
Automatically Suggesting Topics for Augmenting
Text Documents

Robert West
School of Computer Science

McGill University
Montréal, Québec, Canada

rwest@cs.mcgill.ca

Doina Precup
School of Computer Science

McGill University
Montréal, Québec, Canada
dprecup@cs.mcgill.ca

Joelle Pineau
School of Computer Science

McGill University
Montréal, Québec, Canada
jpineau@cs.mcgill.ca

ABSTRACT

We present a method for automated topic suggestion. Given a
plain-text input document, our algorithm produces a ranking of
novel topics that could enrich the input document in a meaning-
ful way. It can thus be used to assist human authors, who often fail
to identify important topics relevant to the context of the documents
they are writing. Our approach marries two algorithms originally
designed for linking documents to Wikipedia articles, proposed by
Milne and Witten [15] and West et al. [22]. While neither of them
can suggest novel topics by itself, their combination does have this
capability. The key step towards finding missing topics consists in
generalizing from a large background corpus using principal com-
ponent analysis. In a quantitative evaluation we conclude that our
method achieves the precision of human editors when input docu-
ments are Wikipedia articles, and we complement this result with a
qualitative analysis showing that the approach also works well on
other types of input documents.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—linguistic processing; I.2.7 [Artificial Intelligence]:
Natural Language Processing—text analysis; I.7.1 [Document and

Text Processing]: Document and Text Editing—document man-

agement

General Terms

Algorithms, Experimentation

Keywords

Topic Suggestion, Principal Component Analysis, Eigenarticles,
Data Mining, Wikipedia

1. INTRODUCTION
As of 2010, machines cannot think. They cannot understand nat-

ural language, and they cannot produce it in creative ways. These
are still human prerogatives. However, while humans are intelligent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

and creative, they are sometimes forgetful, or not thorough enough:
when writing text documents, we often fail to mention all relevant
topics, be it that we are unaware of the missing topics being rele-
vant, or be it that we simply forget to include them. Computers, on
the other hand, excel at large-scale book-keeping and fast retrieval,
as long as no deep understanding is required. Hence, although not
creative per se, computers can still support the creativity of humans.

The main contribution of this paper is a method that can assist
human creativity by automatically suggesting topics to authors of
text documents. To the best of our knowledge, we are the first to ad-
dress this task. Given a plain-text document, our algorithm outputs
a ranked list of novel topics that could enrich the input document in
a meaningful way. The author can then inspect the suggestions and
decide which of them should be incorporated into the document.

Our approach couples two algorithms originally designed for
linking documents to Wikipedia articles, proposed by Milne and
Witten [15] and West et al. [22]. While neither of them can suggest
novel topics by itself, their combination does have this capability.
The key step towards finding missing topics consists in generaliz-
ing from a large background corpus, such as Wikipedia. Intuitively,
a missing topic is suggested if it appears in many documents of the
corpus that are similar to the input document. Technically, the gen-
eralization is performed using principal component analysis.

An automated topic suggestion system could be widely applica-
ble. For instance, it is often impossible for journalists to be experts
in all the fields about which they write. In this scenario, the jour-
nalist would first write a draft of the article, feed it to our system,
and use some of the resulting topic suggestions to make the article
more complete. There are many other user groups that could also
profit from automated topic suggestion, e.g., lawmakers trying to
avoid loopholes in a legal text, or Wikipedia contributors working
to make an article as comprehensive as possible, to name but a few.

The remainder of this paper is structured as follows: Section 2
summarizes related work. In Section 3 we provide a high-level
overview of our method, while Section 4 describes the technical
details. Section 5 contains a quantitative evaluation showing that
our method achieves the precision of human editors when input
documents are Wikipedia articles. In Section 6 we complement
this result with a qualitative analysis showing that the approach also
works well on other types of input documents. Finally, Section 7
contains conclusions and avenues for future research.

2. RELATED WORK
To the best of our knowledge, the task of topic suggestion has

not been studied extensively yet. While we are not aware of a topic
suggestion algorithm for plain-text documents, Maguitman et al.

[10] developed such a method for ‘concept maps’, i.e., semantic
network–like graphical representations that can ‘facilitate knowl-

929

edge capture for human examination and sharing’ [10]. Their sys-
tem can assist people during the process of drawing a concept map,
by proposing topics that are novel yet related to the concept map
produced so far.

Fortuna et al. [7] propose a solution for the similar task of con-
structing ontologies, i.e., networks of topics interconnected by re-
lations. In Fortuna et al.’s setting, the ontology is built by a human
knowledge engineer with the help of their software. Whereas Ma-
guitman et al.’s focus is on generating topics that are both related
and novel to the current context, novelty does not play a central role
in Fortuna et al.’s system. Instead, it suggests potential subtopics
for the topic node on which the knowledge engineer is currently
working.

Wang et al. [20] deal with visual topic suggestion for group
brainstorming situations. Their system analyzes the utterances of
the participants of a brainstorming session and chooses and dis-
plays images that are related to the current context, with the goal of
enhancing creativity by triggering novel ideas in the humans per-
ceiving these visual stimuli.

Closely related to topic suggestion is keyphrase extraction: be-
fore one can find novel topics to add to a document, one should
know which ones it already contains. Consequently, all of the
aforementioned systems have a component that identifies the key-
phrases, or main topics, of the current context. Note that we use the
terms ‘topic’ and ‘keyphrase’ interchangeably, which differs from
some other authors’ nomenclature; e.g., in latent Dirichlet alloca-
tion [3] topics are defined as probability distributions over words.

Keyphrase extraction is usually distinguished from keyphrase as-
signment [18]. In keyphrase extraction any n-gram of the input
document can potentially be returned as a keyphrase, whereas in
keyphrase assignment a predetermined set of keyphrase candidates
is assumed. Both types of applications are usually cast as super-
vised classification tasks [18].

Wikipedia link prediction is similar to keyphrase assignment.
Given a plain-text document, the task is to (1) find the n-grams
that should serve as anchors for links to Wikipedia articles, and
(2) for each anchor, identify the correct target article. This problem
has also been tackled with supervised machine learning techniques,
e.g., by Mihalcea and Csomai [12] and by Milne and Witten [15].

Another class of algorithms for Wikipedia link prediction lever-
ages unsupervised machine learning techniques. Fissaha Adafre
and de Rijke [6] use clustering, while West et al. [22] use princi-
pal component analysis. Unlike the supervised algorithms [12, 15],
these methods do not operate on plain text but augment articles that
already contain a number of Wikipedia links, by adding new links
that are justified by the pre-existing hyperlink structure.

We leverage some of these techniques [15, 22] as part of our
approach to topic suggestion.

3. OUTLINE OF OUR METHOD
Figure 1 sketches the components of our system and the infor-

mation flow between them. In this section, we will provide a high-
level overview, while Section 4 contains technical descriptions of
all components.

Keyphrase assignment. The input to our method is a plain-text
document, i.e., a sequence of words d. It is fed to the first compo-
nent of our processing cascade, a keyphrase assignment algorithm.
This module identifies the main topics of the input document and
produces a high-dimensional, binary vector representation v of it.
In this topic vector, each entry corresponds to a candidate topic
(recall that in keyphrase assignment, the set of candidate topics is
predetermined and static); the topics appearing in the input docu-
ment have a value of 1, all others are 0. Since only a small fraction

of all candidate topics appear in a document, v is extremely sparse.
Generalization. The centerpiece of our system is the general-

ization module. While the left and right boxes of Figure 1 may be
thought of as pre- and postprocessing steps, respectively, the actual
topic suggestion algorithm resides here. It takes as input the topic
vector v that results from keyphrase assignment, and produces as
output a vector ṽ, called generalized topic vector, of the same di-
mensionality as v. While each entry of ṽ still refers to the same can-
didate topic as the corresponding entry in v, the values differ, and
unlike the sparse and binary v, vector ṽ is dense and real-valued.
Entries that are zero in v but much greater in ṽ correspond to top-
ics that are not keyphrases of the input document but that are sug-
gested as such by our algorithm. We construct ṽ by generalizing
from a large background corpus using principal component anal-
ysis (PCA), a mathematical technique that is commonly used for
reducing noise in data. Its usage within our algorithm may be un-
derstood intuitively in terms of noise reduction, too: if the absence
of a topic j from the input document d (i.e., the entry v j = 0 in the
topic vector v) is caused by noise, then this noise can be eliminated
by adding j to d (i.e., by giving the entry ṽ j a positive value, rather
than zero). We say that the absence of topic j is due to noise if it
constitutes a significant deviation from the overall patterns present
in the background corpus, i.e., if many documents similar to d con-
tain topic j.

