. For NNCLR, although ESS-MB and



Figure 3. Illustration of representative lighting conditions available in ThreeDWorld

A total of 95 lighting conditions are shown here, distributed according to a cluster analysis based on pixel values of three example images captured in the House

environment using the t-SNE algorithm. From the total collection of skyboxes, nine were selected to cover this space. For each selected skybox, an example

image, taken from an identical viewpoint within the house, is shown. From left to right and top to bottom, the skyboxes’ names are as follows: Kiara_1_dawn,

Ninomaru_teien, Small_hangar_01, Venice_sunrise, Blue_grotto, Whipple_creek_gazebo, Mosaic_tunnel, Royal_esplanade, and Indoor_pool.
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NNCLR reported closely matched losses of 3.39 and 3.89 in

the pretext task, our model achieved an accuracy of 7:96%

on the downstream ImageNet classification task—a marked

improvement of 4:41% over NNCLR. The large downstream

training loss of NNCLR is related to the implementation of

Lightly.44

Simulated lighting is a complementary augmentation
In traditional contrastive learning, augmentations such as

random cropping, Gaussian blur, and color jittering are used to

train the model to be invariant to minor image variations. Howev-

er, these techniques fail to capture realistic variation in lighting

due to changes in the illuminant, which happens in real-world

viewing conditions, particularly when observing the same loca-

tion at different times of the day. To evaluate whether simulated

images from different lighting conditions could serve as a com-

plementary source of augmentations, we developed the
House100KLighting dataset, which uses nine different lighting

settings. We conducted three experiments to investigate the

impact of lighting-based augmentation on classification results.

First, we removed the traditional augmentations from ESS-MB.

Second, we excluded standard augmentations and trained

ESS-MB with House100KLighting instead of House100K. To

make the number of training samples the same, for each image,

we randomly selected one of the nine lighting conditions shown

in Figure 3 from the dataset. Third, we trained the ESS-MB using

both House100KLighting and the standard augmentations. As

shown in Table 4, the pretext task losses remain unaffected.

There was a decline of 8:38% in downstream accuracy when

augmentations were excluded. Training that incorporated multi-

ple lighting conditions alongside traditional augmentations

further improved accuracy, suggesting that ray-traced lighting

variation can be a valuable and complementary source of data

augmentation for contrastive learning.
Patterns 5, 100964, May 10, 2024 7



Table 4. Comparison of the ESS-MB trained on House100K with various augmentation settings

Pretext dataset Augmentation

Pretext task Downstream ImageNet classification

Training loss Y Training loss Y Test loss Y Test accuracy (%) [

House100K – 4.08 ± 0.003 6.13 ± 0.229 6.20 ± 0.18 9.70 ± 0.16

House100KLighting – 4.07 ± 0.005 5.77 ± 0.314 5.92 ± 0.35 14.09 ± 0.25

House100K U 4.00 ± 0.005 4.67 ± 0.002 4.75 ± 0.01 18.05 ± 0.04

House100KLighting U 4.03 ± 0.001 4.49 ± 0.013 4.51 ± 0.01 20.74 ± 0.17*

The column ‘‘augmentation’’ indicates whether the pretext training uses the augmentation method from the original MoCo. The best downstream clas-

sification result for the datasets is indicated with an asterisk.
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ESS training improves localization
To determine whether ESS-MB training is also superior in tasks

related to spatial perception compared with MoCo, we devel-

oped two downstream tasks. The first task required the model

to classify the specific room of a house based on a given view,

while the second task required themodel to predict the exact po-

sition and orientation of a provided view. For these evaluations,

we compared ESS-MB with baseline models that had been pre-

trained on House100K. The room classification task was first

conducted on images from the House14K dataset. However,

the performance was very close to the ceiling, so we created a

more challenging variant where the lighting condition for each

sample was varied randomly. As shown in Table 5, the accuracy

of ESS-MB on House14K, House14KLighting, and Apt14K sur-

passed the baseline model by 1:25%, 8:67%, and 14:99%,

respectively. ESS-MB performs better in classifying the rooms

in the environment than the baseline, especially when transfer-

ring to lighting conditions and environments not encountered

during pretext training.

In the spatial localization task, pretrained models were fine-

tuned to estimate the position and rotation of the agent. As shown

in Table 6, ESS-MB consistently achieves lower losses compared

with the baseline for both datasets. Specifically, ESS-MB predicts

the position of image sample with an error of under 1 and 2 m for

House14K and Apt14K, respectively. ESS-MB training leads to

better predictive accuracy in position by 0.15 m in House14K and

0.51m inApt14K.Whilebothmodelsexhibitnotable rotationerrors,

ESS-MB outperforms the baseline in both tasks, with a superiority

of 16.26� and 7.05� for House14K and Apt14K, respectively.
DISCUSSION

Interpretation of the results
Inspiredby the processes of childhood learning, these results pro-

vide clear evidence that incorporating spatial context in environ-
Table 5. Comparison of the baseline and ESS-MB trained onHouse1

