
Is MTTR More Important Than MTTF For

Improving User-Perceived Availability?

Yee Jiun Song, Wendy Tobagus, Jeff Raymakers, Armando Fox

Computer Science Department, Stanford University

353 Serra Mall, Stanford, CA 94305, USA

Email:
�
yeejiun, tobagus, jeph, fox � @cs.stanford.edu

Abstract

High availability of internet systems can be achieved either through high mean-time-to-failure (MTTF) or low

mean-time-to-recovery (MTTR). Traditionally, system designers have focused on maximizing MTTF as a way of

providing high availability. However, recent work in recovery-oriented computing has emphasized recovery from

failures, rather than failure avoidance [1]. In this paper, we investigate the impact of MTTR and MTTF, as well as

user retry rates, on the user-perceived availability of internet systems through simulation experiments. Previous work

suggests that between two systems with a given availability, the one with lower MTTR always yields higher user-

perceived availability [3]. Our results show that while this is true for certain ranges of system parameters, it is not

always the case. This leads us to propose a method for determining whether improving MTTR or MTTF will yield

greater user-visible benefits for a given system, allowing a system administrator to invest in system improvements

that yield maximum benefits.

I. INTRODUCTION

Maintaining a high level of availability is important to many internet systems. In fact, in commercial systems,

downtime costs anywhere from $89 thousand an hour, in airline reservation systems, to $6 million an hour, for

brokerage operations [2]. As such, much research has been devoted to ensuring a high level of availability of such

systems. The availability of a system is given by equation 1, which shows that high availability can be achieved

either through a high mean-time-to-failure (MTTF), a low mean-time-to-recovery (MTTR), or a combination of

both. Traditionally, system designers have focused on maximizing MTTF. However, recent work in recovery-

oriented computing [1] has taken a different approach, and emphasized fast recovery from failure, rather than

failure avoidance.

�������	�
��������	����� ������������������������ (1)

Most work on improving availability has focused on the system’s view and not the user’s view of availability.

For web services, these two quantities can be different. To see why, observe that users only perceive availability or

unavailability when they actually access the site, and not during the interstitial or “think” times between page views.

If the site goes down, a given user may not see the failure right away (i.e. until the next page view); similarly, if

the user experiences a site error and the site comes back up, the user may not notice this until the next time she

actually tries to access the site. Therefore, in order to study user-percevied availability, it is crucial to separate the

two factors that contribute to it: actual system availabilty and user behavior.

Recent work by Xie et al. applied Markov regenerative process models to study user-perceived availability of

internet systems and found that (i) user-perceived availability depends not only on the system’s characteristics, but

also on the user’s behavior, and (ii) for two systems of a certain availability, the one with the lower MTTR provides

higher user-perceived availability [3]. Clearly then, ensuring that a system has high availability is not sufficient; it is

also essential to study the composition of that availability, and its impact on the system’s user-perceived availability.

In this paper, we use simulations to verify the trends found in Xie et al’s mathematical analysis. We use a wide

range of system parameters and find that under certain conditions MTTR is indeed more important that MTTF

for providing high user-perceived availabilty, but under certain other conditions, the converse can also be true.

Intuitively, as MTTR decreases, the decreasing marginal gains of lower MTTR eventually catches up with the

marginal cost of lower MTTF, and it becomes more important to improve MTTF. Based on our results, we propose

a method for deciding, for a given system, which of MTTR or MTTF to improve, to extract maximum gains in

user-perceived availability.

The rest of this paper is organized as follows: section II explains the user-server interaction model that is used

throughout this paper; section III presents the experimental setup and procedures; IV describes the results of our

studies; V proposes a method for determining whether an improvement in MTTR or MTTF will yield greater

user-visible benefits; section VI discusses related work; section VII suggests possible directions for future work;

and finally section VIII concludes this paper.

II. USER AND SERVER MODELS

A. User-Server Interaction Model

There has been much work on the characteristics of web traffic and web users’ behavior pattern [4]–[8]. While

the results of these studies exhibit conflicts in some respects, they agree that web user behavior exhibit strong

self-similarity, and is best approximated by heavy-tailed distributions such as the Weibull or Pareto distributions.