Filtering and ranking. After generalization, the topic sugges-
tions are implicitly given in the vector ṽ, as the entries that are
much greater than they were in v. However, we want to exclude
those topics that are not novel, i.e., that are already contained in
the input document d as n-grams (not necessarily as keyphrases).
This constitutes the filtering step. The remaining topic suggestions
are ranked in order of decreasing quality, as is common practice in
information retrieval systems. Fortunately, the generalization step
generates meaningful numerical values that can directly serve as
indicators of suggestion quality, so we simply rank the suggested
topics according to their values in the generalized topic vector ṽ.

4. DESCRIPTION OF THE COMPONENTS
After the high-level view of the previous section, we will now go

into more detail regarding each component of our topic suggestion
system.

4.1 Keyphrase assignment
The task of the keyphrase assignment component is to identify

the important topics of a given plain-text document. In principle,
any keyphrase assignment algorithm can be used in this step. As
mentioned in Section 2, all such algorithms work with a predeter-
mined set of candidate topics (let us call it T). This set defines the
dimensions of the topic vectors v and ṽ of Figure 1. As we want
our method to be domain-independent, T should be as general as
possible. We define T as the set of topics for which a Wikipedia
article exists, since Wikipedia’s coverage is so vast that nearly any
conceivable topic has a corresponding Wikipedia article. If for any
reason only domain-specific candidate topics should be considered,
T can be restricted accordingly.

According to the Wikipedia linking guidelines, the keyphrases of
an article should serve as anchors for hyperlinks to other articles:
links should represent ‘relevant connections to the subject of an-
other article that will help readers to understand the current article
more fully’ [25]. Consequently, a program that can successfully
identify the Wikipedia anchors of an input document (i.e., the n-
grams that should serve as link anchors to Wikipedia articles) can
also be used for the task of domain-independent keyphrase assign-
ment. In Section 2 we have mentioned two methods [12, 15] that

930

- - - -

? ?

Document d

Candidate topics T

Topic vector v

Background corpus C

Generalized
topic vector ṽ Suggested topicsKeyphrase

assignment

Filtering

and ranking
Generalization

Figure 1: High-level diagram describing our method.

can augment plain text with Wikipedia links and that can therefore
be plugged into our system as keyphrase assignment modules. We
use Milne and Witten’s method [15] because it outperforms Mihal-
cea and Csomai’s [12] and because it is publicly available as part
of the WikipediaMiner toolkit [13].

In a nutshell, Milne and Witten’s algorithm is a machine learn-
ing classifier that decides for each n-gram of a plain-text input doc-
ument to which Wikipedia article (if any) it refers and with what
probability it should serve as an anchor to that article. It is trained in
a supervised manner on Wikipedia articles, which can serve as la-
beled examples, since each article contains numerous link anchors.
Although it is trained entirely on Wikipedia, the classifier performs
as well on newswire stories as it does on Wikipedia articles, as
shown in a human user evaluation. This is important because we
want our method to work on arbitrary text documents, not only on
Wikipedia articles.

Milne and Witten’s link prediction algorithm offers several pa-
rameters that can be configured, but we use the default settings for
all of them. Since the classifier outputs a probability for each phrase
of the input text, we need to define a threshold above which we ac-
cept proposed keyphrases. We set this parameter to 0.5, i.e., we
take a phrase to be a keyphrase if the classifier considers this more
likely than not.

Note that if the input document already contains links to Wikipe-
dia articles, keyphrase assignment is trivial. In this case we simply
use the targets of the existing links as the document’s keyphrases.

4.2 Generalization
The generalization component can be understood as reducing the

noise in the topic vector v in the context of a large background
corpus. We do not use this corpus in its plain-text form; rather, we
preprocess it using PCA. In this section we explain the use of PCA
for generalization, in both intuitive and technical terms.

4.2.1 The background corpus

The background corpus can be any sufficiently large collection
of text documents, e.g., Wikipedia articles, newswire stories, scien-
tific papers, parliament debates, or law texts, to name but a few. Let
C = {c1,c2, ...,cM} be the set of documents in the corpus, where
M is the number of documents. The same keyphrase assignment
algorithm we use to find the topics of the input document (cf. Sec-
tion 4.1) is also run on each document ci of the corpus, in order to
obtain its topic vector ti. If we take topic vectors as row vectors,
then we can combine them in a matrix T whose i-th row is ti. We
call T the document–topic matrix. Recall that the entries of a topic
vector correspond to the candidate topics T. Thus, if there are N

topics, T is of size M ×N. When we define T as the set of Wiki-
pedia articles—as we do throughout this paper—, N will be very
large, and it follows that M ≪ N.

4.2.2 Principal component analysis

Geometrically, T can be interpreted as a cloud of M points in
an N-dimensional Euclidean space (called document space), where
each topic vector (row of T) is represented by one point. This cloud

will in general not extend equally in all directions but rather appear
squished along certain axes and elongated along others, due to cor-
relations in the data. PCA finds a set of orthogonal axes along
which the data cloud is maximally spread out. More specifically,
the first axis found by PCA, the so-called first principal component,
is the vector in the N-dimensional space along which the variance
of the data is maximized (when the data is projected onto it); the
second principal component is constrained to be orthogonal to the
first and chosen such that the variance is again maximal when the
data is projected onto it; and so on up to M. For technical reasons
(cf. Section 4.2.3), the principal components are called eigenarti-

cles,1 and the space spanned by them eigenspace. The less impor-
tant eigenarticles merely account for minor variations in the data,
variance being small along their directions. Such variations can be
considered noise, and by eliminating them, the noise in the data is
reduced. By convention, all eigenarticles are normalized to a length
of 1. We write eigenarticles as row vectors and stack them on top of
each other, thus obtaining the eigenarticle matrix E of size M×N.

Now assume we want to reduce the noise in a new topic vector
v. We can achieve this in three steps. First, project v onto the basis
spanned by the eigenarticles; this way we obtain v’s eigenspace
representation

p = (p1, p2, ..., pM) = vE⊤. (1)

Second, eliminate the noise that manifests itself as variation along
minor eigenarticles by setting the respective co-ordinates to zero,
keeping only the entries (p1, p2, ..., pK) as non-zero, for some fixed
K (the so-called eigenspace dimensionality). Call the resulting vec-
tor p̃. Third, project p̃ from eigenspace back into the original docu-
ment space spanned by the canonical basis vectors. This yields the
generalized topic vector

ṽ = p̃E. (2)

In the above explanation, we have included the second step just
to be conceptually clear. In practice, it suffices to store only the
first K eigenarticles. (We use Ẽ to denote the resulting eigenarticle
matrix of reduced size K ×N.) Equations (1) and (2) may then be
combined, and the generalized topic vector computed as

ṽ = (vẼ⊤)Ẽ. (3)

After finding the eigenarticles, the background corpus C need not
be stored explicitly. We only need its reduced eigenarticle matrix
Ẽ. It is important to note that Ẽ has to be computed only once, in
an offline preprocessing step. During normal operation of our al-
gorithm, only single projections into eigenspace and back are per-
formed, according to (3).

4.2.3 Technical issues

For clarity’s sake, we have so far glanced over several technical
issues. In this section we provide some details that are important for

1The term ‘eigendocument’ would be more appropriate, but we
stick to the nomenclature of the paper in which the concept was
first introduced [22]. There, the authors use the term ‘eigenarticle’
because all their documents are Wikipedia articles.