and Apt14K datasets

Model Classification dataset Training los

Baseline House14K 0.19 ± 0.003

ESS-MB House14K 0.08 ± 0.002

Baseline House14KLighting 0.88 ± 0.01

ESS-MB House14KLighting 0.47 ± 0.02

Baseline Apt14K 1.30 ± 0.04

ESS-MB Apt14K 0.65 ± 0.03
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mental sampling significantly improves the effectiveness of

contrastive learning compared with methods using an equivalent

number of training epochs on the same dataset. Both rotation

and position are important for defining whether a pair of views is

similar enough. Moreover, the magnitude of the threshold for

spatial similarity influences the learning outcome; excessively

large thresholds might mislabel highly distinct views as positive

pairs. In addition, we discovered that resampling the same envi-

ronment to acquire more images substantially boosts down-

streamaccuracy, even if the imagesoriginate from identical rooms

with the same furnishings and largely similar trajectories. Collec-

tively, these findings support the ability of visual learning

algorithms to efficiently extract visual pattern information from a

given environment, both by tracking the history of spatial informa-

tion and by denser reexploration of the same locations from

slightly different positions and view angles, as exemplified in

Figure 1A.

Our approach is versatile and can be applied to contrastive

learning with any dataset embedded with spatial history informa-

tion. Furthermore, it holds the potential for adaptation to data-

sets rich in temporal sequence information, such as the Ego4D

dataset.45 Here, temporal similarity could potentially replace

spatial similarity. Moreover, our training experiments show that

resampling the same views under different illuminants offers a

source of augmentation (e.g., the trees in Figure 1B) that comple-

ments traditional techniques, such as color manipulation. In

addition, the superior performance of ESS-MB in tasks like

room classification and spatial localization demonstrates its abil-

ity to learn tasks associated with spatial perception, both within

and across environments.
Implications of the study
The long-term implications of this research span beyond devel-

oping general-purpose vision algorithms. It holds promise for

embedded systems that need to learn in specific environments.
00K on the roomclassification task for images from theHouse14K

s Y Test loss Y Test accuracy (%) [

0.19 ± 0.004 98.10 ± 0.08

0.08 ± 0.002 99.35 ± 0.08

0.93 ± 0.01 78.70 ± 0.85

0.52 ± 0.03 87.37 ± 0.54

1.30 ± 0.03 74.85 ± 0.26

0.64 ± 0.03 89.84 ± 0.97



Table 6. Comparison between the baseline and ESS-MB trained on House100K for the spatial localization task

Model Test dataset Training loss Y Test loss Y

Position (m) Rotation (�)

Error Y Drop [ Error Y Drop [

Baseline House14K 15.53 ± 0.16 15.24 ± 0.14 0.96 ± 0.01 2.12 ± 0.07 71.77 ± 0.34 34.25 ± 0.34

ESS-MB House14K 9.40 ± 0.19 9.21 ± 0.25 0.81 ± 0.01 1.61 ± 0.08 55.51 ± 0.83 50.37 ± 0.83

Baseline Apt14K 32.75 ± 0.29 33.35 ± 0.31 2.35 ± 0.06 3.27 ± 0.09 100.11 ± 0.19 2.65 ± 0.20

ESS-MB Apt14K 26.96 ± 0.60 27.46 ± 0.68 1.84 ± 0.07 2.77 ± 0.03 93.06 ± 0.82 8.71 ± 0.77

Position error represents the discrepancy in the predicted avatar position, denoted as Lpos. in the text. Rotation error refers to the error in the predicted

avatar rotation, denoted as Lrot.. Position drop and rotation drop indicate the reduction in position error and rotation error from the start to the end of

training, respectively.

ll
OPEN ACCESSArticle
The approach provides intelligent agents the ability to more

rapidly learn generalizable visual understanding skills—achieved

by tracking their location as they explore the environment and

then performing either online or offline learning to improve per-

formance for subsequent tasks. This would be helpful when a

small drone dispatched to a remote location with unique lighting

or other visual characteristics or a robotic explorer sent to a

remote planet would require the acquisition of a new visual rep-

resentation backbone while minimizing power consumption,

making training efficiency a critical factor. Offline training could

be performed using more efficient hardware connected to a po-

wer source, and then the resultant backbones could be distrib-

uted to numerous drones for fine-tuning. The long-term impact

of this work could therefore be significant for several sectors,

including robotics, unmanned aerial vehicles, robot-assisted sci-

entific exploration, disaster-relief operations, environmental sur-
A

B

Figure 4. Illustration of a more comprehensive approach to evalu-

ating spatial similarity, which considers not only the distance and

angle between two views but also the specific region of space being

observed

Even though the angular difference between the two views generated in (A) and

(B), calculated as jq1 � q2j, and the position difference are equivalent, the two

views in (A) could be considered more similar due to their convergent

perspective and shared focus on a specific region of space. In contrast, the

views in (B) may be considered less similar due to their divergent perspective

and lack of overlap in the region of space being observed.
veillance in inaccessible locales, and planetary and space explo-

ration. While our current focus is on the classification of static

images, the potential exists for tasks that rely on contiguity be-

tween images such as action classification and navigation.