In our study, we use the user model first proposed by Deng [8], and used by Xie et al. in [3]. This ON-OFF web

Fig. 1. User-Server Interaction Model

user model was first proposed by Deng [8] based on the examination of empirical web data, and a similar model

was independently proposed by Crovella and Bestavros [9]. In this section, we provide a brief presentation of the

model. For details and an explanation of the model’s derivation, please refer to [8].

Figure 1 shows a state machine that represents the user-server interaction model. Each web user can be in one of

three states, �� � � �"! � ! � � , which represents the user in an active state, in a thinking state, and seeing a failure,

respectively. The state of the server is represented by ��# � �%$!'& � , representing the server when it is available,

and when it has encountered some error and is unavailable, respectively. Thus, at any one time, the state of the

entire model is represented by a combination of ��# and �(*) This model is identical to the one used in [3].

When the user is in an active state, she actively makes requests to the server. This includes multiple requests

made by the browser as a result of loading a single webpage, or multiple webpages that the user loads in a short

period of time. The thinking state represents the user when she is thinking, or reading the results of previous

requests. During this time, there are no requests made by the user. To represent server failures, the model includes

a third user state to represent a user who has seen a failure in the server, and is waiting to retry her request.

+-, �'.-�0/1 , �12.4365879:58;=<>@?�A (2)

B , �C.D�
EFFG FFH-IKJ:LNMO
M=P:Q

!SRUT��VTXW
Y ! Z[�C\]9_^[`���a[9 (3)

When the user is in active state, she makes requests to the server at a rate that is described by the Weibull

distribution with parameters / � Y)cb and
1 �ed)cb . The probability density function of the Weibull distribution is

given by equation 2. If the user encounters no errors while in active state, she goes into thinking state after a certain

amount of time. This time is described by another Weibull distribution, with / � Y)cf%f and
1 �g9%hji k

. Once the

user is in thinking state, she stays in that state until she is ready to make requests to the server again. The amount

of time spent in thinking state is described by the Pareto distribution, with parameters l � Y)cb , Rm�Un Y
, andWo��n Y%Y%Y

. The probability density function of a Pareto distribution is given by equation 3. Note that p � 77C58;rqs ? Mis the normalization factor. As mentioned earlier, this model, as well as the distribution parameters, are identical to

those proposed and used by [8] and [3] respectively. This behavioral model of the user creates a difference between

the user-perceived availability of the system, and its actual availability. When the system goes down, the user may

not see the failure right away; conversely, when the system comes back up, the user may still think the server is

down for some time.

The server has two states: up and down. We assume that both MTTR and MTTF have exponential distributions.

Thus, as shown by Figure 1, the server fails at some rate t , and recovers at some rate u . In our experiments, we

vary the values of t and u . If the web user encounters an error while in active state (server does not respond), the

browser retries for a period of
�-�vd Y

seconds. This is intended to model HTTP retry time most browsers have. If

the server recovers within that time, the user does not see the failure. Otherwise, the user goes into failure state,

and stays in failure state for a certain amount of time before going back into active state to retry her request. The

amount of time spent in failure state is assumed to be an exponential distribution with a rate
^
, the user retry rate.

We discuss this user retry behavior in detail in the following section. A summary of the distribution parameters

used in our model is shown in Table I and Table II.

TABLE I
SUMMARY OF FIXED SIMULATION PARAMETERS

Parameter Default Value Comment/ 0.88 Shape parameter of Weibull distribution1 9 hji k
Scale parameter of Weibull distribution
(for the length of ON period)/xw 0.5 Shape parameter of Weibull distribution1 w 1.5 Scale parameter of Weibull distribution
(within the ON period)l 0.5 Shape parameter of Pareto distributionR

60s Scale parameter of Pareto distributionW
6000s Truncation point of Pareto distribution

(ON-OFF threshold)� 10s HTTP retry time

TABLE II
SUMMARY OF VARIABLE SIMULATION PARAMETERS

Parameter Default Value Range Comment^
100 s 100 s to 20 min Mean time between user retries upon failure�8y 2400 s 17 s to 1.5 hours Duration of failure (TTR)�Kz 3.9 days 40 min to 8.6 days Mean time before failure