931

making our algorithm mathematically sound and computationally
efficient.

Topic candidate selection. Above, we have defined the set T of
candidate topics as the set of all Wikipedia articles. However, the
Wikipedia snapshot we use [24] has about 2.7 million articles, i.e.,
the number of topics N ≈ 2.7×106 , which would make the reduced
eigenarticle matrix Ẽ too large to fit into memory. We therefore
follow the approach of West et al. [22] and include in T only those
Wikipedia articles with at least 15 incoming and 15 outgoing links.
This way many unimportant articles are discarded and N is reduced
to 468,510, or 17% of the original size.

Topic weighting. As defined in Section 3, topic vectors v are
binary. However, not all topics present in a document are equally
informative; e.g., the fact that a document mentions a rare concept
such as CN TOWER is much more salient than the fact that it talks
about something more common such as CANADA. We therefore ap-
ply the IDF weighting scheme also used by Milne and Witten [14]
and West et al. [22], according to which a topic gets more weight if
it appears in fewer documents of the background corpus C: before
feeding topic vector v to the generalization component, we weight
its j-th entry by a factor of log(M/M j), where M j = ∑

M
i=1 ti j counts

the documents containing the j-th topic. The weighting is also per-
formed on each row of the document–topic matrix T before we find
its eigenarticles.

Computing PCA efficiently. We call the principal components
of T eigenarticles because mathematically they are the eigenvectors
of the covariance matrix (and thus the scatter matrix) of T. Let m=
1
M ∑

M
i=1 ti be the mean topic vector, and M a matrix of M rows, all of

which are equal to m. Then the scatter matrix is (T−M)⊤(T−M),
which has dimensionality N ×N. To speed up computation and
reduce memory requirements, one may compute the eigenvectors of
another matrix L = (T−M)(T−M)⊤ and obtain the eigenarticles
by pre-multiplying these eigenvectors by (T−M)⊤ (cf. West et al.

[22] for a derivation). Recall that M ≪ N, so the M ×M matrix L

is much smaller than the N ×N scatter matrix.
Since each document contains only a small fraction of all candi-

date topics, T is extremely sparse. But subtracting the mean maps
most zeros to negative numbers. So T−M is dense, and the naïve
approach of first computing T−M and then multiplying it with its
transpose to obtain L = (T−M)(T−M)⊤ takes very long.2 How-
ever, calculating L as

(T−M)(T−M)⊤ = TT⊤+MM⊤−TM⊤− (TM⊤)⊤ (4)

takes only a few seconds (as opposed to several hours), since TT⊤

can be computed fast due to T’s sparsity, MM⊤ has the constant
mm⊤ everywhere, and all columns of TM⊤ are equal to Tm⊤.

Projecting into eigenspace efficiently. As outlined above, the
task of the generalization component is to project a topic vector v

into reduced eigenspace and then back into the original document
space. Since we mean-center the topic vectors of the background
corpus before finding the eigenarticles, we must also center v. Pro-
jecting into eigenspace in fact amounts to computing (v−m)Ẽ⊤.
Here, too, we may decrease running time (by up to four orders of
magnitude) by reformulating to vẼ⊤ −mẼ⊤, where the first term
can be computed efficiently because v is sparse and the second term
does not depend on v, i.e., needs to be calculated only once, offline.

2If principal components are computed without mean-centering, as

the eigenvectors of T⊤T, the first principal component will approx-
imate the data mean rather than the direction of maximum variance.
While this is acceptable in certain applications of PCA, it affects
performance negatively in our case, since it results in ṽ (cf. (3))
being skewed towards the mean, which in turn makes topic sugges-
tions less meaningful.

4.3 Filtering and ranking
The goal of the filtering and ranking step is to prepare the topic

suggestions for human inspection.
If the input document d does not contain the j-th topic of the

candidate set T and ṽ j ≫ v j after generalizing, then this suggests
that j should be considered for inclusion in d. The difference ṽ−v,
which we call reconstruction gain vector, attributes to each topic
in T a real number quantifying how good a suggestion it would
be. Therefore, our algorithm—in the manner of typical informa-
tion retrieval systems—does not select a subset of topics that are
suggested for inclusion in the input document, but rather ranks all
potential candidate topics, by sorting them in order of decreasing
reconstruction gain.

As our goal is to suggest only novel topics, a topic should only
be considered if the input document d does not already mention it.
So certainly a topic should be filtered from the list of suggestions
if it is a keyphrase of d. But even if it is not a keyphrase, it might
still appear in the plain text as an ordinary phrase and should thus
be filtered, too. There are several ways of determining whether d

mentions a topic j. Recall that we represent topics as Wikipedia
articles. The simplest solution would be to check if d contains the
title of j’s Wikipedia article. This is, however, overly restrictive and
results in low recall; e.g., we could not tell that a document that has
the n-gram ‘Maple Leaf Flag’ implicitly contains the concept FLAG

OF CANADA.
We therefore adopt a more robust approach, by leveraging Wi-

kipedia links. The key observation is that the anchor texts used in
Wikipedia to link to the article about j are in many cases synonyms
of j, e.g., the anchor ‘Maple Leaf Flag’ links to the article about
FLAG OF CANADA. However, the word ‘flag’, too, is used to link
to this article, so simply accepting all anchors of an article j as
names for it would result in low precision (since any flag might be
referred to as ‘flag’). To trade off precision against recall, we con-
sider as names of j only anchors that link to j with high probability.
Specifically, we accept a phrase a as a name for j only if its anchor
likelihood Pr(Target = j|Anchor = a) is at least 30% (we chose this
value by hand). Then, if the plain text of d contains phrase a we
say that d talks about topic j and exclude j from our suggestion
list. Note that, while this approach draws on Wikipedia, d need not
necessarily be a Wikipedia article itself.

Let X be the set of topic suggestions, i.e., the set of topics we
do not exclude in the filtering step. It is interesting to note that
its complement, T \X, can be interpreted as the set of Wikipedia
link suggestions. Recall that during keyphrase assignment we in
fact augment d with links to Wikipedia (cf. Section 4.1). That is,
a high-ranking suggestion j ∈ T \X, which does have an anchor
in d, corresponds to a Wikipedia link that could be contained in
d and whose absence is caused by noise. Consequently, with a
modified filtering step, our method can be used for finding missing
Wikipedia links, as done by West et al. [22].

5. TOPIC SUGGESTION FOR WIKIPEDIA

ARTICLES
In this section we evaluate our topic suggestion algorithm quan-

titatively. Without querying human raters, this is rather difficult to
achieve for general input documents, since judging the quality of
topic suggestions is a highly subjective task. Instead, we attempt
to get some insight into the performance of our method by con-
straining input documents to be Wikipedia articles and defining an
automated evaluation heuristic based on the articles’ edit history,
such that the precision and recall of our method can be gauged on
a large number of test documents. The results are presented in Sec-

932

tion 5.1. Since this automated evaluation has several shortcomings,
we re-evaluate precision on a smaller test set by querying human
raters. Those results are presented in Section 5.2.

In this first set of experiments, both the background corpus C and
all input documents d are Wikipedia articles. As a typical Wikipe-
dia article d already contains links to other articles (which normally
represent the keyphrases of d; cf. Section 4.1), we need not run the
keyphrase assignment step to obtain the document–term matrix T

and the input document’s topic vector v. In principle, we may sim-
ply define T as Wikipedia’s adjacency matrix. In practice, we com-
press its size by keeping as columns T only the candidate topics as
defined in Section 4.2.3, and as rows C only a sample of 5,503 im-
portant articles (we follow West et al. [22] and choose the articles
that are also included in the 2008/9 Wikipedia Selection for schools
[23]).

We use the Wikipedia snapshot of March 6, 2009 [24]. In Sec-
tion 4.2.3 we refer to the sparsity of T. To express it in numbers, we
note that, using this snapshot, only 2.7% of T’s roughly 30 million
entries are non-zero.