Moreover, simulated environments offer a unique opportunity

for designing augmentations that reflect the kinds of changes

that occur in the real world, potentially leading to more

effective training for perceivers operating in real-life situations

by including simulated datasets. Our positive results with light-

ing-based augmentation indicate that further exploration of this

approach could be beneficial when the reflectance properties

of surfaces and natural illuminants of an environment have

been measured.

In addition to computer vision, spatial similarity training could

also shed light on the invariance properties of human visual neu-

rons that tolerate massive changes in an object’s size, position,

and rotation. This phenomenon could result from the natural

temporal contiguity of visual input46 or smooth changes in input

features over time.47 This would be a potentially valuable method

to simulate the development of visual neurons in simulations of

biological visual systems.

Limitations of the study
A limitation of our study is the modest overall accuracy achieved

in the downstream image classification task. This is a predictable

outcome, given such a small set of images used in training and

the narrow scope of the environment from which they were

collected—especially compared with the diversity of ImageNet.

However, this limitation mimics the real-world learning scenarios

experienced by embodied agents, such as children, who learn a

robust basis set of visual representations through exposure to

restricted environments. The evident gap between our current

downstream accuracy and human performance in image classi-

fication suggests significant opportunities for improvement and

future development in training algorithms that exploit environ-

mental context. Given the relatively small size of the datasets

used in our framework, there is potential for rapid experimenta-

tion and iterative refinement of similar algorithms. In light of these

findings, we encourage the computer vision community to

explore ways to narrow the accuracy gap for such datasets.

We have made all of our datasets available on an explanatory

website (see experimental procedures).

Future directions
To further improve this approach, there are other aspects of ray-

traced simulation that we have not explored. For example, the
Patterns 5, 100964, May 10, 2024 9
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Figure 5. The proposed ESS-MB approach

The learning algorithm compares a given image against the N images in the dictionary, using their spatial position and rotation information to find positive pairs by

comparing their relative spatial position and rotation values against a given threshold. The feature values of all images within the dictionary are then compared to

compute the loss value relative to whether each image is part of a positive pair. This loss value is used to drive gradient descent as in the original MoCo

formulation.
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covariation of distance from an object and the camera’s focal

length alters the apparent size of different parts of the object

based on their distance from the observer (e.g., the statue in Fig-

ure 1C). This type of variation occurs naturally in real-world

viewing conditions but cannot be accurately simulated through

simple augmentations such as cropping and magnification.

Another opportunity for further improvement lies in refining the

spatial similarity function used to identify positive pairs.

Currently, our algorithm defines spatial context such that similar-

ity between two data points decreases sharply with greater dis-

tance or differences in rotational angle separately. However, as

shown in Figure 4, even with an identical distance and rotation

difference, the similarity between the two views can differ. There

are ways to revise this function by incorporating information

about pixel depth and objects. Depending on this function, our

ESS-MW approach can be further explored and enhanced, for

example, by allowing samples with farther spatial separation to

be flagged as slightly similar according to the presence or

absence of intervening visual barriers or objects. This could be

detected by tracking the variability in the visual input over time,

such that passing through doorways or other barriers would

cause dramatic shifts in the visual statistics and therefore would

down-weight the similarity of those samples.

In addition, it is worth investigating the effect of increasing the

number of images collected from a single environment on perfor-

mance. Our analysis has shown that using 100K images as

opposed to 14K images from the same house resulted in a signif-

icant improvement in downstream accuracy, even though both

datasets contained images of the same rooms and the longer

trajectory essentially covered the same views as the shorter

one. It remains an open question how downstream accuracy
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would changewith further increases in the density of image sam-

pling from a given environment and whether there is a ceiling to

the accuracy attainable from a particular environment.

@Last, interacting with the virtual platform ThreeDWorld and

conducting online learning is a further direction of exploration.

An extra adaptive network can be trained to determine the

movement direction and rotation of the avatar based on the

avatar’s field of view and historical information to maximize

the information that can be gained from the environment.

The current bottleneck is that the interaction between the

avatar and the virtual environment cannot be processed in

batches, which greatly affects the training speed. A possible

alternative is to collect a dense dataset of images in advance

and then choose informative samples for training via the

adaptive network.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for information and resources used in this article should be ad-

dressed to Dr. Brad Wyble (bpw10@psu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Our dataset is based on the high-fidelity 3D virtual environment

ThreeDWorld,36 which can be downloaded at https://www.threedworld.org.

