Query Processing

- Decomposition
- Localization
- Optimization

Decomposition

- Same as in centralized system
- Normalization
- Eliminating redundancy
- Algebraic rewriting

Normalization

- Convert from general language to a “standard” form (e.g., Relational Algebra)

Example

Select A, C
From R, S
Where (R.B = 1 and S.D = 2) or (R.C > 3 and S.D = 2)

Also: Detect invalid expressions

E.g.: Select * from R where R.A = 3

R does not have “A” attribute
Eliminate redundancy

E.g.: in conditions:
\[(S.A=1) \land (S.A>5) \Rightarrow \text{False} \]
\[(S.A<10) \land (S.A<5) \Rightarrow S.A<5 \]

E.g.: Common sub-expressions

Algebraic rewriting

E.g.: Push conditions down

\[\sigma_{\text{cond}} \quad \rightarrow \quad \sigma_{\text{cond1}} \quad \sigma_{\text{cond2}} \]

Localization steps

1. Start with query
2. Replace relations by fragments
3. Push \(\cup \): up (use CS245 rules)
 \[\pi, \sigma: \text{down} \]
4. Simplify – eliminate unnecessary operations

After decomposition:
- One or more algebraic query trees on relations
- Localization:
 - Replace relations by corresponding fragments

Notation for fragment

\[[R: \text{cond}]\]

fragment conditions its tuples satisfy
Example A
(1) $\sigma_{E=3}

\mid

R$

(2) $\sigma_{E=3}

\cup

[R_1: E < 10] \cup [R_2: E \geq 10]$

(3) $\sigma_{E=3} \cup \sigma_{E=3}

[R_1: E < 10] \cup [R_2: E \geq 10]$

(3) $\sigma_{E=3} \cup \sigma_{E=3}

[R_1: E < 10] \cup [R_2: E \geq 10]

\Rightarrow \emptyset$

(4) $\sigma_{E=3}

\mid

[R_1: E < 10]$

Rule 1

A $\sigma_{c_1[R: c_2]} \Rightarrow \sigma_{c_1[R: c_1 \land c_2]}$

B $[R: \text{False}] \Rightarrow \emptyset$
In example A:

\[\sigma_{E=3}[R2: E \geq 10] \Rightarrow \sigma_{E=3}[R2: E=3 \land E \geq 10] \Rightarrow \sigma_{E=3}[R2: \text{False}] \Rightarrow \emptyset \]

Example B

(1) A=common attribute

RS

(2)

\([R1: A<5] \cup [R2: 5 \leq A \leq 10] \cup [R3: A>10]

\([S1: A<5] \cup [S2: A \geq 5] \]

(3)

\([R1: A<5] \cup [R2: 5 \leq A \leq 10] \cup [R3: A>10]

\([S1: A<5] \cup [S2: A \geq 5] \]

(4)

\([R1: A<5] \cup [R2: 5 \leq A \leq 10] \cup [R3: A>10]

\([S1: A<5] \cup [S2: A \geq 5] \]

\([R3: A>10] \cup [S2: A \geq 5] \]
Rule 2

\[\text{[R: C1]} \bowtie [\text{S: C2}] \Rightarrow \]
\[[\text{R} \bowtie \text{S: C1 } \land \text{ C2 } \land \text{ R.A } = \text{ S.A}] \]

In step 4 of Example B:

\[\text{[R1: A<5]} \bowtie [\text{S2: A } \geq 5] \]
\[\Rightarrow [\text{R1}\bowtie\text{S2: R1.A < 5 } \land \text{ S2.A } \geq 5 \land \text{ R1.A } = \text{ S2.A }] \]
\[\Rightarrow [\text{R1}\bowtie\text{S2: False}] \Rightarrow \emptyset \]

Localization with derived fragmentation

Example C

(2)

\[\begin{align*}
\text{R1: } & A<10 \\
\text{R2: } & A \geq 10
\end{align*} \]
\[\begin{align*}
\text{S1: } & K=R.K \\
\text{S2: } & K=R.K
\end{align*} \]

(3)

\[\begin{align*}
\text{K} & \\
\text{R1} & [\text{S1}] \\
\text{R1} & [\text{S2}] \\
\text{R2} & [\text{S1}] \\
\text{R2} & [\text{S2}]
\end{align*} \]