B. User Behavior In The Face of Failure

In our experiments, we chose to assume an exponential distribution of the time between user retries when users

detect a failure in the server. This is to allow us to compare our results with previous work by Xie et al. However,

we note that there are no existing empirical studies which support the use of an exponential distribution, or any other

distribution, to model users’ behavior in the face of a server failure. In this section, we investigate the plausibility

of our assumption by examining a set of web server logs from a certain commercial shopping portal website. We

collected web server logs for a particular page on this website for the duration of an entire day, during which there

is a two hour period, 10 AM to 12 PM, of complete system failure. After the two hours, the system was restarted

but was still suffering from intermittent problems. Although this data is not sufficient to deduce a complete user

model for user retry behavior, we are able to identify certain trends.

From our logs, we extract all the cookied requests because they allow us to identify unique users. For the two

hour failure period, 1015 unique users requested service from that page. We classify those users into different

categories: I) users seen only once during the two hour period, and never again for the rest of the day; II) users

seen more than once in the two hour period, but never again for the rest of the day; and III) users who were seen

during the two hour period, and again at some point after that period. This is shown in Figure 2.

We observe that a large number of users, the ones in categories I and II, give up before the fault is repaired.

In particular, users in category I are especially unforgiving - never coming back to the site for the rest of the day

after experiencing one failed request. This may be because of the nature of the web site we’re studying. Since the

website in question is a shopping portal, users may simply go elsewhere if they encounter problems trying to access

it. We speculate that user behavior will be different for a web site that offers critical service that is not available

elsewhere. An example of such a web service is online banking.

For the users who do retry multiple times (category III), we plot the times between retries in a cumulative

frequency distribution, as shown in Figure 3. We compare the actual cumulative frequency distribution with an

exponential distribution, with a mean time between retry of 4500s, and observe that the empirical distribution has

a significantly heavier tail than the exponential distribution. However, it appears that the exponential distribution is

Fig. 2. User Failure Behavior

not an unreasonable approximation of the empirical data.

We emphasize that the results presented in this section are preliminary, and meant only to provide some intuition

into user retry behavior in the real world. The development of a complete user model based on empirical data from

multiple sites is the subject of future work.

Given that there is no existing model for user retry behavior in the face of failure, we make the assumption

that user retry behavior is approximated by an exponential distribution for all of our experiments. However, to

demonstrate that our results are dependent on user retry behavior, we also experimented with an alternative model.

Anecdotal evidence from our colleagues suggests that exponential backoff may be a suitable approximation of user

behavior under certain circumstances. The results from this alternative model are presented in section IV-C.

III. EXPERIMENTAL SETUP

A. Software and Hardware Components

Figure 4 is a block diagram of the experiment setup. On the left are simulated users. Each simulated user is

implemented as a thread in a Python application. All the user threads were run on a single Pentium III 1.1 GHz

Windows XP machine equipped with 256 MB of RAM. A proxy server runs on the same machine. The proxy is

responsible for forwarding web requests from the users to the web server when it is in an “up” state, and simulating

server failure by dropping requests when it is in a “down” state. The web server is an Apache 2.0.40 server running

on a vanilla RedHat 8.0 installation of Linux. It ran on a PC with an AMD Athlon 1800XP processor and 512

MB of RAM. On all our experiments, we monitored CPU utilization on both machines to ensure that the processor

Fig. 3. Cumulative Distribution Frequency of User Retry Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Retry Time (in seconds)

Empirical
Exponential

Fig. 4. Experiment Setup

was not the bottleneck. During our experiments, CPU utilization remained below 50% on the machine running the

simulated users and proxy, and below 10% on the web server.

B. Experiments

We ran multiple trials with varying conditions to measure the user-perceived availability of systems with different

characteristics, for users with different retry behavior. Each trial was run using 500 user threads. We first started

all 500 user threads with the users initially in “thinking” state, and the server in an “up” state. We allowed the

simulation to run for ten minutes before injecting a server fault of a certain duration. For the duration of the fault,

the proxy stays in a “down” state and simply drops users’ requests, rather than forwarding them to the web server.

After the duration of the fault, the proxy goes back into an “up” state. We then continue the trial for another {-|

seconds, where �8} is five times the mean time between retries of the users.