Datasets used in this paper have been deposited at the OSF at https://doi.

org/10.17605/OSF.IO/W98GQ and are publicly available as of the date of pub-

lication.48 All datasets are also available at http://www.child-view.com. We

provide our two-stage dataset generation pipeline, along with the codes

for conducting all the experiments and the pretraining and downstream

checkpoints, at the OSF, at https://doi.org/10.17605/OSF.IO/FT59Q, and

mailto:bpw10@psu.edu
https://www.threedworld.org
https://doi.org/10.17605/OSF.IO/W98GQ
https://doi.org/10.17605/OSF.IO/W98GQ
http://www.child-view.com
https://doi.org/10.17605/OSF.IO/FT59Q
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Figure 6. The illustration of positive pair and negative pairs
Four different views of the agent in a room, based on the agent’s location and viewing direction. Image i and the blue image would be considered a positive pair.

The rotation distance between the red image on the upper left and image i is larger than the set threshold; hence, they are considered a negative pair. Similarly, the

position distance between the red image at the bottom right and image i is larger than the set threshold; hence, they are considered a negative pair.
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they are publicly available as of the date of publication.49 Any additional infor-

mation required to reanalyze the data reported in this paper is available upon

request.

Dataset generation process

In the first stage, the selected environment was initialized with a set of prede-

termined objects, and a non-kinematic default avatar was placed in a suitable

location within the environment. All objectswere given amass of 10,000 to pre-

vent movement due to avatar collisions. Using ThreeDWorld’s interaction

module, a user maneuvered the avatar, navigating its trajectory with function-

alities like turning, advancing, retreating, and jumping—all triggered by

specific keystrokes. The trajectory of the avatar, including the step numbers,

positions, and rotations (represented by quaternions to avoid gimbal lock),

was recorded as the agent traversed the house. The rotation of the avatar

changed only in the horizontal (yaw) plane.

In the second stage, the same objects and avatar were placed in the environ-

ment and the skybox was configured either to its default setting or to one of the

nine preselected skyboxes for the lighting augmentations. To ensure the qual-

ity of captured images, the resolution was set to 102431024 and the field of

view to 60�. Other parameters, such as render quality and shadow strength,

were set to the default values in ThreeDWorld. The avatar retraced the earlier

recorded trajectory, moving to the predetermined position and rotation at each

step and capturing a 102431024 RGB image. These images were resized to a
2243224 resolution using Python with antialiasing from the PIL library. This

pipeline can also be used by researchers to generate datasets with custom-

ized settings. The environment initialization and avatar camera parameters

are both adjustable.

One important advantage of varying light sources in a ray-traced virtual

environment is its capacity to more accurately emulate the real-world phys-

ics of light reflection, resulting in a richer variety than basic augmentation

techniques that merely shift spectral distributions. The ThreeDWorld plat-

form features 95 distinct skyboxes as environment lighting conditions.

We controlled an avatar to capture three images from the living room,

stairs, and bedroom, maintaining consistent position and rotation in the

House environment for each of the 95 skyboxes. Then, t-distributed sto-

chastic neighbor embedding (t-SNE)50 was used to cluster concatenations

of those three images simulated under each of the 95 skyboxes. To explore

lighting augmentations, we selected nine skyboxes, drawn from a 333

grid of the t-SNE plot (Figure 3). A sample image from the House environ-

ment for each chosen skybox is shown within the t-SNE plot. Every image

in the House14K and House100K datasets was generated 10 times,

one with the default lighting condition of ThreeDWorld and also

one for each of these nine skyboxes. The resulting datasets are titled

House14KLighting and House100KLighting. For more details on the lighting

models within ThreeDWorld, readers can refer to the primary reference,

Gan et al.36
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Table 7. Comparison of ESS-MW with different hyperparameter values on House100K

Training stage Pretext task Downstream ImageNet classification

a b Training loss Y Training loss Y Test loss Y Test accuracy (%) [

2 1/60 3.92 ± 0.003 4.62 ± 0.001 4.67 ± 0.004 18.39 ± 0.082*

2 1/30 3.91 ± 0.004 4.62 ± 0.006 4.69 ± 0.001 18.13 ± 0.067

2 1/120 3.93 ± 0.001 4.63 ± 0.011 4.70 ± 0.016 18.13 ± 0.134

1 1/60 3.97 ± 0.002 4.66 ± 0.006 4.74 ± 0.011 17.69 ± 0.067

4 1/60 3.85 ± 0.002 4.66 ± 0.007 4.70 ± 0.012 17.31 ± 0.102

The best downstream classification result for the datasets is denoted with an asterisk.
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Implementation details of ESS-MB and ESS-MW

Our model is based on the MoCo v.2 architecture,29 implemented using Py-

torch. ESS-MB randomly selects a fixed number of images from the dataset

for each batch. As illustrated in Figure 5, each input image is transformed

with randomly selected augmentation operations as in MoCo. Data augmenta-

tion techniques applied here included random cropping, Gaussian blur, hori-

zontal flipping, color jittering, and grayscale conversion. Each transformed im-

age i is then encoded into two128-dimensional vectors, called thequery feature

qi and the key feature ki, by the key encoder and the momentum encoder,

respectively, which are both ResNet-5041 backbones that have different param-

eters. The ki feature is normalized and storedwith its position and rotation infor-

mation in a fixed-sized dictionary that records them as a queue. The dictionary

size is set to 4,096 to accommodate the size of our comparatively small dataset.