We set the eigenspace dimensionality to K = 1,000 in all exper-
iments that use Wikipedia as a background corpus. This parameter
has been hand-picked based on computational constraints and was
not optimized via learning.

5.1 Automatically evaluating precision and
recall

Given an input document d, let the set Xk contain the top k sug-
gestions returned by our algorithm for d, and let R be the ground-
truth set of relevant novel topics that are missing from d. Then,
precision at k is |Xk ∩R|/|Xk|, or the number of relevant sugges-
tions divided by the number of suggestions, while recall at k is
|Xk ∩R|/|R|, or the number of relevant suggestions divided by the
number of relevant novel topics.

As mentioned above, the notion of relevance is highly subjective
and cannot be defined in absolute terms [11], so precisely defining
the set of relevant novel topics R is not possible. Instead, we have
to recur to a reasonable heuristic definition of R. Consider two
versions of an input article d, one from March 2009 (the time of
the Wikipedia snapshot we are using), the other from April 2010
(i.e., about one year later). More often than not, human editors
will have added several novel topics to the article during this one-
year period. We make the assumption that editors mark important
new topics by linking them to the respective Wikipedia articles, in
accordance with Wikipedia’s linking guidelines (cf. Section 4.1),
and define the set of relevant novel topics R as the set of links
contained in the new but not in the old version of d. Measuring
precision and recall with respect to this ground truth, we can then
estimate how well our algorithm matches the heuristically defined
editing capabilities of human experts.

Since we are interested in novel topics (rather than merely novel
links), we include in R only links that correspond to topics which
do not appear in the plain text of the old version of the input article.
To determine whether this is the case, we take the link anchor–
based approach described in Section 4.3.

In order to avoid the most obscure articles, we consider as test
documents only articles with at least 100 incoming and 100 outgo-
ing links. Also, to bound the size of R and thus make precision and
recall comparable across input documents, we consider only test
documents to which editors added between 10 and 20 new links in
the one-year period.

We use two evaluation sets. One comprises 100 ‘commonsense’
articles. We chose this set with the human user evaluation which
we present later in mind (cf. Section 5.2). The rationale is to fa-

cilitate the evaluation process by making sure raters have a basic
understanding of the article for which they judge topic suggestions
without having to read the article. To find these 100 articles, we
presented lists of random article titles to 10 members of our group
not involved in this research and asked each of them to select about
20 titles with the following property: ‘Each selected title should
represent a topic of which you have at least some basic knowledge.
You don’t have to be an expert in the topic, but you should have a
rough idea what it is about.’ This way, 213 titles were identified.
Some of them were non-obvious, and manually sifting these, we
kept 100 commonsense topics.

The other evaluation set consists of 1,000 articles. Unlike the
set of 100 commonsense articles, these were randomly selected and
can therefore serve for measuring the performance of our algorithm
on typical Wikipedia articles.

The results are plotted in Figure 2, as functions of k, the number
of top suggestions we return. First of all, note that the curves look
rather similar, with the algorithm performing slightly better on the
100 commonsense articles than the 1,000 randomly selected arti-
cles. Recall increases superlinearly, which implies that at the top of
our ranking, relevant suggestions are denser than further down, as
desired. Recall at 1,000 is 26% for commonsense articles and 20%
for arbitrary articles, i.e., the top 0.21% of the full ranking of all
N = 468,510 candidate topics contain 26% or 20%, respectively,
of the novel topics that were added as new links by human editors
during the period of one year.

While these recall values seem satisfying, precision is rather low.
Figure 2 plots two precision curves. For calculating strict preci-

sion, we count a suggestion j as relevant only if it is in R, i.e., if a
link to the article about j was added to the input article in the one-
year period. In practice, this is often too restrictive, since an editor
might have added a mention of j to the article without also adding
a link to the article about j. This is accounted for by soft preci-

sion, which counts the suggestion j as relevant if a mention of it
was first added to the plain text of the input article within the one-
year period. To decide if a document mentions a topic, we again
use the link anchor–based method of Section 4.3. Figure 2 shows
that the soft precision attained by our algorithm is somewhat higher
than strict precision, as expected. (Both strict and soft precision are
reported in their interpolated form [11].)

Although soft precision is clearly a more realistic metric than
strict precision, it still does not appropriately capture the perfor-
mance of our method. Consider, e.g., the top suggestions of our
algorithm for the article about COMPUTER PROGRAMMING, listed
in Table 1. Among the top five are topics such as TURING COM-
PLETENESS, COMPUTER SCIENCE, and CONTROL FLOW. While
these topics are doubtless relevant, they are not counted as such
because even the newer version of the article (after the one-year
period) does not mention them yet. This is an inherent limitation of
the evaluation paradigm that compares an old and a new version of
an article: by defining ground truth based on the current version of
an article, it assumes the latter to be perfect. Not only would this
make suggesting further topics—and hence our work—pointless, it
is also simply not the case.

Recall is affected in a similar way: often, human editors add
novel links that do not correspond to relevant topics, or only mar-
ginally so. For instance, a link to the article about 1947 was added
to the article about COMPUTER PROGRAMMING (cf. Table 1). Our
method rightfully does not rank it amongst the top suggestions, yet
this results in a decreased recall value.

5.2 Evaluating precision with human raters
Because of the shortcomings of the automated evaluation meth-

933

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

k: number of suggestions

Recall at k
Strict precision at k
Soft precision at k

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

k: number of suggestions

Recall at k
Strict precision at k
Soft precision at k

Figure 2: Performance of our topic suggestion algorithm on Wikipedia articles, where the ground-truth set of relevant novel topics

is defined as the set of novel links added to the respective article by human editors within the period of one year. Left: Evaluation set

of 100 commonsense articles. Right: Evaluation set of 1,000 randomly selected articles.

Human-added topics:

TROUBLESHOOTING

U.S. AIR FORCE

ADACORE

PRINCIPLE OF LINGUISTIC

RELATIVITY

CARD STOCK

∗ HIGH-LEVEL PROG. LANG.
TEMPORARY FILE

MEMORY LEAK

RACE CONDITION

ERGONOMICS

MAINTAINABILITY

∗ SOFTWARE BUG

VULNERABILITY (COMPUTING)
∗ SCRIPTING LANGUAGE

MEASURING PROGRAMMING

LANGUAGE POPULARITY

1947
THE ART OF COMPUTER PROG.
GERALD WEINBERG

Automatic suggestions:

TURING COMPLETENESS

COMPUTER SCIENCE

∗ HIGH-LEVEL PROG. LANG.
JAVA (PROG. LANG.)
CONTROL FLOW

HASKELL (PROG. LANG.)
UNIX

LISP (PROG. LANG.)
RUBY (PROG. LANG.)
TYPE SYSTEM

SUBROUTINE

COMPARISON OF PROGRAM-
MING LANGUAGES

DIFFERENCE ENGINE

PYTHON (PROG. LANG.)
Z3 (COMPUTER)
HALTING PROBLEM

ABACUS

UNIX-LIKE

Table 1: Left: The 18 novel links (i.e., topics) human editors

added to the Wikipedia article about COMPUTER PROGRAM-

MING between March 2009 and April 2010. An asterisk signi-

fies that the respective topic is among our algorithm’s top 1,000

suggestions. Right: The 18 top suggestions of our algorithm.

odology described in the previous section, we found it necessary
to complement these results with a human evaluation. Measur-
ing recall remains elusive, since it would require defining R, the
ground-truth set of relevant novel topics, for each single test docu-
ment, which is practically prohibitive, and theoretically impossible
due to the extremely subjective nature of the task. Precision, on
the contrary, can be readily estimated by querying humans, since it
does not require the a-priori definition of all of R; rather, we can
have human raters assess relevance ad hoc, for each single sugges-
tion.