Once users detect that the server is down, the amount of time they wait between retries is given by an exponential

distribution. Thus, the probability that a user will take more than five times her mean retry time before seeing that

the server has come back up is less than 0.007, allowing us to reasonably approximate that none of the users will

still be in a “failed state” �~} seconds after the server comes back up.

� ��d�� �����
Q
� �;�� ? ;��[�x���[� ?

� � User-perceived availability&��8�
Server downtime perceived by user i� �
Number of users

� z � Mean time to failure (MTTF)

�8y � Mean time to recovery (MTTR)

(4)

We first held the length of failure at 2400 seconds (40 minutes) while varying the mean user retry time from 100

seconds to 1200 seconds. We then held mean user retry time at 100 seconds while we varied the server failure length

from 17 seconds to 5214 seconds. For each trial, we measured the number of seconds,
&��

, each user perceived

the server to be down. This is different from the actual amount of time the server is down, since users do not see

failures right away, nor do they detect recovery from failure instantly. These measurements allow us to compute

the user-perceived availability, using equation 4. For each set of parameters, we ran the experiment three times and

took the average. The results of our experiments are presented in the next section.

Note that the definition of user-perceived availability as defined by equation 4 is different from that used in [3].

We define user-perceived downtime as the amount of time that users perceive the system to be down; all other times,

the user is assumed to perceive the system as being up. User-perceived availability is then computed accordingly.

The definition used in [3] computes user-perceived availability as the probability that a user thinks the server is

down given that the user is actively seeking service from the server. This means that the user does not credit the

server with any uptime that occurs while she is in “thinking” state.

The rationale for our definition of user-perceived availability is three-fold:

� When a user is not interacting with the server, it is reasonable for the user to assume that the server stays in

same state in which the user last saw it. Hence, after a period of error-free interaction with the server, if a

user leaves the server for a certain amount of time (goes into thinking state), the user can reasonably assume

that the server was up for that duration. In our model, this thinking time ranges from 60 seconds to 1 hour

40 minutes.� System administrators are most concerned with minimizing user-perceived downtime of their system. Focusing

on this facet of user-availability gives us a metric that is most directly useful to system administrators.� Compared with the alternative, the definition given by equation 4 is easier to measure experimentally, since

simulations over a single failure are sufficient for computing user-perceived availability. This is because under

this definition, users’ perceived uptime during long periods of failure-free operation is simply the entire failure-

free period. Thus, unlike the definition used in [3], simulations of user interactions with the server during normal

operation are not necessary.

IV. RESULTS

A. Varying User Retry Rate

To study the effects of user retry rates on user-perceived availability, we vary the user retry rate while keeping

the other system parameters constant. We set the server’s recovery time at 2400 seconds, the server availability at

99.3% and vary the mean user retry rate from 0.00083 to 0.01000 (see table III). Note that the mean user retry

rate equals the reciprocal of the mean user retry time, i.e., a mean user retry rate of 0.01 translates into a mean

user retry time of 100 seconds.

TABLE III
ACTUAL SERVER UNAVAILABILITY = 0.007, MTTR = 2400S

Retry interval (in
a
) User Retry Rate (in

a 587
) User-Perceived Unavailability

1200 0.00083 0.00546
1000 0.00100 0.00538
800 0.00125 0.00508
600 0.00167 0.00477
400 0.00250 0.00412
200 0.00500 0.00386
100 0.01000 0.00380

Figure 5 illustrates the user-side perception of the server uptime during the experiment. For illustrative purposes,

the graph shows only three data sets. The x-axis is time, while the y-axis shows the number of simulated users

who think that the server is up. At
����n Y%Y a

, the proxy goes into a “down” state and begins dropping requests.

This “down” state lasts for 40 minutes before the proxy comes back up. As the graph shows, users that have a

higher retry rate notice the server’s return to health faster than the users with a lower retry rate.

In this experiment, we vary user retry rate from
Y) Y d_a 587 to

Y) Y%Y%Y f%� a 587 , while we measure the total amount of

downtime seen by the users and compute the user-perceived availability for each user retry rate using equation 4,

with the parameters ��y ���[� Y%Y a and � z�� � � Y%Y%Y%Y a � � days.