The spatial information from which the image generating qi originated is

compared with the spatial information linked to each feature in the dictionary.

In contrast to conventional contrastive learning, our approach identifies a pos-

itive pair based on spatial similarity up to a certain threshold. The difference be-

tween positions ðxi ; yi ; ziÞ and ðxj ; yj ; zjÞ is calculated by the Euclidean distance:

Dpos: =
�
ðxi � xjÞ2+

�
yi � yj

�2
+ðzi � zjÞ2

�1=2

: (Equation 1)

The difference between rotations ri and rj is defined as:

Drot: = minð��ri � rj
��;360 � ��ri � rj

��Þ : (Equation 2)

The binary function to calculate the spatial similarity is defined by:

fðqp ;qrÞ =

�
1 if Dpos: < qp andDrot: < qr;
0 otherwise;

(Equation 3)

where qp is the threshold of the position and qr is the threshold of the rotation. As

illustrated in Figure 6, a pair of images with positional difference within a speci-

fied range (inmeters) and rotational differencewithin a given range (in degrees) is

considered a positive pair. Otherwise, they are labeled as a negative pair.

The loss function for image i is then calculated as follows:

Li = � 1

jPðiÞj
X

p˛PðiÞ
log

exp ðsimðqi ; kpÞ
�
tÞP

d˛D exp ðsimðqi ; kdÞ=tÞ ; (Equation 4)

where simðu; vÞ = uTv=ðkukkvkÞ represents the cosine similarity of two vec-

tors, PðiÞ represents the set of positive pairs with the key image i, and t is

the temperature parameter that controls howmuch attention is paid to difficult

samples. The set D represents the dictionary.

This strategy makes use of the spatial information from the environment

to define the positive pairs. As there are often multiple samples in the dic-

tionary that fall within the spatial similarity threshold relative to the query

image, we use ESS-MB, where MB indicates there are multiple positive

pairs. This strategy ensures that we do not miss useful information or

compromise training efficiency by focusing on only a single sample with

high similarity to the query images. In ESS-MB, every sample within the

spatial similarity threshold is treated as an equally valid positive pair during

the calculation of loss, which is inspired by the supervised contrastive

learning method.51 This approach allows for a more comprehensive consid-

eration of relevant samples, leading to improved performance compared

with using just a single positive pair.
12 Patterns 5, 100964, May 10, 2024
In contrastive learning, image similarity is binary, in that images are either

identical or not. In the real world, the degree of similarity between two views

is continuously changing based on changes in the position of the viewer. To

capture this dynamism, in the ESS-MW approach, we assign each positive

pair of views i and j a weight wi;j, which is defined as:

wi;j =
1

exp ðaðbDrot:+Dpos:ÞÞ ; (Equation 5)

where a controls the influence of spatial context differences and b balances

the relative importance of position and rotation in the weight calculation. The

assigned weight increases in proportion to the similarity of the view pair. The

loss function is defined as follows:

Li = �
X

p˛PðiÞ

wi;pP
j˛PðiÞwi;j

log
exp ðsimðqi; kpÞ

�
tÞP

d˛D exp ðsimðqi ; kdÞ=tÞ : (Equation 6)

As shown in Table 7, on House100K, the best downstream task perfor-

mance can be achieved when a is 2 and b is 1=60.

There is one implementation detail of ESS models that is worth noting.

When comparing qi with features in the dictionary, if we first select the pos-

itive pairs from the dictionary before adding feature ki, we call it the last-en-

queue implementation. If the ki feature was added to the dictionary before se-

lecting positive pairs, we define it as the first-enqueue implementation. In our

implementation of the model trained on House14K and Apt14K, to prevent

the model from selecting the other view of the same image with high

probability (which would be similar to the original MoCo model), we used

the last-enqueue implementation. However, last-enqueue sometimes led to

a situation where there were no positive pairs in the dictionary, in which

case a positive pair was generated by selecting the dictionary feature that

had been generated by the image closest to image i in the trajectory. This

was a rare occurrence, on average happening with probability 0.03 for

House14K for the 0.5 m and 7.5� threshold and 0.02 for Apt14K with the

0.6m and 9� threshold. For themodel trained on House100K, themodel often

collapsed using last-enqueue, producing the same feature vectors for all in-

puts. To reduce this risk, we used the first-enqueue implementation on

models trained with House 100K.
Pretext training

The pretext task used 200 epochs and a batch size of 256. Due to the compo-

sition of our training set, we discovered that we could increase the learning

rate from the initial 0.015 to 0.3 to increase accuracy and still have stable

learning for both MoCo and our approach. Results from the House100K data-

set, using the original learning rate, are provided in the supplemental informa-

tion. During training, the stop gradient method is applied to the momentum

encoder. Only the main encoder parameters, qq, are updated through back-

propagation. The momentum encoder parameters, qk , are updated by

momentum updating: qk)mqk + ð1 � mÞqq, where m is the momentum

coefficient.