In the experiments reported below, our goal is to compare the
precision of our algorithm to that achieved by human Wikipedia
editors. We define the set of human topic suggestions for an ar-
ticle d as the R of Section 5.1, i.e., as the set of hyperlinks that
were introduced to d during the period of one year and that do not
correspond to topics already mentioned in the plain text of the old
version of d. Suppose there are k such new links. In the set Xk

0

0.2

0.4

Pr
ec

is
io

n

Figure 3: Average precision on the set of 100 commonsense ar-

ticles. Left: Our topic suggestion algorithm. Right: Human

Wikipedia editors. Error bars show 95% confidence intervals.

we pool the same number of top suggestions from the ranking pro-
duced by our algorithm. We then ask human raters to decide, for
each suggestion in R and Xk, whether it is relevant, and compute
precision values for both sets of suggestions.

As our evaluation platform, we used Amazon Mechanical Turk
[2]. Each evaluation task dealt with one input article d about a topic
τ . The rater was asked to assess the relevance of all suggestions for
d, human and automated, following these instructions:

‘Below, you are given a list of topics. Your task is to
decide, for each topic in the list, whether the Wikipe-
dia article about τ should talk about it. If you are not
familiar with what or who τ is, you can learn about it
here.’ [i.e., by following a link to τ’s Wikipedia page]

This task description was followed by the topics from R∪Xk, in
randomized order to avoid any bias. As test documents we used the
100 commonsense articles introduced in Section 5.1, which contain
each between 10 and 20 new human-added links, so the combined
list of topic suggestions had at most 40 entries. To make the col-
lected data more reliable, we protected the forms against Web bots
using reCAPTCHA [19] and had the suggestions for every input ar-
ticle evaluated by five different raters. When interpreting the data,
we say that a suggestion is relevant if a majority of the five raters
(i.e., at least three) said so.

Figure 3 shows the average precision attained by our algorithm
and by human editors, where the average is taken over the 100 test
articles. The method we propose has an average precision of 43%
(i.e., on average, 43% of the suggestions we make are assessed as
relevant by a majority of raters), while human editors achieve 42%.
The difference is not statistically significant at the p < 0.05 level

934

(determined via bootstrap resampling), which suggests that human
Wikipedia editors and our method perform equally well at this task.

The precision of 43% attributed to our method under this evalu-
ation methodology is an order of magnitude higher than the strict
precision (at k = 15) of 3.5% shown in Figure 2 (we consider k= 15
because k ∈ {10, ...,20} in the human evaluation). Even soft preci-
sion as calculated there (10%) underestimates considerably.

These results confirm the observation of Section 5.1 that using
the links, or topics, added by human editors as the ground truth of
relevance is not a good heuristic. By definition, the ground truth
should have perfect precision and recall. However, we show that
precision is only 42%; also, the fact that many of our relevant sug-
gestions lie outside the ‘ground truth’ implies that the latter has far
from perfect recall.

The precision values reported in this section were obtained using
the set of 100 commonsense articles. Referring back to the auto-
mated evaluation summarized in Figure 2, note that the strict pre-
cision curves for the 100 commonsense articles and the 1,000 ran-
dom articles look virtually identical, while soft precision is slightly
higher for commonsense articles. We conjecture that the actual pre-
cision (as measured in the human evaluation) scales analogously,
being only slightly higher for commonsense than for random arti-
cles.

6. TOPIC SUGGESTION FOR PLAIN-

TEXT DOCUMENTS
In the previous section we have demonstrated through a quanti-

tative evaluation that our algorithm can match the performance of
human editors when the input documents are Wikipedia articles.
However, it is important to note that our algorithm is designed to
work not only on Wikipedia articles but on arbitrary plain-text doc-
uments. We illustrate this in the present section.

A quantitative evaluation is considerably harder for arbitrary in-
put documents than for Wikipedia articles: in order to be able to
assess the relevance of link suggestions, human raters would have
to read the entire input document first. In the case of Wikipedia ar-
ticles, this is usually not necessary when testing on commonsense
articles. For this reason, we provide a more qualitative analysis
here, as follows: In Section 6.1, we show the output of our al-
gorithm for a variety of input documents and comment on how
the ‘genre’ of a document affects the quality of topic suggestions.
While in all these examples we use Wikipedia as a background cor-
pus, Section 6.2 demonstrates that the quality of suggestions can be
improved by using a domain-specific background corpus. We use
the U.S. Congressional Record to illustrate this point.

6.1 Using the Wikipedia corpus for different
genres of input documents

Table 2 lists the top 10 topic suggestions for four input docu-
ments, which have been chosen because they belong to rather dif-
ferent genres. In the following, we comment briefly on each of
these, in order to characterize qualitatively how our method can be
expected to work on different types of documents.

Newspaper articles. The topic suggestions our algorithm makes
for newspaper articles tend to be of high quality. In Table 2, we
show the novel topics found for a Time magazine article about a
currency crisis Europe is facing at the time of writing [4]. Our top
suggestion, e.g., is EUROPEAN CENTRAL BANK, which is doubt-
less relevant, given that it is the institution in control of Europe’s
currency. The reason why newspaper articles are well suited as in-
put documents is their factual style and high content in named enti-
ties, which makes them similar to Wikipedia articles. This has two

consequences: First, Milne and Witten’s method (cf. Section 4.1),
since it is trained on Wikipedia, works as well on newswire sto-
ries as on Wikipedia articles [15], so the topic vector will be rich
in meaningful keyphrases. Second, the generalization component
can then augment this topic vector with high-quality suggestions
because the input document lives in a part of document space that
is densely populated with Wikipedia articles from the background
corpus.

Frequently asked questions. Many websites contain sections
with frequently asked questions. To identify the issues to be dis-
cussed there can be difficult, since recall and precision should be
balanced: an FAQ section should answer all relevant questions,
while it should also be short enough to not overwhelm readers. Au-
tomated topic suggestion can be helpful in this scenario, by offer-
ing the FAQ editor a ranked list in which he can find relevant topics
through manual filtering. As a specific example, Table 2 shows the
suggestions for the W3C Semantic Web FAQ [8]. While probably
not all suggested topics should be mentioned in the FAQ section
(in order to keep it concise), human editors might find some ‘food
for thought’; e.g., it might be useful to mention whether different
OPERATING SYSTEMS offer different means to interact with the
Semantic Web, or what impact the Semantic Web could have on
GRAPHICAL USER INTERFACE design.

Philosophical essays. As mentioned above, an important crite-
rion influencing the quality of topic suggestions is whether the char-
acter of the input document resembles that of Wikipedia articles.
For many essays, especially those containing numerous technical
terms, this is the case. Table 2 provides the example of Alan Tur-
ing’s seminal 1950 paper Computing Machinery and Intelligence

[17], in which he introduces what was to become later known as
the Turing test. We conjecture that Turing would have appreci-
ated our suggestions to contrast METAPHYSICS with the SCIEN-
TIFIC METHOD in his musings about whether machines can think,
and to complement his mention of Charles Babbage’s invention of
the digital computer with GOTTFRIED LEIBNIZ’s discovery of the
binary system. Of course, this should be taken with a grain of salt,
since our Wikipedia background corpus contains many concepts
that exist only because of Turing’s influence and as such could not
have been suggested 60 years ago, such as COMPUTER SCIENCE

and ARTIFICIAL INTELLIGENCE. However, this is not the case for
the other suggestions shown, which are due to the large number
of scientific and philosophical references contained in Turing’s pa-
per and which could well have been made in 1950, had Wikipedia
existed then.

Fictional texts. To characterize our method fully, it is important
to also identify scenarios in which it fails. We found that this is
frequently the case with fictional texts. More often than not, their
purpose is to tell a story rather than to explain concepts, which sets
them apart from Wikipedia articles and the aforementioned genres,
on which our algorithm tends to work well. As an example, con-
sider Alice’s Adventures in Wonderland [5], for which we list the
top 10 suggestions in Table 2. Keyphrase assignment results in a
topic vector containing only seven non-zero entries (as opposed to
38 for the Time article and 50 for Turing’s essay, in spite of these
documents being significantly shorter), which do not summarize
the story well: RABBIT HOLE, WILLIAM THE CONQUEROR, SOUP,
TEA, RABBIT, PIG, IF I FELL (a Beatles song). The fact that most
of our suggestions refer to British history is due to WILLIAM THE

CONQUEROR, while the suggestion GESTATION (the carrying of
babies in the female uterus) is caused by RABBIT and PIG.