Fig. 5. User Perception vs. Time

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000 8000

N
o.

 o
f u

se
rs

 p
er

ce
iv

in
g

se
rv

er
 a

s
up

Time (in seconds)

Retry Rate = 0.01000
Retry Rate = 0.00167
Retry Rate = 0.00083

As shown in Figure 6, users’ perception of the server’s downtime is worse when the user retry rate is high. Note

that we plot unavailability rather than availability. This is to allow us to compare our results with Xie et al’s results

in [3]. User-perceived unavailability, �"� , can be easily computed using the equation �����v�N ¡�¢� . Figure 6 also

shows that there is decreasing marginal returns to increasing user retry rate. We observe that there is a “sweet spot”

at retry rate = 0.0025 (mean time between retries = 400s). This suggests that beyond a threshold, there is little

benefit to the user to increase her retry rate when faced with a server failure. Not surprisingly, this is consistent

with the conclusions found in [3].

While this provides an interesting insight into the relationship between user behavior and user-perceived avail-

ability, that information is not useful to the administrator of a web server since she typically has no control over

the users’ behavior. In the next section, we examine the impact of different system parameters on user-perceived

availability.

B. Varying MTTR and MTTF

In our next experiment, we keep the mean user retry time at 100 seconds and vary the server’s recovery rate

from 0.058824 to 0.000192 (MTTR=17s and MTTR=5214s). The server availability is kept constant at 99.3% by

varying MTTF accordingly.

Figure 7 illustrates the user-side perception of the server uptime during the experiment. Again, for illustrative

Fig. 6. User-Perceived Unavailability vs. Retry Rate

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0 0.002 0.004 0.006 0.008 0.01

U
se

r P
er

ce
iv

ed
 U

na
va

ila
bi

lit
y

Retry Rate (1/second)

Fig. 7. User Perception vs. Time

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000

N
o.

 o
f u

se
rs

 p
er

ce
iv

in
g

se
rv

er
 a

s
up

Time (in seconds)

Recovery Time = 100s
Recovery Time = 580s
Recovery Time = 1396s

Fig. 8. User-Perceived Unavailability vs. TTR

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0001 0.001 0.01 0.1

U
se

r P
er

ce
iv

ed
 U

na
va

ila
bi

lit
y

Recovery Rate (1/second)

purposes, the graph shows only 3 data sets. The x-axis is time, while the y-axis shows the number of simulated

users who think that the server is up. At £*��¤:¥%¥ , the proxy goes into a “down” state and begins dropping requests.

This “down” state lasts for 100, 580 and 3360 seconds before the proxy comes back up. As the graph shows,

increasing the server recovery time increases the number of users who see a fault in the server as well as the

duration that they perceive the server to be down.

From this set of experiments, we are able to calculate the user-perceived availability for various server config-

urations. User-perceived availability is again computed using equation 4, using the parameters {§¦¨�e©[ª«¥%¥«¬ and

{K�®�¯[ª«¥%¥%¥%¥«¬"®°ª days. This allows us to study the relationship between the recovery rate and the user-perceived

availability of a system, as shown in Figure 8.

Note that the overall system availability is held constant at 99.3% for these experiments, thus, as the recovery

rate increases, so does the failure rate. This implies that as we move from left to right along the x-axis, both the

MTTR and the MTTF of the system drops. In other words, systems on the right side of the graph have shorter,

but more frequent, failures. The actual values of user-perceived unavailabilty are also sensitive to the user retry

behavior, which is set to be exponentially distributed with a mean time between retries of 100 seconds.

As the graph shows, initially, user-perceived unavailability drops as MTTR drops. However, as the system’s

recovery time decreases to a value close to, or lower than the mean time between user retries, we observe that the

marginal returns to decreasing MTTR drops. Intuitively, when MTTR is significantly larger than the mean time

between user retry, MTTR is the dominant factor that affects user-perceived downtime, and thus, user-perceived

unavailability. However, as MTTR drops and approaches the mean time between user retries, the user-perceived

downtime becomes increasingly dominated by the user retry rate instead - since the system recovers fairly quickly,

the amount of user-perceived downtime is mostly dependent on how quickly users notice the server’s return to

health, which is in turn dependent on users’ retry rate. This interplay between the relative contributions of MTTR

and user retry rate explains the diminishing marginal returns of decreasing MTTR.