During the pretext training, all the training images were from virtual indoor

settings, which markedly contrast with the samples in the downstream

ImageNet classification task. We tried to improve the performance of the

model by adding some ImageNet v.2 images13 into the training set.

ImageNet v.2 has 1,000 categories, with multiple images in each category
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Figure 7. Impact of varied pretraining hyperparameters on down-

stream test accuracy and pretext loss

(A) The effect of hyperparameter variations on downstream test accuracy.

(B) The effect of hyperparameter variations on pretext loss during pretraining.

Regarding batch sizes, temperature parameters, thresholds, and dictionary

sizes, blue indicates that the parameter value has been doubled, while red

indicates that it has been halved. *For lighting conditions, blue represents the

default setting, whereas red represents the use of multiple skyboxes.

Table 8. Pretext training accuracies

Pretext dataset Model Threshold Accuracy (%)

House100K Baseline N/A 82.11 ± 0.24

House100K ESS-MB (0.4, 6) 99.57 ± 0.00

House100K ESS-MB (0.8, 12) 99.37 ± 0.01

House100K ESS-MB (1.6, 24) 98.89 ± 0.00

House100K ESS-MB (0.8, N/A) 98.77 ± 0.00

House100K ESS-MB (N/A, 12) 97.66 ± 0.00

House14KLong Baseline N/A 54.92 ± 0.14

House14KLong ESS-MB (0.5, 7.5) 99.59 ± 0.00

House14K Baseline N/A 18.43 ± 0.09

House14K ESS-MB (0.25, 3.75) 92.11 ± 0.79

House14K ESS-MB (0.5, 7.5) 93.50 ± 0.16

House14K ESS-MB (1.0, 15) 92.55 ± 0.37

Apt14K Baseline N/A 17.57 ± 0.10

Apt14K ESS-MB (0.25, 3.75) 91.27 ± 0.63

Apt14K ESS-MB (0.5, 7.5) 91.87 ± 0.05

Apt14K ESS-MB (1.0, 15) 91.54 ± 0.77
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that do not overlap with the standard ImageNet dataset used for the down-

stream task described below. Because ImageNet v.2 does not include spatial

information, for both the baseline and the ESS-MB models, the only positive

pair for any image is its augmented counterpart. For each training epoch, there

are 102,197 images from House100K and an additional 10,000 images from

ImageNet v.2.

Evaluation of the learned representations

The accuracy of the pretext task

The baseline model considered only one positive pair. The accuracy

computation for the pretext training is different from ESS-MB, which has

multiple positive pairs, and the two cannot be directly compared. In the

baseline model, accuracy was calculated by determining if the pair with

the highest cosine similarity was the predefined positive pair. For ESS-

MB, accuracy was computed by applying the sigmoid function to each

cosine similarity score. If the result was greater than the threshold of

0.95, the pair was predicted to be positive; otherwise, it was predicted

to be negative. The predicted result was then compared with the prede-

fined positive pair according to the positions and rotation to calculate

the accuracy. The pretraining accuracies of the main experiments from Ta-

ble 1 are shown in Table 8.

ImageNet classification task

To evaluate the quality of the learned representations, as in MoCo, we added a

linear classifier on top of the fixed backbone architecture and trained only the

last added layer for 50 epochs of the ImageNet.

Room classification task

In this task, we trained a linear classifier to label a given image according to

what room it had been generated in using the features from each pretrained

model. Each downstream model was trained for 20 epochs. The House envi-

ronment includes eight rooms, while the Apt environment consists of nine

rooms. Each image is labeled with a number, ranging from 0 to 7 (for House)

or up to 8 (for Apt), to represent the room where it was captured. The bound-

aries and illustrations of each room are included in the supplemental informa-

tion. In each dataset, 80% of the images were used for the training and the re-

maining 20% for testing. In the House14KLighting dataset, Mosaic_tunnel and

Venice_sunrise lighting conditions were applied only to the test data. Mean-

while, each training image was randomly assigned one of the other seven light-

ing conditions.

Spatial localization task

We added a single-layer neural network with four output nodes at the end of

the pretrained model. The training utilized 80% of the images from each

dataset, setting aside the remaining 20% for testing purposes. In the spatial

localization task, pretrained models are fine-tuned to estimate the position
(xp, yp, zp) and rotation rp of each image from the House14K and Apt14K data-

sets. The loss function, denoted as L, is defined by:

Lpos: =
�
ðxp � xÞ2+�yp � y

�2
+ðzp � zÞ2

�1=2

; (Equation 7)

Lrot: = minð��rp � r
��; 360 � ��rp � r

��Þ; (Equation 8)

L = L2
pos: +aL2

rot: ; (Equation 9)

where a is a hyperparameter for adjusting the ratio of Lpos: and Lrot:. Here, we

set a to 1=360 to ensure both terms start with comparable magnitudes.