In summary, our topic suggestion method works better the more
the ‘character’ of the input document resembles that of Wikipe-
dia articles. The most striking characteristic of Wikipedia articles,

935

Wikipedia corpus:

LIST OF PRESIDENTS OF THE U.S.
JURY

U.S. BILL OF RIGHTS

U.S. COURT OF APPEALS

14TH AMENDMENT TO THE

U.S. CONSTITUTION

LEGAL PERSON

JURISDICTION

SHARE (FINANCE)
ANDREW JOHNSON

U.S. SENATE COMMITTEE

ON THE JUDICIARY

LIMITED LIABILITY

LOUISIANA LAW

LICENSE

CUSTOM (LAW)
FEDERALIST PAPERS

QIYAS

GRISWOLD V. CONNECTICUT

INNS OF COURT

U.S. CAPITOL

DAMAGES

Congressional Record corpus:

PLAINTIFF

CLASS ACTION FAIRNESS ACT OF 2005
JUDICIARY

U.S. DISTRICT COURT FOR THE MIDDLE

DISTRICT OF FLORIDA

JURY

WILL (LAW)
DUE PROCESS

TRIAL DE NOVO

TORT

ADVANCE HEALTH CARE DIRECTIVE

ATTORNEY GENERAL

JUDGE

SUPREME COURT OF THE U.S.
STATE LAW

LIABILITY

JURISDICTION

DAMAGES

FORUM SHOPPING

U.S. COURT OF APPEALS FOR

THE SECOND CIRCUIT

PRODUCT LIABILITY

Table 3: The top 20 suggestions for a U.S. Congress speech dur-

ing the debate on the Lawsuit Abuse Reduction Act of 2005 [1].

Left: Using Wikipedia as background corpus. Right: Using the

Congressional Record as background corpus.

in turn, is their explanatory nature, which implies numerous refer-
ences to other concepts and named entities. Keyphrase assignment
works best in this setting, since the algorithm we use is trained on
Wikipedia articles. The same holds for the generalization compo-
nent if eigenarticles are computed using a background corpus of
Wikipedia articles.

6.2 The Congressional Record corpus
In the previous section, we argued that our PCA-based gener-

alization component works best for documents that resemble Wi-
kipedia articles. It is important to note that this is only the case
if we use Wikipedia, which constitutes a general-purpose back-
ground corpus, for computing eigenarticles. However, as stated
in Section 4.2.1, any sufficiently large document collection can be
employed for that purpose. If we use a domain-specific corpus,
the eigenarticles found by PCA will be fine-tuned to the respec-
tive type of input documents, which will result in more meaningful
topic suggestions than if we were to use Wikipedia as a generic
background corpus. The goal of the current section is to illustrate
this effect.

The background corpus we consider now is based on the U.S.
Congressional Record and consists of all debates from the House
of Representatives of 2005, compiled by Thomas et al. [16, 9]. We
compute eigenarticles based on the 2,046 speeches contained in
Thomas et al.’s test and training sets, where a speech is defined
as the concatenation of all utterances a single speaker made in a
single debate. We refer the reader to the original paper [16] for
details concerning this corpus.

Table 3 lists the top suggestions for a speech given by Represen-
tative Mark Udall in October 2005 (available online [1]) during the
debate on the Lawsuit Abuse Reduction Act, which was meant to
prevent frivolous lawsuits. While the topics our algorithm suggests
when using the general-purpose Wikipedia background corpus are
generally from the realm of U.S. politics, with a bias towards juris-
diction, none of them is fully relevant. On the contrary, when the
domain-specific Congressional Record corpus is used, suggestions
are much more focused, and we find highly pertinent topics such
as CLASS ACTION FAIRNESS ACT OF 2005 (another act aiming at
reducing lawsuit abuse), FORUM SHOPPING (a common practice in

lawsuit abuse), and PRODUCT LIABILITY (a common pretense for
lawsuit abuse). Note that we did not include the debate containing
the example speech in the eigenarticle computation. Rather, these
useful suggestions are the result of the algorithm automatically gen-
eralizing from another debate, on the Class Action Fairness Act,
that took place in Congress in February 2005, some months before
Udall’s speech.

The Congressional Record is better suited as a background cor-
pus because the eigenarticles we compute from it are fine-tuned to
the domain of the input document. To illustrate this, let us take a
look at the eigenspace. Table 4 visualizes the mean topic vector and
the first four eigenarticles of the Wikipedia corpus, while Table 5
does the same for the Congressional Record corpus. Each vector
has as many entries as there are candidate topics, i.e., N = 468,510
in our case (cf. Section 4.2.3), but for clarity’s sake we show only
the 20 with the highest values. The mean topic vectors (at the far
left of each table) give an impression of the most common themes
across the entirety of the respective corpus: in Wikipedia these are
mainly geographical regions and the two world wars, whereas in
the Congressional Record the most common topics are the main
U.S. political institutions and the more ubiquitous issues such as
TERRORISM, TAXES, and HEALTH CARE.

The eigenarticles indicate directions in document space along
which there is much deviation from the mean topic vector of the
corpus. For instance, in the first eigenarticle of Wikipedia, dates
prevail (most of them are not shown in Table 4), which is due to the
fact that each year has a Wikipedia article listing important events
and containing links to their dates, such that on the one hand, there
are many articles containing many dates, but on the other hand,
many other articles do not contain any dates at all, resulting in high
variance with respect to the date content of articles. The subse-
quent eigenarticles are more interesting: the strongest entries of the
second eigenarticle are from the realms of chemistry and atomic
physics, while in the third, it is British and in the fourth, economic
and political topics that prevail. By finding the major variations in
the corpus, PCA effectively identifies its dominant semantic clus-
ters.

The same effect can be observed in the Congressional Record
corpus. Here, the first eigenarticle summarizes the stem cell con-
troversy, the second and fourth are mostly about terrorism and anti-
terror legislation, while in the third, budgetary topics weigh the
heaviest.

Not only do the eigenarticles correspond to intuitive semantic
classes, they also differ considerably between the corpora, which is
reasonable and to be expected: on the one hand, articles about ter-
rorism constitute only a small fraction of Wikipedia, on the other
hand, debates about atomic physics are rare in Congress. Using
the Wikipedia corpus amounts to injecting Wikipedia topics into
the input document. While we have shown in Section 6.1 that this
works in many cases, it might not always be appropriate. By us-
ing a domain-specific corpus, eigenarticles will be fine-tuned to the
idiosyncrasies of the input genre, which in turn results in more pre-
cise topic suggestions. Therefore, the Congressional Record cor-
pus would be most appropriate for a Congressman who wants to be
sure to cover all relevant topics previous speakers have mentioned
in similar contexts.

It should, however, be noted that in certain situations the less fo-
cused suggestions obtained when using a general-purpose corpus
such as Wikipedia might in fact be desirable, e.g., if our Congress-
man intends to give his speech a fresh twist by introducing a topic
that is related to the context but which previous speakers have not
mentioned yet.

936

7. CONCLUSIONS AND FUTURE WORK
In this paper we propose an algorithm for suggesting novel topics

to human authors. Given a plain-text document, our method lever-
ages principal component analysis in order to find relevant new top-
ics by generalizing from a large background corpus.

While we demonstrate the quality of topic suggestions for Wiki-
pedia articles quantitatively, such an evaluation is inherently diffi-
cult for general input documents, due to the highly subjective na-
ture of the task. Using examples from different genres of input doc-
uments, we therefore illustrate in a more qualitative way that many
user groups beyond Wikipedia editors could profit from our sys-
tem. We observe that our method works better on documents with
factual contents than on fictional texts. However, a generalization-
based algorithm would not be an appropriate tool for inspiring au-
thors of fictional texts to begin with, since their objective is typ-
ically to surprise readers with entirely novel stories, not to write
texts that are coherent with a background corpus.

