Time and clocks

- Time and clocks are fundamental concepts in distributed systems
e.g.: timeouts
 identifying calls, transactions,...
 setting priorities
 versions of data
...

Questions

- What is time?
- How can clocks be implemented?

Ordering of events

- More basic than time: event ordering
 event a happened before event b
 9 am before 10 am

- Do not need physical time to order events
 event a happened before event b
 can affect

Ordering of events

- "→" is a partial ordering
 [total ordering: for any two events a,b ($a \neq b$) either $a \rightarrow b$ or $b \rightarrow a$
 partial ordering: a,b can be concurrent]
The model

- Events within a process are totally ordered
- Sending or receiving a message is an event
- No assumptions about message transmission times

 E.g.: P1 → P2
 P1 → Q2
 P3, Q3 concurrent

Definition

The relation → on the set of events of a system is the smallest relation satisfying the following 3 conditions:

1) if a, b events in same process, and a comes before b, then a → b
2) if a is sending a message and b is receipt of same message by a different process, then a → b
3) if a → b and b → c, than a → c

- assume a → a
 - if a → b and b → a, than a, b are concurrent

Logical Clocks

Overview

- Logical Clocks
- Physical Clocks
 - basic properties
 - synchronization scheme
 - synchronization with clock server
 - probabilistic synchronization

Logical Clock

- $C_i =$logical clock (counter) at process i
- $C[b] =$ reading of C_j when event b occurs at process j
- Clock condition for any events a, b

 IF $a \rightarrow b$ THEN $C[a] < C[b]$
- No relationship to physical time
Clock Condition

If \(a \rightarrow b \) THEN \(C[a] < C[b] \)
can be satisfied if the following conditions hold:

\(C_1 \)
If \(a \) and \(b \) are events in process \(i \) and
\(a \) comes before \(b \), then \(C[a] < C[b] \)

\(C_2 \)
If \(a \) is the sending of a message by
process \(i \) and \(b \) is the receipt of that
message by process \(j \), then
\(C[a] < C[b] \)

To implement \(C_1 \), \(C_2 \):

\(IR_1 \)
Each process \(i \) increments \(C_i \)
between any two successive events

\(IR_2 \)
- Let \(a \) be event “process \(i \) sends
message to \(j \)”
- Message contains timestamp
\(T_m = C[a] \)
- When message arrives at \(j \)
 (1) IF \(T_m > C_j \) THEN \(C_j \leftarrow T_m \)
 (2) event “arrival of message”
 takes place

Note: \(C[a] < C[b] \) \(\nRightarrow \) \(a \rightarrow b \)

Note: \(a, b \) concurrent \(\nRightarrow \) \(C[a] = C[b] \)

Note: \(C[a] = C[b] \) \(\Rightarrow \) \(a, b \) concurrent

Ordering Events Totally (breaking ties)

Example:
- A server wants to execute requests in order
 \(a \) is event that originated one request (at client)
 \(b \) is event that originates second request (at other client)
- If \(C[a] < C[b] \), service \(a \) first (it could be
 that \(a \rightarrow b \))
- If \(C[a] = C[b] \), pick one \(a, b \) concurrent
 e.g., pick one with lower [node#, process id]

Total Ordering

- Let “<” be a total ordering of the processes
- Define total ordering of events “\(\nRightarrow \)”
 \(a \Rightarrow b \) (a event in process \(i \); b in j)
if and only if
 (1) \(C[a] < C[b] \) or
 (2) \(C[a] = C[b] \) and \(i < j \)
- “\(\nRightarrow \)” not unique
Solutions

1. Include “telephone call” in “system”
2. Use perfect physical clocks
3. Use real physical clocks
 - may be “slightly off”
 - does not eliminate anomaly, but reduces its likelihood
 - useful for fault detection

Physical Clocks

- Clock reading at process i at physical time t
- $C_i(t)$

- How do we enforce clock condition?
 - If $a \rightarrow b$ then $C(a) < C(b)$

Anomalous behavior

-reserve a seat

<table>
<thead>
<tr>
<th>Client</th>
<th>Reserve a seat</th>
<th>Telephone call</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

- $C=100$
- $C=50$
- $C=9am$

- Assume $C_i(t)$ is a continuous, differentiable function except when clock is reset (message arrived)

\[
C_i(t) = \lim_{x \rightarrow \delta} C_i(x - \delta) \\
C_i(t) = \lim_{x \rightarrow \delta} C_i(x + \delta)
\]
Each process i increments C_i between any two successive events. For each process i, if i does not receive a message at time t, then C_i is differentiable at t and
\[
\frac{dC_i(t)}{dt} > 0
\]

IR1

Logical clocks

IR1'

Let a be event “process i sends message m to j” at physical time t
- m contains timestamp $T_m = C_i(a)$
- Let μ_m be minimum transmission delay for m
- m arrives at process j at physical time t'
 - $t' > t + \mu_m$
 - If $T_m + \mu_m > C_j(t')$ THEN $C_j \leftarrow T_m + \mu_m$
- After clock adjust, event “arrival of m” takes place

IR2

Logical clocks

IR2'

Let a be event “process i sends message m to j”
- m contains timestamp $T_m = C_i(a)$
- when m arrives at j
 1. IF $T_m > C_j$ THEN $C_j \leftarrow T_m$
 2. event “arrival of m” takes place