Hyperparameter sensitivity analysis

Several hyperparameters play a role in pretraining andmay indirectly affect the

downstream performance. We trained a series of ESS-MB models on the

House100K dataset, adhering to the pipeline described in Contrastive

LearningModels for experimental procedures.We varied the batch sizes, tem-

perature parameters, thresholds, and dictionary sizes of the original ESS-MB

model, either doubling or halving them individually. In addition, we tested the

use of both default and multi-skybox settings.

The results, as shown in Figure 7, indicate that modifications in batch sizes,

lighting conditions, temperature parameters, thresholds, and dictionary sizes

during pretraining have impacts on downstream accuracy. When the batch
Patterns 5, 100964, May 10, 2024 13
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size was doubled or halved, the downstream test accuracy decreased by

3:71% and 1:59%, respectively. Doubling the batch size caused the model

not to converge well; halving the batch size, despite slightly reducing the pre-

text loss, limited the model’s generalizability beyond House100K. Using multi-

skybox augmentation enhanced themodel’s ability to generalize to other data-

sets. The temperature parameter, which directly influences the loss function

and determines the model’s focus on harder samples during training, also

showed a significant impact: doubling or halving it led to a decrease in accu-

racy by 1.26% and 0.15%, respectively. As discussed in the ESS has superi-

ority over instance discrimination, the threshold, which dictates the similarity

criterion for positive pairs and the number of such pairs in the dictionary,

also affects the results. In contrast, the dictionary size, determining the number

of pairs to compare with the key sample, both positive and negative, for com-

parison with a key sample, had a more limited influence on the downstream

task, as the similarity of positive pairs was already fixed.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.100964.
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Supplemental Experimental Procedures

Room boundaries in two environments
The Archviz House (‘House’) consists of eight distinct rooms, with example images depicted in Figure S1.

These rooms are the kitchen, lower hall, lower bedroom, outer deck, upstairs piano room, bathroom, and upstairs
bedroom. Images are classified based on their position inside the defined boundaries of each room. Certain
images, such as those captured on the stairs, do not fall within the boundaries of any room and are therefore
excluded from the evaluation. In House14K, 12,127 of 14,766 images are labeled. In House100K, 83,300 of
102,197 images are labeled. The boundaries and the number of samples for each room are listed in Table S1.

A B C D

E F G H

Figure S1: Eight rooms in the House environment
(A) Kitchen. (B) Living room. (C) Lower hall. (D) Lower bedroom. (E) Outer deck. (F) Upstairs piano room. (G) Bathroom. (H)
Upstairs bedroom.

Room name 𝑥-axis boundary 𝑦-axis boundary Height House14K House100K
boundary images images

kitchen (-17.00, -11.83) (-1.48, 1.80) (1.4, 3.5) 2079 7535
living room (-17.00, -7.60) (-7.00, -1.48) (1.4, 5.2) 3225 32412
lower hall (-6.30, -4.10) (-4.30, -3.10) (0.6, 3.5) 461 3490
lower bedroom (-3.43, 0.05) (-4.30, 1.60) (0.6, 3.5) 1506 10155
outer deck (-7.10, 6.00) (-7.40, -4.75) (0.4, 5.2) 2491 6721
upstairs piano room (-3.20, -0.25) (-4.30, -3.00) (3.5, 5.2) 925 9882
bathroom (-3.20, -0.25) (-4.30, -3.00) (3.5, 5.2) 419 2853
upstairs bedroom ( 0.00, 4.10) (-4.30, 1.37) (3.5, 5.2) 1021 10252

Table S1: The boundaries of the eight rooms in the House environment and the number of samples for
each room
The coordinate ranges are measured in the ThreeDWorld virtual environment. “House14K images” and
“House100K images” means the number of images in each category for House14K and House100K respectively.

The Apartment (‘Apt’) layout consists of nine rooms, arranged in two rows. Rooms in the upper row in the floor
plan are marked as rooms 0 to 4, from left to right. Rooms 5 to 8 are in the lower row in the same left-to-right
sequence. The items placed in each room are carefully designed. For instance, entertainment facilities are filled
in room 0. Rooms 3, 4, 6, and 7 serve as living rooms, each having a distinct style. Room 8 is a kitchen. In



Apt14K, 9,855 of 14,487 images are labeled. Sample images and the specified boundaries for each room are
shown in Figure S2 and Table S2, respectively.

A B C

D E F

G H I

Figure S2: Nine rooms in the Apt environment
Letters A-I represent the rooms 0 through 8 in order.