At the same time, lowering MTTF imposes a marginal cost in terms of user-perceived availability, since more

frequent failures means that more users will see the failures. Eventually, the increasing marginal cost of lowering

MTTR catches up with the marginal costs of lowering MTTF. This causes the graph to flatten out and eventually

start rising. As shown in Figure 8, for a system with availability of 99.3%, the graph has a minimum turning point

with a user-perceived unavailability of 0.0031, and this optimal system has a recovery time between 155s and 374s.

C. Exponential Backoff Model

As mentioned in section II-B, user-perceived availability is critically dependent on the user retry behavior. We

have assumed that faced with a failure, user retry behavior is approximated by an exponential distribution. Our

preliminary results from the examination of server logs from a commercial website show that this assumption is

reasonable. However, to show the dependence of user-perceived availability on user retry behavior, we explored an

alternative user retry model. Figure 9 compares the user-perceived availability to two different sets of users, holding

the system availability constant while varying MTTR. One set of users retry with an exponential distribution, as in

Figure 8, while the second set of users use exponential backoff - they wait 30 seconds before retrying when first

faced with a failure, and double the retry interval upon each consequtive request failure. As the graph shows, the

user-perceived availability differs greatly for the two sets of users.

D. Summary and Implications

Our experiments confirm one of the results found by Xie et al [3] - increasing user retry rates increases user-

perceived availability. Xie et al. goes on to assert that between two systems of equal system availability, the one

with lower MTTR always has better user-preceived availability. We find that this assertion holds only under certain

conditions. In particular, when MTTR decreases beyond a certain point, user-perceived availability actually suffers

from further decreases in MTTR, because the costs of decreasing MTTF eventually overtakes the diminishing returns

of decreasing MTTR. This finding has an interesting implication for administrators of web servers - it implies that

is not always beneficial to trade higher MTTF for lower MTTR. Thus, given limited resources, it is no longer clear

Fig. 9. Comparing Different User Retry Behavior

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.0001 0.001 0.01 0.1

U
se

r P
er

ce
iv

ed
 U

na
va

ila
bi

lit
y

Retry Rate (1/second)

Exponential
Exponential-Backoff

whether investing in improving MTTR or MTTF will yield greater user-perceivable benefits. In the next section,

we propose a method for determining this.

V. DETERMINING OPTIMAL SYSTEM IMPROVEMENT

The problem of maintaining high system availability is well studied. As such, there are many options available

to the system adminstrator who wants to improve either the MTTF or MTTR of her system. To increase the MTTF

of a system, the system administrator needs to reduce the frequency of failures. One direct way of doing this is to

make use of high quality components which have high MTTF. Another approach is to make use of fault-tolerant

components such as ECC memory, or RAID storage arrays. Finally, when it is known that failures are occurring

due to software faults, the only solution may be to change the software being used, or to locate the bug in the

software, both of which may be costly and time-consuming. Another approach to increasing system availability is

to decrease the MTTR of the system. When replication and overprovisioning are possible, the system administrator

can add fast-failover machines to the system so that each machine is more lightly loaded and can take over a peer’s

load in case of a failover. The system administrator can also choose to use databases that have fast restart and

recovery times, so that when a problem is encountered, the system can be very quickly restarted. Recent work by

Candea et al. has also proposed recursive restartability [10] and microreboots [11] as new ways of reducing MTTR.

Where and how to invest limited resources to improving system availability is often a difficult question to answer.

Not only is there a multitude of options available, the effect of each is often difficult to determine before actual

deployment. In this section, we make a contribution to tackling this problem by proposing a method for determining,

for a given system, whether investing in an improvement in MTTR or MTTF will yield greater user-visible benefits.

For any given system we want to be able to decide whether it is more beneficial to improve MTTR or MTTF. To

illustrate this, consider the following examples. Assume that we have two systems, A and B, with the parameters

given in table IV.

TABLE IV
SYSTEM CONFIGURATIONS

� # � MTTR MTTF
System A 0.00700 0.00390 65s 9220s (2.6h)
System B 0.00700 0.00310 1400s (23.3min) 19800s (2.3days)

Based on the simulation data that we gathered, we are able to plot Figures 10 and 11, which give an interesting

insight to the problem.