In step 4 of Example C:

\[\text{[R1:A<10]} \bowtie [\text{S2:K=R.K } \land \text{ R.A } \geq 10] \]
\[\Rightarrow [\text{R1}\bowtie\text{S2: R1.A } < 10 \land \text{ S2.K } = \text{ R.K } \land \text{ R.A } \geq 10 \land \text{ R1.K } = \text{ S2.K}] \]
\[\Rightarrow [\text{R1}\bowtie\text{S2: False }] \quad (K \text{ is key of R, R1}) \]
\[\Rightarrow \emptyset \]
(4)
\[[R_1: A < 10] \land [S_1: K = R.K \land R.A < 10] \land [R_2: A \geq 10] \land [S_2: K = R.K \land R.A \geq 10] \]

(4) simplified more:
\[\bigcup \bigwedge \bigcup \bigwedge \bigcup \bigwedge \]

• Localization with vertical fragmentation

Example D

(1) \[\Pi_A \]
\[R \]
\[R_1(K, A, B) \]
\[R_2(K, C, D) \]

(2) \[\Pi_A \]
\[\bigcup \bigwedge \]
\[R_1 R_2 \]
\[(K, A, B) \]
\[(K, C, D) \]

(3) \[\Pi_A \]
\[\bigcup \bigwedge \]
\[\Pi_{K,A} \]
\[\Pi_{K,A} \]
\[\bigcup \bigwedge \]
\[R_1 R_2 \]
\[(K, A, B) \]
\[(K, C, D) \]

not really needed

(4) \[\Pi_A \]
\[\bigcup \bigwedge \]
\[\bigcup \bigwedge \]
\[R_1 \]
\[(K, A, B) \]

Rule 3
• Given vertical fragmentation of R:
 \[R_i = \Pi_{A_i}(R), ~ A_i \subseteq A \]
• Then for any \[B \subseteq A \]:
 \[\Pi_B(R) = \Pi_B(\bigcup \bigwedge R_i \mid B \cap A_i \neq \emptyset) \]
• Localization with hybrid fragmentation

Example E

\[R_1 = \sigma_{k<5} [\Pi_{k,A} R] \]

\[R_2 = \sigma_{k\geq 5} [\Pi_{k,A} R] \]

\[R_3 = \Pi_{k,B} R \]

Query:

\[\Pi_{k=3} R_1 \]

Reduced Query:

\[\Pi_{k=3} R_1 \]

Summary - Query Processing

• Decomposition ✓
• Localization ✓
• Optimization
 – Overview
 – Tricks for joins + other operations
 – Strategies for optimization

Optimization Process:

Generate query plans → P1 → P2 → P3 → Pn
Estimate size of intermediate results → C1 → C2 → C3 → Cn
Estimate cost of plan ($, time, ...) → pick minimum

Differences with centralized optimization:

• New strategies for some operations (semi-join, range-partitioning, sort, ...)
• Many ways to assign and schedule processors
Parallel/distributed sort

Input:
(a) relation R on single site/disk
(b) R fragmented/partitioned by sort attribute
(c) R fragmented/partitioned by other attribute

Output
(a) sorted R on single site/disk
(b) fragments/partitions sorted

Basic sort
- R(K,...), sort on K
- Fragmented on K
 Vector: k₀, k₁, ... kn

Algorithm: each fragment sorted independently
- If necessary, ship results

⇒ Same idea on different architectures:

Shared nothing:

Shared memory:

Range partitioning sort
- R(K,...), sort on K
- R located at one or more site/disk, not fragmented on K
• Algorithm:
 (a) Range partition on K
 (b) Basic sort

 \[\begin{array}{c}
 \text{Ra} \\
 \text{Rb}
 \end{array} \quad \begin{array}{c}
 \overset{R_1}{\text{Local sort}} \\
 \overset{R_2}{\text{Local sort}} \\
 \overset{R_3}{\text{Local sort}}
 \end{array} \quad \begin{array}{c}
 \overset{R'}{\text{Result}} \\
 \end{array} \]

• Selecting a good partition vector

 \[\begin{array}{c}
 7 \quad \ldots \\
 10 \quad \ldots \\
 31 \quad \ldots \\
 12 \quad \ldots \\
 8 \\
 15 \\
 11 \\
 32 \\
 17 \\
 \end{array} \]

 \[\begin{array}{c}
 \text{Ra} \\
 \text{Rb} \\
 \text{Rc}
 \end{array} \]

Example

• Each site sends to coordinator:
 - Min sort key
 - Max sort key
 - Number of tuples

• Coordinator computes vector and distributes to sites
 (also decides # of sites for local sorts)

Sample scenario:

Coordinator receives:
- \(\text{SA}: \text{Min}=5 \quad \text{Max}=10 \quad \# = 10 \text{ tuples} \)
- \(\text{SB}: \text{Min}=7 \quad \text{Max}=17 \quad \# = 10 \text{ tuples} \)

Expected tuples:

\[\begin{array}{c}
 2 \\
 1 \\
 \text{ko?}
 \end{array} \]

[assuming we want to sort at 2 sites]
Expected tuples with key < \(k_o\) = \(\frac{\text{Total tuples}}{2}\)

\[2(k_o - 5) + (k_o - 7) = 10 \]

\[3k_o = 10 + 10 + 7 = 27\]

\(k_o = 9\)

Variations

- Send more info to coordinator
 - Partition vector for local site
 - Histogram

\[\begin{array}{cccc}
5 & 6 & 7 & 8 & 9 & 10 \\
\hline
3 & 3 & \text{# tuples} & 10 & \text{local vector} \\
\end{array}\]

More than one round

E.g.: (1) Sites send range and # tuples
 - (2) Coordinator returns “preliminary” vector \(V_0\)
 - (3) Sites tell coordinator how many tuples in each \(V_0\) range
 - (4) Coordinator computes final vector \(V_f\)

Can you come up with a distributed algorithm?

(no coordinator)

Parallel external sort-merge

- Same as range-partition sort, except sort first

Note: can use merging network if available (e.g., Teradata)
• Parallel/distributed Join

Input: Relations R, S
 May or may not be partitioned

Output: R \bowtie S
 Result at one or more sites

Notes:
• Same partition function f is used for both R and S (applied to join attribute)
• f can be range or hash partitioning
• Local join can be of any type (use any CS245 optimization)
• Various scheduling options e.g.,
 (a) partition R; partition S; join
 (b) partition R; build local hash table for R; partition S and join

More notes:
• We already know why part-join works:

Even more notes:
• Selecting good partition function f very important:
 - Number of fragments
 - Hash function
 - Partition vector

• Good partition vector
 - Goal: | R_1 | + | S_1 | the same
 - Can use coordinator to select
Asymmetric fragment + replicate join

Notes:
- Can use any partition function f for R (even round robin)
- Can do any join — not just equi-join
e.g.: $R \bowtie_S S$

General fragment and replicate join

Notes:
- Asymmetric F+R join is special case of general F+R
- Asymmetric F+R may be good if S small
- Works for non-equi-joins

S is partitioned in similar fashion

Semi-join
- Goal: reduce communication traffic
- $R \bowtie_A S \Rightarrow (R \bowtie_A S) \bowtie_A S$ or
- $R \bowtie_A (S \bowtie_A R)$ or
- $(R \bowtie_A S) \bowtie_A (S \bowtie_A R)$
Example: $R \bowtie S$

$T = 4|A| + 2|A+C| + \text{result}$

Computing transmitted data in example:

- with semi-join $R \bowtie (S \bowtie R)$:
 $T = 4|A| + 2|A+C| + \text{result}$

- with join $R \bowtie S$:
 $T = 4|A+B| + \text{result}$

In general:

- Say R is smaller relation
- $(R \bowtie S) \bowtie S$ better than $R \bowtie S$ if
 $\text{size } (R \bowtie S) + \text{size } (R \bowtie S) < \text{size } (R)$

better if say $|B|$ is large
• Similar comparisons for other semi-joins
• Remember: only taking into account transmission cost

• Trick:
 Encode \(\Pi_A S \) (or \(\Pi_A R \)) as a bit vector
 key in \(S \):
 \[
 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0

 \]
 <---one bit/possible key----->

Three way joins with semi-joins

Goal: \(R \bowtie S \bowtie T \)

Option 1: \(R' \bowtie S' \bowtie T \)
 \(R' = R \leftarrow S; \ S' = S \leftarrow T \)

Option 2: \(R'' \bowtie S' \bowtie T \)
 \(R'' = R \leftarrow S'; \ S' = S \leftarrow T \)

Many options!

Number of semi-join options is exponential in # of relations in join
Privacy Preserving Join

- Site 1 has \(R(A, B) \)
- Site 2 has \(S(A, C) \)
- Want to compute \(R \bowtie S \)
- Site 1 should NOT discover any \(S \) info not in the join
- Site 2 should NOT discover any \(R \) info not in the join

Semi-Join Does Not Work

- If Site 1 sends \(I_A R \) to Site 2, site 2 learns all keys of \(R \)!