In a typical use-case scenario, the human author would inspect
the ranked output list of missing topics and decide which of these
are actually worthwhile incorporating into the document. In prin-
ciple, the algorithm can then be run again, on the modified input
document. The effects of such a feedback loop remain to be inves-
tigated as part of our future work.

Beyond topic suggestion, eigenarticles have so far been used for
finding missing Wikipedia links [22] and computing semantic re-
latedness [21]. In this paper, we demonstrate that the eigenarti-
cles also cluster the topics of the background corpus semantically,
thereby summarizing its most important contents. An interesting
avenue for future research could therefore utilize eigenarticles for
yet another purpose, as a tool for the exploratory analysis of text
corpora.

8. ACKNOWLEDGMENTS
We acknowledge financial support by the Natural Sciences and

Engineering Research Council of Canada (NSERC). We also thank
David Milne for making WikipediaMiner public and Cosmin Pădu-
raru for many fruitful discussions about this research.

9. REFERENCES

[1] Congressional Record, 151(1):H9318, 2005.
http://frwebgate.access.gpo.gov/cgi-bin/

getpage.cgi?dbname=2005_record&page=

H9318&position=all (accessed May 26, 2010).

[2] Amazon. Mechanical Turk. Website, 2009.
http://www.mturk.com (accessed May 20, 2010).

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[4] W. Boston. Germany tries to save the euro—all by itself.
Time, May 21, 2010. http://www.time.com/time/
world/article/0,8599,1991154,00.html

(accessed May 26, 2010).

[5] L. Carroll. Alice’s Adventures in Wonderland. Project
Gutenberg, 2008.

[6] S. Fissaha Adafre and M. de Rijke. Discovering missing
links in Wikipedia. In Proc. 3rd International Workshop on

Link Discovery (LinkKDD-05), 2005.

[7] B. Fortuna, D. Mladenič, and M. Grobelnik. Semi-automatic
construction of topic ontologies. In Semantics, Web and

Mining: Joint Internat. Workshops EWMF/KDO-05, 2006.

[8] I. Herman. W3C Semantic Web FAQ. Website, 2009.

http://www.w3.org/2001/sw/SW-FAQ (accessed
May 26, 2010).

[9] L. Lee. Convote dataset v1.1. Website, 2008.
http://www.cs.cornell.edu/home/llee/

data/convote.html (accessed May 13, 2010).

[10] A. Maguitman, D. Leake, and T. Reichherzer. Suggesting
novel but related topics: Towards context-based support for
knowledge model extension. In Proc. 2005 International

Conference on Intelligent User Interfaces (IUI-05), 2005.

[11] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to

Information Retrieval. Cambridge University Press, 2008.

[12] R. Mihalcea and A. Csomai. Wikify! Linking documents to
encyclopedic knowledge. In Proc. 16th ACM Conference on

Information and Knowledge Management (CIKM-07), 2007.

[13] D. Milne. WikipediaMiner toolkit. Website, 2009.
http://wikipedia-miner.sourceforge.net

(accessed June 6, 2009).

[14] D. Milne and I. H. Witten. An effective, low-cost measure of
semantic relatedness obtained from Wikipedia links. In Proc.

1st AAAI Workshop on Wikipedia and Artificial Intelligence

(WIKIAI-08), 2008.

[15] D. Milne and I. H. Witten. Learning to link with Wikipedia.
In Proc. 17th ACM Conference on Information and

Knowledge Management (CIKM-08), 2008.

[16] M. Thomas, B. Pang, and L. Lee. Get out the vote:
Determining support or opposition from Congressional
floor-debate transcripts. In Proc. Conf. on Empirical Methods

in Natural Language Processing (EMNLP-06), 2006.

[17] A. Turing. Computing machinery and intelligence. Mind,
59(236):433–460, 1950.

[18] P. D. Turney. Coherent keyphrase extraction via Web mining.
In Proc. 18th International Joint Conference on Artificial

Intelligence (IJCAI-03), 2003.

[19] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and
M. Blum. reCAPTCHA: Human-based character recognition
via Web security measures. Science, 321(5895):1465–1468,
2008.

[20] H.-C. Wang, D. Cosley, and S. R. Fussell. Idea Expander:
Supporting group brainstorming with conversationally
triggered visual thinking stimuli. In Proc. 2010 ACM

Conference on Computer Supported Cooperative Work

(CSCW-10), 2010.

[21] R. West. Extracting semantic information from Wikipedia
using human computation and dimensionality reduction.
Master’s thesis, McGill University, 2010.

[22] R. West, D. Precup, and J. Pineau. Completing Wikipedia’s
hyperlink structure through dimensionality reduction. In
Proc. 18th ACM Conference on Information and Knowledge

Management (CIKM-09), 2009.

[23] Wikipedia. 2008/9 Wikipedia Selection for schools. Website,
2008. http://schools-wikipedia.org (accessed
June 3, 2009).

[24] Wikipedia. Data dump of March 6, 2009. Website, 2009.
http:

//download.wikimedia.org/enwiki/20090306

(accessed June 3, 2009).

[25] Wikipedia. Wikipedia:Linking. Website, 2010.
http://en.wikipedia.org/w/index.php?

title=Wikipedia:Linking&oldid=342061829

(accessed Feb. 5, 2010).

937

Time article about euro crisis [4]:

EUROPEAN CENTRAL BANK

INFLATION

ORGANISATION FOR ECONOMIC

CO-OPERATION & DEVELOP.
EUROBAROMETER

SINGLE MARKET

GROSS DOMESTIC PRODUCT

EUROPEAN COMMISSION

MOTION OF NO CONFIDENCE

BANK

BOREAL KINGDOM

W3C Semantic Web FAQ [8]:

USENET

OPERATING SYSTEM

GOOGLE

MICROSOFT

MICROSOFT WINDOWS

INTERNET EXPLORER

GRAPHICAL USER INTERFACE

JAVASCRIPT

INTERNET

MOZILLA FIREFOX

Alan Turing’s Computing Ma-
chinery and Intelligence [17]:

COMPUTER SCIENCE

ISAAC NEWTON

ARISTOTLE

GOTTFRIED LEIBNIZ

BERTRAND RUSSELL

SCIENTIFIC METHOD

QUANTUM MECHANICS

GOTTLOB FREGE

ARTIFICIAL INTELLIGENCE

METAPHYSICS

Lewis Carroll’s Alice’s Ad-
ventures in Wonderland [5]:

HENRY I OF ENGLAND

EDWARD THE CONFESSOR

HAROLD GODWINSON

GESTATION

ANGEVIN EMPIRE

EDMUND IRONSIDE

HENRY II OF ENGLAND

TOSTIG GODWINSON

HARALD III OF NORWAY

BATTLE OF HASTINGS

Table 2: Top 10 topic suggestions for different types of input documents, using Wikipedia as a background corpus.