In the graphs, the x-axis represents the system unavailability, and the y-axis represents the corresponding user-

perceived unavailability. The two lines in each graph represents the trajectories along which the system and user-

perceived unavailability values will move according to the action taken. For instance, the “FIXED MTTF” line

represents the path along which system unavailability,
� # , and user-perceived unavailability,

� , will vary if the

system administrator keeps her system’s MTTF constant and lowers its MTTR.

First, consider system A. From Figure 10, we observe that by lowering the system’s MTTR, the system admin-

istrator can move the system along the “FIXED MTTF” line, lowering
� # from S1 to S2 and

� from U1 to U2.

Alternatively, the system administrator can increase the system’s MTTF and move the system along the “FIXED

MTTR” line, achieving the same gain in lowering
� # from S1 to S2, but with a larger gain in

� from U1 to U3,

where
$ � � $ d¢± $ �-� $ d . Although both improvements result in the same system unavailablity, the improvement

in user-perceived unavailabilty is 7% greater if the system unavailablity improvement was due to an improvement in

MTTF, rather than MTTR. In this case, the system administrator should invest resources in improving the system’s

MTTF.

TABLE V
SYSTEM A IMPROVEMENTS

Step taken New
� # New

� ² �
Increase MTTF to 22200s (6.2h) 0.00292 0.00145 .00245
Decrease MTTR to 27s 0.00292 0.00163 .00227

Fig. 10. User-Perceived Unavailability vs. System Unavailability for System A

 0.0001

 0.001

 0.01

 0.1

 0.001 0.01 0.1

U
se

r P
er

ce
iv

ed
 U

na
va

ila
bi

lit
y

System Unavailability
S1S2

U1

U2
U3

FIXED TTF
FIXED TTR

However, increasing the system’s MTTF is not always better than decreasing its MTTR. To appreciate this fact,

consider System B, which has the same system unavailability as System A, but different MTTR and MTTF. From

Figure 11, we observe that by lowering the system’s MTTR, the system moves along the “FIXED MTTF” line,

lowering �´³ from S1 to S2 and �¢� from U1 to U3. If the adminstrator increases the system’s MTTF, however,

the system moves along the “FIXED MTTR” line, again lowering �"³ from S1 to S2 but this time with a smaller

change in �"� , from U1 to U2. The effects of these two possible improvements to the system are tabulated in table

VI. Although both improvements cause an equal improvement in system availability, improving MTTR increases

user-perceived availability 25% more than improving MTTF. In this case, approaches to improve the system that

focus on MTTR will be more effective.

TABLE VI
SYSTEM B IMPROVEMENTS

Step taken New �¢³ New �µ³ ¶ �µ�
Increase MTTF to 477000s (5.5days) 0.00292 0.00167 .00143
Decrease MTTR to 580s 0.00292 0.00131 .00179

Thus, for any given system, once we have determined the effect of changing MTTR/MTTF on user-perceived

unavailability as well as system unavailability, and plot them in a graph similar to Figures 10 and 11, we can better

Fig. 11. User-Perceived Unavailability vs. System Unavailability for System B

 0.0001

 0.001

 0.01

 0.001 0.01

U
se

r P
er

ce
iv

ed
 U

na
va

ila
bi

lit
y

System Unavailability
S1S2

U1

U2
U3

FIXED TTF
FIXED TTR

decide where to allocate resources to improve the user-visible availability of the system.

VI. RELATED WORK

The user model used in this paper was first proposed by Deng [8], while the server-user interaction model was

first used by Xie et al. in [3], where they proposed the use of Markov regenerative process models to study user-

perceived availability. Feldmann studied server-side TCP connection arrival distributions and found that they are

best modeled by distributions with heavy tails, particularly Weibull distributions [7]. Barford and Crovell proposed

representative web workloads for network and server evaluation based on user models developed from empirical

data [4]. Their model share Deng’s concepts of ON-OFF user states [8], as well as the use of Pareto and Weibull

distributions. However, the parameters used in the various distributions differed. Mah proposed an empirically-

derived model of HTTP network traffic [12]. As part of his study of packet-level traces, Mah found that the average

think time of users ranged from 800 seconds to 2000 seconds, while the distribution of think time resembled a

heavy tailed distribution, such as the Pareto distribution used in our study. Choi and Limb presents a web traffic

model for the evaluation of communication networks [5]. They found that the ON-time of web users followed a

Weibull distribution with parameters ·¡�¸¥�¹�º%º and »¼�¸¥�¹c¤%½ , which differs significantly from our parameters of

·¾�¨¥�¹c½%½ and »"��¿_ÀjÁ Â , as proposed by Deng.