Fix: Send hashed keys

- Site 1 hashes each value of \(A \) before sending
- Site 2 hashes (same function) its own \(A \) values to see what tuples match

What is problem?

- Dictionary attack!
 Site 2 takes all keys, \(a_1, a_2, a_3 \ldots \) and checks if \(h(a_1), h(a_2), h(a_3) \) matches what Site 1 sent...

Adversary Model

- Honest but Curious
 - dictionary attack is possible (cheating is internal and can’t be caught)
 - sending incorrect keys not possible (cheater could be caught)
One Solution (Agrawal et al)

- Use commutative encryption function
 - $E_i(x) = x$ encryption using site i’s private key
 - $E_1(E_2(x)) = E_2(E_1(x))$
 - Shorthand for example:
 - $E_1(x)$ is x
 - $E_2(x)$ is x
 - $E_1(E_2(x))$ is x

Why does this solution work?

Other Privacy Preserving Operations?

- Inequality join $R > \times S$
- Similarity Join $R \times \times S$ with $\text{sim}(R.A,S.A) < e$

Other parallel operations

- Duplicate elimination
 - Sort first (in parallel)
 - Then eliminate duplicates in result
 - Partition tuples (range or hash) and eliminate locally

- Aggregates
 - Partition by grouping attributes; compute aggregate locally

Example:

```
R_a  |  #  | dept | sal
1    | 1   | toy  | 10
2    | 2   | toy  | 20
3    | 3   | sales| 15
```

```
R_b  |  #  | dept | sal
4    | 4   | sales| 5
5    | 5   | toy  | 20
6    | 6   | mgmt | 15
7    | 7   | sales| 10
8    | 8   | mgmt | 30
```

• sum (sal) group by dept
Example:

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

- sum (sal) group by dept

Example:

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>sales</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>mgmt</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

- sum (sal) group by dept

Example:

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>mgmt</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>sales</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

less data!

Example:

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>mgmt</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>sales</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>sales</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>mgmt</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>3</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>5</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>6</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>7</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

less data!

Example:

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>3</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>5</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>6</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>7</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>3</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>5</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>6</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>7</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>3</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>5</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>6</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>7</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>3</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>5</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>6</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>7</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ra</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>2</td>
<td>toy</td>
<td>toy</td>
</tr>
<tr>
<td>3</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rb</th>
<th># dept</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>5</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>6</td>
<td>sales</td>
<td>sales</td>
</tr>
<tr>
<td>7</td>
<td>mgmt</td>
<td>mgmt</td>
</tr>
</tbody>
</table>

less data!

Preview: Map Reduce

- data A1
- data A2
- data A3
- data B1
- data B2
- data C1
- data C2
Enhancements for aggregates
- Perform aggregate during partition to reduce data transmitted
- Does not work for all aggregate functions...
 Which ones?

Selection
- Range or hash partition
- Straightforward
 But what about indexes?

Indexing
- Can think of partition vector as root of distributed index:

![Diagram of partition vector as root of distributed index]

Index on non-partition attribute

![Diagram of index on non-partition attribute]

Notes:
- If index is not too big, it may be better to keep whole and make copies...
- If updates are frequent, can partition update work...
 (Question: how do we handle split of B-Tree pages?)

Extensible or linear hashing

![Diagram of extensible or linear hashing]

R1
f → R2
 ↓
R3
R4 ← add
• How do we adapt schemes?
• Where do we store directory, set of participants...?
• Which one is better for a distributed environment?
• Can we design a hashing scheme with no global knowledge (P2P)?

Summary: Query processing
• Decomposition and Localization ✓
• Optimization
 - Overview ✓
 - Tricks for joins, sort... ✓
 - Tricks for inter-operations parallelism
 - Strategies for optimization

Inter-operation parallelism
• Pipelined
• Independent

Pipelined parallelism

Site 1
\(\sigma \)

Site 2
\(S \)

Join

Probe

Tuples matching \(\sigma \)

result

Site 1

R

Tuples

Site 1

S

Independent parallelism

Site 1

R

S

T

V

Site 2

(1) \(\text{temp1} \leftarrow R \bowtie S \); \(\text{temp2} \leftarrow T \bowtie V \)
(2) \(\text{result} \leftarrow \text{temp1} \bowtie \text{temp2} \)

• Pipelining cannot be used in all cases e.g.: Hash Join

Stream of R tuples

Stream of S tuples
Summary

As we consider query plans for optimization, we must consider various tricks:
- for individual operations
- for scheduling operations