Mean topic vector:

EUROPE 0.66406

UNITED KINGDOM 0.65311

UNITED STATES 0.61414
WORLD WAR II 0.59878

FRANCE 0.5491

LATIN 0.54532

INDIA 0.50131

LONDON 0.50057
ROMAN CATHOLIC CHURCH 0.48414

CHINA 0.48149

GERMANY 0.45495

UNITED NATIONS 0.45283

ENGLAND 0.44843

AFRICA 0.44297
RUSSIA 0.41727

WORLD WAR I 0.41406

AUSTRALIA 0.41216

CHRISTIANITY 0.41038

JAPAN 0.40279
ROMAN NUMERALS 0.40037

1st eigenarticle:

ROMAN NUMERALS 98.4044

GREGORIAN CALENDAR 89.9053

NOBEL PRIZE IN PHYSIOLOGY

OR MEDICINE 77.1151

NOBEL PRIZE IN LITERATURE 76.6046

NOBEL PRIZE IN CHEMISTRY 75.7546

NOBEL PRIZE IN PHYSICS 75.4313

NOBEL PEACE PRIZE 74.2943
MARCH 4 56.7351

FEBRUARY 11 54.2642

MARCH 1 53.9667

JANUARY 12 50.5206

FEBRUARY 20 50.488

MARCH 20 50.3921
JANUARY 1 49.6162

NOBEL MEMORIAL PRIZE IN

ECONOMIC SCIENCES 49.3786

DECEMBER 12 49.1927

MARCH 17 48.9415
MAY 19 48.8819

JANUARY 22 48.8599

JANUARY 27 48.7879

2nd eigenarticle:

OXYGEN 20.2236

CHEMICAL ELEMENT 19.9675

HYDROGEN 19.0041
ATOMIC NUMBER 16.8553

ISOTOPE 16.553

ION 15.1002

HALF-LIFE 14.6232

REDOX 14.2344
CARBON 14.1193

ATOM 13.6386

ROMAN NUMERALS 13.3465

ELECTRON 13.2997

RADIOACTIVE DECAY 12.8377

ULTRAVIOLET 12.0777
HELIUM 11.5755

NITROGEN 11.2547

PROTON 10.6843

EARTH’S ATMOSPHERE 10.5762

KELVIN 10.5551
MOLECULE 10.4533

3rd eigenarticle:

LONDON 9.0715

JULIAN CALENDAR 8.8904

BBC 8.4054
PRIME MINISTER OF THE UK 7.8

CHURCH OF ENGLAND 7.5718

VICTORIA OF THE UK 6.5653

ELIZABETH II OF THE UK 6.3286

WALES 6.284
ARCHBISHOP OF CANTERBURY 6.1882

WESTMINSTER ABBEY 5.8816

HOUSE OF COMMONS OF THE UK 5.8789

WILLIAM SHAKESPEARE 5.6846

HENRY VIII OF ENGLAND 5.667

JAMES I OF ENGLAND 5.5965
PARLIAMENT OF THE UK 5.548

HOUSE OF LORDS 5.5463

EDINBURGH 5.3916

GREGORIAN CALENDAR 5.1994

CHARLES II OF ENGLAND 5.1038
THE TIMES 5.0592

4th eigenarticle:

GROSS DOMESTIC PRODUCT 26.1622

UNITED NATIONS 25.4508

PETROLEUM 18.0982
AGRICULTURE 16.6884

INTERNATIONAL MONETARY

FUND 16.5953

HEAD OF STATE 15.6899

UNITED STATES DOLLAR 15.4465
EUROPEAN UNION 15.1074

ATLANTIC OCEAN 15.0615

EXECUTIVE (GOVERNMENT) 14.9905

PEOPLE’S REPUBLIC OF CHINA 14.4143

PURCHASING POWER PARITY 13.6758

HEAD OF GOVERNMENT 13.6625
WORLD BANK 13.1801

UNITED STATES 12.9573

CARBON DIOXIDE 12.8043

REDOX 12.5982

CANADA 12.2193
TEMPERATENESS 11.9671

MAMMAL 11.9313

Table 4: The mean topic vector m and the first four eigenarticles of the Wikipedia corpus. Each vector has N = 468,510 entries, of

which we show only the 20 with the highest values. Notice that eigenarticles tend to cluster topics into semantic classes.

Mean topic vector:

UNITED STATES DOLLAR 0.36552

REPUBLICAN PARTY (U.S.) 0.36125
UNITED STATES CONGRESS 0.36007

SPEAKER OF THE U.S. HOUSE

OF REPRESENTATIVES 0.35505

PRESIDENT OF THE U.S. 0.33407

U.S. HOUSE OF

REPRESENTATIVES 0.33181
UNITED STATES 0.33129

CALIFORNIA 0.32783

DEMOCRATIC PARTY (U.S.) 0.30961

TAX 0.30573

TERRORISM 0.28849
FEDERAL GOVERNMENT

OF THE U.S. 0.26726

TEXAS 0.26575

UNITED STATES SENATE 0.26006

GEORGE W. BUSH 0.25953

HEALTH CARE 0.25026
SEPTEMBER 11 ATTACKS 0.24217

IRAQ 0.24039

OIL 0.23858

BIPARTISANSHIP 0.23552

1st eigenarticle:

STEM CELL 20.3218

STEM CELL CONTROVERSY 20.2578
EMBRYO 17.6271

EMBRYONIC STEM CELL 17.5909

CELL (BIOLOGY) 16.9893

DIABETES MELLITUS 16.1223

ALZHEIMER’S DISEASE 13.7533

ADULT STEM CELL 13.2466
SPINAL CORD 12.1779

NIH 11.8282

IN VITRO FERTILISATION 11.6173

FERTILISATION 10.7157

MEDICINE 10.6972
STEM CELL RESEARCH

ENHANCEMENT ACT 10.6216

CANCER 10.1784

IN VITRO 10.1764

BIOMEDICAL RESEARCH 10.0144

CELL CULTURE 9.8672
CLONING 9.8331

UMBILICAL CORD 9.5242

2nd eigenarticle:

TERRORISM 12.2331

JUDICIARY 11.6066
SEPTEMBER 11 ATTACKS 11.3887

USA PATRIOT ACT 10.2485

FEDERAL BUREAU OF INVESTIGATION 10.0368

CIVIL LIBERTIES 9.7826

CONSTITUTION 9.073

U.S. SENATE COMM. ON THE JUDIC. 8.7288
U.S. HOUSE COMM. ON THE JUDIC. 8.0508

9/11 COMMISSION 7.4646

UNITED STATES FEDERAL COURTS 7.2932

TELEPHONE TAPPING 7.2334

LAWYER 6.9399
CRIME 6.822

U.S. DEPARTMENT OF JUSTICE 6.6145

IMMIGRATION 6.5851

UNITED STATES SENATE 6.5612

NATIONAL SECURITY LETTER 6.5099

JUDICIAL REVIEW 6.4624
U.S. DEPT. OF HOMELAND SECURITY 6.398

3rd eigenarticle:

DEFICIT 3.8416

DEBT 3.8224
PENSION 3.3429

ENDANGERED SPECIES 2.8039

TAX CUT 2.8029

SMALL BUSINESS 2.6906

DIVIDEND 2.6161

HEALTH INSURANCE 2.5915
MIDDLE CLASS 2.4234

LOONEY TUNES:

BACK IN ACTION 2.3635

TAX 2.2933

BANKRUPTCY 2.2515
POVERTY 2.2482

ENDANGERED SPECIES

ACT 2.2476

GOVERNMENT DEBT 2.1609

MEDICAID 2.0413

PENSION BENEFIT

GUARANTY CORP. 2.0331

HEALTH CARE 2.0158

INSURANCE 1.9984

ECONOMIC GROWTH 1.9464

4th eigenarticle:

USA PATRIOT ACT 9.2632

FBI 7.0531
TELEPHONE TAPPING 6.4234

CIVIL LIBERTIES 5.6687

U.S. DEPARTMENT OF JUSTICE 5.5165

CRIME 5.4314

NATIONAL SECURITY LETTER 5.4101

TERRORISM 5.0347
SURVEILLANCE 4.698

JUDICIARY 4.5579

PRIVACY 4.2309

U.S. SENATE COMMITTEE ON

THE JUDICIARY 4.1788
SEPTEMBER 11 ATTACKS 3.9196

CONSTITUTION 3.9158

CAPITAL PUNISHMENT 3.9096

MURDER 3.7962

JUDICIAL REVIEW 3.7399

U.S. HOUSE COMMITTEE ON

THE JUDICIARY 3.6918

JUDGE 3.5834

FOREIGN INTELLIGENCE

SURVEILLANCE ACT 3.5527

Table 5: The mean topic vector m and the first four eigenarticles of the U.S. Congressional Record corpus. As in Table 4, we show

only the 20 entries with the highest values for each vector. Again, eigenarticles cluster topics into semantic classes.

938