VII. FUTURE WORK

We hypothesize that there are several categories of user behavior when users are faced with a system failure,

and that the categories depend on the nature of the site in question. For example, a user trying to perform a time-

critical banking transaction may repeatedly retry the transaction at regular intervals until it succeeds, whereas a

user causally shopping may exhibit retry behavior that is most accurately approximated by an exponential backoff

model. Our future work will focus on develping better end-user models characterized by different distributions,

and understanding which kinds of sites encourage the behaviors captured in each model. This will allow us to

fine-tune our recommendations to site-operators as to how best to spend their resources to increase user-perceived

site availability.

VIII. CONCLUSION

We verified previous work and showed that higher user retry rate gives higher user-perceived availability, with

decreasing marginal returns. We show that MTTR is more important than MTTF in some, but not all situations,

for providing high user-perceived availability. For any given system, we proposed a method to determine which of

MTTR or MTTF to improve, in order to obtain the maximum amount of user-visible benefits.

IX. ACKNOWLEDGEMENTS

We would like to thank operators of that anonymous website for giving us access to their server logs, and

members of the Berkeley-Stanford ROC group for reading our draft and providing invaluable feedback. Finally, we

would also like to thank Wei Xie for his insight with regards to the differences in our definitions of user-perceived

availability.

REFERENCES

[1] A. Fox, “Toward recovery-oriented computing,” 2002. [Online]. Available: citeseer.nj.nec.com/fox02toward.html

[2] “Cost of downtime study,” 1996. [Online]. Available: http://www.contingencyplanningresearch.com/cod.htm

[3] W. Xie, H. Sun, Y. Cao, and K. S. Trivedi, “Modeling of user perceived webserver availability,” in Proceedings of the IEEE International

Conference on Communications, May 2003, 2003.

[4] P. Barford and M. Crovella, “Generating representative web workloads for network and server performance evaluation,” in Measurement

and Modeling of Computer Systems, 1998, pp. 151–160. [Online]. Available: citeseer.nj.nec.com/barford98generating.html

[5] H.-K. Choi and J. O. Limb, “A behavioral model of web traffic,” in Proc. of International Conference of Networking Protocol, 1999.

[6] V. Paxson and S. Floyd, “Why we don’t know how to simulate the internet,” in Winter Simulation Conference, 1997, pp. 1037–1044.

[Online]. Available: citeseer.nj.nec.com/paxson97why.html

[7] A. Feldmann, “Characteristics of tcp connection arrivals,” 1998. [Online]. Available: citeseer.nj.nec.com/feldmann98characteristics.html

[8] S. Deng, “Empirical model of www document arrivals at access link,” in Proceedings of the IEEE International Conference on

Communication, June 1996., 1996. [Online]. Available: citeseer.nj.nec.com/deng96empirical.html

[9] M. Crovella and A. Bestavros, “Self-similarity in world wide web traffic: Evidence and possible causes,” in Proceedings

of SIGMETRICS’96: The ACM International Conference on Measurement and Modeling of Computer Systems., Philadelphia,

Pennsylvania, May 1996. [Online]. Available: http://www.cs.bu.edu/fac/best/res/papers/sigmetrics96.ps

[10] G. Candea and A. Fox, “Recursive restartability: Turning the reboot sledgehammer into a scalpel,” in International Conference on

Dependable Systems and Networks (DSN-2002), 2001.

[11] G. Candea, J. Cutler, and A. Fox”, “Improving availability with recursive microreboots: A soft-state system case study,” Performance

Evaluation Journal, vol. 56, no. 1-3, 2004.

[12] B. A. Mah, “An empirical model of http network traffic,” in Proceedings of Infocomm, 1997.