Room label 𝑥-axis boundary 𝑦-axis boundary Images
0 (-10.6, -7.2) ( 1.45, 4.80) 680
1 (-7.2, -3.1) ( 1.45, 4.80) 659
2 (-3.1, 0.8) ( 1.45, 4.80) 1312
3 ( 0.8, 6.8) ( 1.45, 4.80) 1295
4 ( 6.8, 9.8) ( 1.45, 4.80) 749
5 (-10.6, -6,2) (-5.70, -0.18) 1333
6 (-6.2, -3.1) (-5.70, -0.18) 794
7 (-3.1, 3.3) (-5.70, -0.18) 1269
8 ( 3.3, 9.8) (-5.70, -0.18) 1764

Table S2: The boundaries of the nine rooms in the Apt environment and the number of samples for each
room
The coordinate ranges are measured in the ThreeDWorld virtual environment.



Learning rate comparison
In our pretext training, we adopted a learning rate of 0.3 instead of the suggested 0.015 from MoCo V2. This

adjustment was made based on its improved overall accuracy on our datasets. Table S3 shows the results of
MoCo V2 with different learning rates when trained on the House100K dataset.

Learning Pretext Task Downstream ImageNet Classification
rate training loss accuracy Training loss Test accuracy (%)
0.015 3.73 73.45 209.25 7.61
0.3 4.43 82.11 4.71 17.36

Table S3: Comparison results of MoCo V2 with two different learning rates trained on the House100K
dataset

Details of the implementation of ESS-MB on other models
SimCLRS1 is a popular contrastive learning model in which the positive pair of an augmented view is itself.

Negative pairs are other augmented samples from the same batch. Our ESS-MB on SimCLR found positive
samples from the same batch according to spatial information. All parameters were the same as those in SimCLR.
We ran the experiment on a single GPU for 200 epochs as suggested by the code.

DCLS2 removes the positive pairs’ effect on the denominator of InfoNCE loss. We implemented the updated
loss function based on our original ESS-MB model for both DCL and ESS-MB with DCL. All the parameters were
the same as the ESS-MB on MoCo.

CLSAS3 categorizes augmentation operations into ‘strong’ and ‘weak’ and tries to align the feature distance
distribution of views derived from these two augmentation types when finding the positive pairs from the weak
augmented samples simultaneously. CLSA inherits the structure of MoCo. Based on the implementation of CLSA,
our approach found positive pairs of an augmented view from the dictionary. In our experiment, we kept the
hyperparameters of CLSA but modified the dictionary size and learning rate to match our original ESS-MB.

NNCLRS4 computes similarity according to the proximity within a latent space generated by the encoder
to contrastively learn representations from unlabeled images. The Lightly package was used to run NNCLR
simulations with the ResNet-18 backbone. To ensure a fair comparison, we switched the backbone of ESS-MB
on MoCo to Resnet-18 and trained both models for 200 epochs in the pretraining phase.

MoCo V3S5 applied the contrastive learning structure to the Vision TransformerS6 backbone. The dictionary
size is set to 4096 to align with the threshold of ESS-MB approach. We run both models for 200 epochs in the
pretraining with 256 batch size.

Assessing the clustering of learned features
After training on the datasets, we applied t-SNES7 on the features for a subset of images from the

corresponding datasets to determine whether the training produced clustering of features from spatially proximal
images. We randomly selected approximately 10,000 images that were inside the room boundaries and took the
features from the fully trained ResNet model as input to the t-SNE. In the resulting t-SNE space, each image’s
features were labeled with a number (and a corresponding color), indicating the room of its origin.

The t-SNE visualizations generated for both the baseline and ESS-MB models trained on House and Apt
environments are shown in Figures S3 and S4, respectively. Furthermore, we used the Silhouette Coefficient,S8

Calinski-Harabasz index,S9 and Davies-Bouldin indexS10 as metrics to assess the clustering quality of the t-
SNE outputs. These results are shown in Table S4. Both results show a model trained on the more extensive
House100K dataset exhibited a stronger capability in distinguishing features generated from different rooms
compared to the one trained on the smaller House14K dataset. For all the models trained on three datasets, ESS-
MB exhibited reduced clustering relative to the baseline model. This might be attributed to the ESS-MB training
approach, which tends to group features of spatially proximal images together, regardless of room boundaries.
In contrast, the baseline MoCo model relies only on instance discrimination. As a result, cluster boundaries for
nearby locations in adjacent rooms would not be as distinct with ESS-MB.
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Figure S3: The t-SNE results of the learned features in the House environment
(A) ESS-MB on House14K. (B) ESS-MB on House100K. (C) Baseline on House14K. (D) Baseline on House100K.
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Figure S4: The t-SNE results of the learned features in the Apt environment
(A) ESS-MB on Apt14K. (B) Baseline on Apt14K.

Pretext dataset Model Silhouette ↑ CH index ↑ DB index ↓
House100K Baseline 0.2394 4538.16 0.8552
House100K ESS-MB 0.1437 2393.92 1.8488
House14K Baseline -0.0548 1187.78 5.5367
House14K ESS-MB 0.0972 1549.44 9.8386

Table S4: Evaluation of the learned features
CH and DB stand for Calinski-Harabasz and Davies-Bouldin indices, respectively. An upward arrow indicates that
a higher value for the respective index denotes more effective clustering, while a downward arrow implies the
reverse.
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