Additional properties

PC1

Clock drift
There exists a constant $k << 1$
such that for all processes i
\[
\left| \frac{dC_i(t)}{dt} - 1 \right| < k
\]

For typical crystal controlled clocks, $k \leq 10^{-6}$
Clock synchronization

for all i,j: \(| C_i(t) - C_j(t) | < \epsilon \)

Theorem PC2 holds for all \(t > t_0 + \tau d \) with \(\epsilon \approx d(2k\tau + \xi) \)

(assuming \(\mu + \xi \ll \tau \)).
\[C_e(t_2) = C_e(t_1) + (1+k)(\mu + \xi) \]
\[C_s(t_2) = C_s(t_1) + \mu \]
\[\alpha = (1+k)(\mu + \xi) \cdot \mu \]
\[\text{max } \alpha = k(\mu + \xi) + \xi \]

Thus:
\[\varepsilon = 2k\tau + \alpha \]
\[\text{max } \alpha = k(\mu + \xi) + \xi \]

Assuming that \(k<<1 \) and \((\mu + \xi) << \tau \) we get:
\[\varepsilon = 2k\tau + \xi \]

Summary

Physical clocks:
- clock condition \(a \rightarrow b \Rightarrow C(a) < C(b) \)
- drift \(< k \)
- \(|C_i(t) - C_j(t)| < \varepsilon \)
- can be implemented as discrete

Uses for Physical Clocks:

(1) To order events
(2) Timeouts

Example: “Reply to my request by time \(t_1 \)”
At time \(t_2 = (\varepsilon + \mu + \xi)(1+k) + t_1 \)
we can timeout

my clock may drift

Do physical clocks rule out anomalous behavior?

No anomalous behavior if \(C_s(t_2) > C_f(t_1) \)
No anomalous behavior if $C_s(t_2) > C_f(t_1)$

Worst possible scenario:
- Smallest possible transmission time μ_{min}
- C_s, C_f as far apart as possible

 $C_s(t_1) = C_f(t_1) - \epsilon$
- Smallest possible $C_s(t_2) = C_f(t_1) - \epsilon + \text{S.P.increment} = C_f(t_1) - \epsilon + \mu_{\text{min}}(1 - \kappa)$

No A.B. if $C_s(t_2) > C_f(t_1)$

I.e., if $C_f(t_1) - \epsilon + \mu_{\text{min}}(1 - \kappa) > C_f(t_1)$

\[
\mu_{\text{min}} > \frac{\epsilon}{1 - \kappa}
\]

Using a clock service
- With IR2', a fast clock speeds up all clocks
- Use instead a single, reliable clock service (e.g., WWV), assume it is perfect "real time" ($k = 0$)
- IR2' is now: $C_j + (t') \leftarrow T_m + \mu_{\text{min}}$
 whenever timing message arrives
- If max. transmission time from central clock is $< \mu + \xi$ then $\epsilon = 2kt + \xi(1 + k)$
 (Why?)

0 ≤ error at synchronization time, node $j \leq \xi$

Using a clock service - analysis

Why can period be $\tau + \xi$?
Setting clocks back

| C_j(t) - C_k(t) | ≤ 2kτ + ξ(1 + k)

Probabilistic clock synchronization

Probabilistic clock synchronization

| C_j(t) - C_k(t) | ≤ 2kτ + ξ(1 + k)
Idea #1 When site j wants to synchronize, it requests time from server

When site j wants to synchronize, it requests time from server

\[C_j \leftarrow T + \mu + v/2 \]

\[2\mu + v \]

\[T \]

\[\text{j} \]

\[\text{server} \]

\[\text{time} \]

assume k = 0

\[|C_s(t) - C_j(t)| \leq v/2 \]

Idea #2

(a) pick desired bound, D
(b) repeat request until \(v/2 \leq D \)
(c) if more than q requests, we die!

• If we are lucky, v will be small and we get tight synchronization
• If we are unlucky, v is large and we lose!!
Prob. 1 request fails = \(\Pr[\text{roundtrip time} > 2\mu + 2D] = p \)
Prob. \(q \) requests fail = \(p^q \)
Prob. We can synchronize = \(1 - p^q \)

\[\Rightarrow \text{Choose } q \text{ so that it is "very likely" that algorithm works...} \]

Exercise

- Consider the clock synchronization scheme described in Slides 54-58 (Notes 10), where a server site has an accurate clock.
- Assume that communications are asymmetric, so that messages TO the server are "slower":
 - Largest minimum delay is \(\mu_2 \)
 - Largest unpredictable delay is \(\xi_2 \)
- messages FROM the server are "faster":
 - Largest minimum delay is \(\mu_1 \)
 - Largest unpredictable delay is \(\xi_1 \)
- and \(\mu_1 < \mu_2, \xi_1 < \xi_2 \).
- Continue to assume that \(\kappa \) is zero.
- At time \(t_1 \) a node \(j \) sends a synchronization request to the server. At time \(t_2 = t_1 + \nu + \mu_1 + \mu_2 \), node \(j \) receives its reply

Excecise

- If \(k = 0 \), we are done
 - step 1: all nodes synchronize
 - step 2: we stay synchronized forever
- If \(k > 0 \), synchronize every \(\tau \) seconds

homework.....